
Appendix for CellPLM: Pre-training of Cell Language Model341

Beyond Single Cells342

A Spatially-Resolved Transcriptomic Data343

Recently, spatial transcriptomic technologies are developed to spatially resolve transcriptomics344

profiles [57, 58]. With spatial transcriptomics data, researchers can learn the spatial context of cells345

and cell clusters within a tissue [59]. The major technologies/platforms for spatial transcriptomics346

are Visium by 10x [57], GeoMx Digital Spatial Profiler (DSP) [58] by NanoString and CosMx347

Spatial Molecular Imager (SMI) by NanoString, MERFISH, Vizgen, Resolve, Rebus, and molecular348

cartography. 10x Visium does not profile at single-cell resolution, and while GeoMx DSP is capable349

of single-cell resolution through user-drawn profiling regions, the scalability is limited. The most350

recent platform, CosMx Spatial Molecular Imager (SMI) [60], can profile consistently at single-cell351

and even sub-cellular resolution. CosMx SMI follows much of the initial protocol as GeoMx DSP,352

with barcoding and ISH hybridization. However, the SMI instrument performs 16 cycles of automated353

cyclic readout, and in each cycle, the set of barcodes (readouts) are UV-cleaved and removed. These354

cycles of hybridization and imaging yield spatially resolved profiling of RNA and protein at single-355

cell (∼ 10µm) and subcellular (∼ 1µm) resolution. In this work, we use two published and one356

unpublished dataset produced by the CosMx platform. In order to obtain the cellular level gene357

expression, CellPose [61] software is applied to conduct cell segmentation.358

To give a concrete example, we provide a sample field-of-view (FOV) in Fig. 5. Pre-selected types of359

RNA molecules are captured by the molecular imager, which are denoted as white dots in the figures.360

Colors in the first sub-figure indicate the protein molecules that are stained. These proteins contribute361

to the cell segmentation process, which results in the second sub-figure. The final output from the362

pipeline consists of the position of each cell and a cell-by-gene count matrix, which is produced by363

counting the number of RNA molecules within each cell. The difference between scRNA-seq and364

SRT data is further demonstrated in Fig. 6.365

(a) Visualization of molecular image. (b) Visualization of cell segmentation.
Figure 5: (a) A sample image of protein and RNA molecules. (b) A sample image of segmented cells.

Figure 6: An illustration of the difference between scRNA-seq and SRT data.
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B 2D Sinusoid Positional Encodings366

Since 2D sinusoidal PE achieves a competitive performance and has a lower complexity on SRT367

data [16], in our transformer encoer, we generate a sinusoidal PE for cells in SRT data, formulated as:368

PE(x,y,2i) = sin
(
x/100004i/d

)
,PE(x,y,2i+1) = cos

(
x/100004i/d

)
,

PE(x,y,2j+d/2) = sin
(
y/100004j/d

)
,PE(x,y,2j+1+d/2) = cos

(
y/100004j/d

)
,

(10)

where d is the total dimension of positional encoding, i, j ∈ [0, d/4) specify a specific feature369

dimension. Let C̃ ∈ RN×2 be a normalized coordinate matrix, where we normalize and truncate370

coordinates in C to integers ranging in [0, 100). x, y then refer to the spatial coordinates from C̃,371

e.g., x = C̃t,0 and y = C̃t,1 for cell t. In this way, we generate a PE matrix P ∈ RN×d for every372

cell in SRT data, where Pi is the PE vector for cell i. Meanwhile, for scRNA-seq data, a randomly373

initialized d-dimensional vector p′ is shared among all cells, which also results in a placeholder PE374

matrix P.375

C Broader Impact376

Our method lies in an emerging and important application area, single-cell analysis. Especially,377

we leverage a novel type of single-cell data, Spatially Resolved Transcriptomics (SRT). SRT is a378

rapidly developing technology that allows scientists to map the gene expression of individual cells in379

their tissue environment. It combines traditional imaging techniques with transcriptome analysis to380

provide a spatially resolved, high-resolution view of gene expression in complex tissues. Essentially,381

single-cell technologies and SRT allow researchers to see where specific genes are being expressed382

within a tissue sample, which can help them better understand cellular interactions and the function383

of specific genes in complex biological systems.384

We evaluate our method on various downstream tasks and the empirical results demonstrate the385

practical value of our method. Specifically, scRNA-seq Denoising improves the data quality of386

scRNA-seq data, which often suffer from technical artifacts and dropout events [19, 20], as well as387

significant batch effects between sequencing platforms and experiments [21, 22]. SRT imputation388

helps to obtain more precise cell state profiles for SRT data, while also resulting in more accurate389

integration and clustering between SRT data and scRNA-seq data. Perturbation prediction has great390

clinical value to aid in drug design and disease mechanism research.391

While our work offers a significant contribution to the field of single-cell analysis, there are potential392

negative societal impacts that are important to consider: one of the primary potential negative societal393

impacts is privacy and data security. Single-cell analysis involves working with sensitive genetic394

information which, if mishandled, could lead to breaches in privacy and the misuse of personal395

data. Another potential negative impact is over-reliance on automated analysis. The complexity of396

single-cell data requires careful interpretation, and the risk of false-positive or false-negative results397

may be elevated due to computational errors or algorithmic biases. It is crucial to remember that these398

tools should serve as aids to human understanding and decision-making rather than replacements.399

As single-cell technologies continue to evolve, it is critical that we continue to consider and address400

these broader societal impacts. Moving forward, it is crucial that our work is coupled with ongoing401

discussions on best practices in data management, privacy protection, and equitable access to402

technology. This includes strengthening collaborations with ethicists, policymakers, and regulatory403

bodies to navigate these complex issues.404

D Pre-training Settings405

D.1 Hyperparameter Settings406

We pre-trained CellPLM model with 3 different parameter sizes: 10M, 20M and 40M, with the407

hyperparameters specified in Table 3. However, according to our preliminary experiments in Fig. 7,408

the performance does not significantly increase with the larger model. Therefore, we consider409

CellPLM 10M as an optimal model and conduct fine-tuning experiments based on this version.410
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CellPLM-10M CellPLM-20M CellPLM-40M

encoder hidden dim 256 384 512
encoder layers 4 6 10

latent dimension 64 64 64
decoder hidden dim 128 192 256

decoder layers 2 2 2
model dropout 0.1 0.1 0.1
cell mask rate 0.5 0.5 0.5
gene mask rate 0.7 0.7 0.7
learning rate 2e-4 2e-4 2e-4
weight decay 1e-8 1e-8 1e-8
num of cluster

(for GMM) 16 16 16

Table 3: Hyperparameters for pretrained CellPLM models of different sizes.

Figure 7: Comparisons of model sizes on zero-shot performances. scRNAseq denoise refers to RMSE
performance on PBMC 5K dataset, SRT imputation refers to RMSE perfromance on Lung2 dataset.

D.2 Datasets for Pre-training411

The dataset for pre-training contains 11.4 million cells from scRNA-seq and SRT data. scRNA-seq412

data consist of 4.7 million cells from human tumor cell atlas (HTCA, https://humantumoratlas.413

org/), 1.4 million cells from human cell atlas (HCA, https://www.humancellatlas.org/), and414

2.6 million cells from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).415

All of them are public available data. A more detailed list will be disclosed in our GitHub repository.416

Note that although our CellPLM is capable to handle various input feature sets, when we concatenated417

these scRNA-seq datasets, we used inner join by default of Anndata package. As a result, all scRNA-418

seq datasets only contain a 13, 500 common gene set. We will address this issue and increase the size419

of the gene set in future versions of CellPLM.420

The SRT datasets we used are publicly available on Nanostring official website: https://421

nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset/,422

where 2.7 million cells and 1, 000 genes are measured.423

E Additional Experimental Details424

In this section, we provide more experimental details about fine-tuning, baselines, and evaluation425

metrics under each downstream task.426

E.1 scRNA-seq Denoising427

Downstream Task Datasets. In scRNA-seq denoising task, we evaluate CellPLM on two datasets,428

i.e., PBMC 5K and Jurkat from 10x Genomics [39]. It is worth noting that during the prepossessing429

stage, we performed sub-setting on both datasets to ensure that all the genes were included in the gene430
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set of pre-training data. Additionally, any genes with zero counts were removed from the analysis.431

We list the statistics of them in Table 4.432

Table 4: scRNA-seq denoising datasets
5K PBMC Jurkat

Number of genes 33,538 32,738
Number of cells 5,247 3,258

Num genes picked 7,197 7,618

Evaluation Metrics. Following the setting of scGNN [13], scGNN2.0 [40] and DeepImpute [41], we433

performed synthetic dropout simulation with missing at random (MAR) setting. While scGNN only434

considered a simple scenario, i.e., randomly flipped 10% of the non-zero entries to zeros, DeepImpute435

applied cell-wise mask with masking probability given by a multinomial distribution. Specifically,436

we adapted the setting from DeepImpute with exponential kernel. For cell i that contains at least 5437

expressed genes, the probability that one non-zero count xi,j is masked during the training process is438

given by Exp(0, 20):439

pi,j =
1

20
e−

x
20 ,

qi,j =
pi,j∑Ji

j=0 pi,j
,

where Ji is the number of non-zero counts within cell i. We masked 10% of the non-zero counts440

according to {qi,j}Ji
j=0 and evaluate model performance on the masked entries. We calculate the441

root mean squared error (RMSE) and mean absolute error (MAE) between the predicted values and442

ground truth.443

Baselines (1) DeepImpute [41] employed a strategy of dividing genes into subsets and constructing444

deep neural networks to impute scRNA-seq data. We implemented DeepImpute with default settings445

in DANCE [62] package. (2) scGNN2.0 [40] incorporated a feature autoencoder, a cluster autoen-446

coder and a graph attention autoencoder for simultaneous imputation and clustering. scGNN2.0 is447

implemented by DANCE package with default settings. (3) GraphSCI [63] combined autoencoders448

with graph convolution networks among a gene-gene similarity graph. We accommodated the imple-449

mentation of GraphSCI in DANCE package. (4) SAVER [42] leveraged Poisson LASSO regression450

to model the scRNA-seq counts with Poisson–gamma mixture. We utilized R package SAVER to451

illustrate the performance of it. (5) DCA [43] introduced an autoencoder framework based on zero452

inflated negative binomial (ZINB) distribution. We applied DCA to aforementioned datasets with453

its Python pacakge. (6) MAGIC [44] utilized Markov affinity to capture gene-gene relationship and454

impute missing gene expression. We adapted its Python package to access the performance of it.455

(7) scImpute [45] developed a Gamma and Gaussian mixture model to identify dropout values. We456

revealed the performance of scImpute with its R pacakge.457

Fine-tuning. Since denoising task requires model to recover the gene expression matrix, we can458

directly get the zero shot performance of CellPLM by specifying the gene set of target dataset.459

Additionally, we fine-tuned CellPLM by replacing the pre-trained decoder with a MLP head and460

initializing encoder with pre-trained weights. Additionally, for methods require model selection on461

validation set, we performed another 10% simulation dropout and treat masked entries as validation462

set. The fine-tuned CellPLM was trained on MSE reconstruction loss, while the best model was463

selected by evaluating MSE on validation set.464

E.2 Spatial Tanscriptomic Imputation465

Downstream Task Datasets. To evaluate spatial tanscriptomic imputation models at single-cell466

resolution, we collected two samples from MERSCOPE FFPE Human Immuno-oncology Data [46].467

Specifically, we chose "Lung cancer 2" and "Liver cancer 2" as our samples, and subsequently468

referred to them as "Lung2" and "Liver2" respectively. The Lung2 and Liver2 datasets were subsetted469

to align with the gene set of the pre-training data. Additionally, we removed the fields of view (FOVs)470

that contained fewer than 100 cells and retained only the first 100 FOVs from both datasets. Note471

that all baselines require reference scRNA-seq datasets to impute the unseen genes of SRT data, we472

13



collected GSE131907 [64] and GSE151530 [65] for lung cancer and liver cancer, respectively. The473

statistics of all datasets are illustrated in Table 5.474

Table 5: Spatial tanscriptomic imputation datasets.
Lung2 Liver2 GSE131907 GSE151530

Number of genes 500 500 29,634 18,667
Number of cells 836,739 598,141 208,506 56,721

Num genes picked 462 446 All ALL
Num cells picked 40,114 20,629 All All

Evaluation Metrics. Following the evaluation pipeline proposed by Avşar et al. [51], we selected475

target genes of SRT data with stratified sampling according to gene sparsity. Specifically, we476

grouped genes into four categories: low sparse, moderate sparse, high sparse, and very-high sparse.477

Empirically, the boundaries were defined as [x < 75, 75 ≤ x < 90, 90 ≤ x < 95, 95 ≤ x] to478

approximate the Gaussian mean and standard deviation slices. Subsequently, we randomly selected479

25 genes from each sparsity group and remove them from training data. After training the models,480

we calculate the evaluation metrics on the target genes. Namely, we compute the root mean squared481

error (RMSE), Pearson’s correlation coefficient (PCC) and cosine similarity (Cosine) between the482

ground truth values and the corresponding imputed values in a gene-wise approach.483

Baselines. (1) SpaGE [47] relied on domain adaptation to map scRNA-seq data onto SRT data and484

utilized a k-nearest-neighbor (k-NN) graph to predict unseen genes. We implemented SpaGE with485

default settings on both datasets. (2) stPlus [48] developed an autoencoder framework for learning cell486

embeddings and imputing SRT genes using a weighted k-NN approach. The performance of stPlus is487

accessed by its Python package. (3) gimVI [49] introduced a variational autoencoder based model488

with protocol-specific treatments on scRNA-seq data and SRT data. We applied the scvi-tools [66]489

Python package with default settings to evaluate the performance of gimVI. (4) Tangram [50] utilized490

a deep learning approach to learn the spatial alignment of scRNA-seq data based on a reference SRT491

dataset with consistent spatial maps. We evaluated Tangram with its Python package.492

Fine-tuning. Similar to scRNA-seq denoising, the spatial tanscriptomic imputation task requires the493

ouput of the model to be the gene expression. Thus, we directly fine-tune CellPLM on the pre-trained494

weights while specifying the input genes and target genes. The last two batches were hold out for495

validation.496

E.3 Perturbation Prediction497

Downstream Task Datasets. We included the Adamson Perturb-Seq dataset [54] for one-gene498

perturbations and the Norman Perturb-Seq dataset [55] for two-gene perturbations. We followed the499

preprocess pipeline of GEARS [53] and both datasets were then gene-wise subsetted to fit in the gene500

set of pre-training data. The statistics are summaried in Table 6.501

Table 6: Perturbation prediction datasets.
Adamson Norman

Number of genes 5,060 5,045
Number of cells 68,603 91,205

Num genes picked 3,246 2,353
Num one-gene pert. 87 105
Num two-gene pert. – 131

Evaluation Metrics. Following the setting of GEARS [53], we applied data split such that the testing502

perturbation are unseen during the training process. Specifically, For Adamson dataset, we randomly503

hold out 25% of the perturbations for testing and 10% of the perturbations within the training set504

for validation. For Norman dataset, two settings for two-gene perturbations are implemented for505

evalutation purpose: 1/2 unseen and 2/2 unseen. We excluded all two-gene combinations in which at506

least one of the individual genes involved in the combination belonged to the unseen set. Finally, we507
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evaluate the performance by calculating the root mean squared error (RMSE) between the predictions508

and the true values within the testing set.509

Baselines. (1) GEARS [53] utilized gene co-expression knowledge graph and Gene Ontology-derived510

knowledge graph to model the influence of perturbations. We followed the recommended parameter511

settings within its Python package to access the performance. (2) scGen [56] built a conditional512

variational autoencoders and incoporated vector arithmetics to model phenomena response. We513

implemented scGen with its Python package on both datasets.514

Fine-tuning. For one perturbation, we set the input of perturbed genes to be −100 to mimic the515

gene perturbation action. During the fine-tuning process, we substituted the original batch-aware516

decoder with a simplified MLP decoder. Additionally, we initialized the remaining components of517

CellPLM with pre-trained weights. The final model was chosen to be the best-performed model on518

the validation set.519
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