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Appendix for CellPLM: Pre-training of Cell Language Model
Beyond Single Cells

A Spatially-Resolved Transcriptomic Data

Recently, spatial transcriptomic technologies are developed to spatially resolve transcriptomics
profiles [57, 58]. With spatial transcriptomics data, researchers can learn the spatial context of cells
and cell clusters within a tissue [59]. The major technologies/platforms for spatial transcriptomics
are Visium by 10x [57], GeoMx Digital Spatial Profiler (DSP) [58] by NanoString and CosMx
Spatial Molecular Imager (SMI) by NanoString, MERFISH, Vizgen, Resolve, Rebus, and molecular
cartography. 10x Visium does not profile at single-cell resolution, and while GeoMx DSP is capable
of single-cell resolution through user-drawn profiling regions, the scalability is limited. The most
recent platform, CosMx Spatial Molecular Imager (SMI) [60], can profile consistently at single-cell
and even sub-cellular resolution. CosMx SMI follows much of the initial protocol as GeoMx DSP,
with barcoding and ISH hybridization. However, the SMI instrument performs 16 cycles of automated
cyclic readout, and in each cycle, the set of barcodes (readouts) are UV-cleaved and removed. These
cycles of hybridization and imaging yield spatially resolved profiling of RNA and protein at single-
cell (~ 10um) and subcellular (~ 1pm) resolution. In this work, we use two published and one
unpublished dataset produced by the CosMx platform. In order to obtain the cellular level gene
expression, CellPose [61] software is applied to conduct cell segmentation.

To give a concrete example, we provide a sample field-of-view (FOV) in Fig. 5. Pre-selected types of
RNA molecules are captured by the molecular imager, which are denoted as white dots in the figures.
Colors in the first sub-figure indicate the protein molecules that are stained. These proteins contribute
to the cell segmentation process, which results in the second sub-figure. The final output from the
pipeline consists of the position of each cell and a cell-by-gene count matrix, which is produced by
counting the number of RNA molecules within each cell. The difference between scRNA-seq and
SRT data is further demonstrated in Fig. 6.

(a) Visualization of molecular image. (b) Visualization of cell segmentation.
Figure 5: (a) A sample image of protein and RNA molecules. (b) A sample image of segmented cells.

scRNA-seq: Isolate and Sequence individual cells Image-based Spatially Resolved Transcriptomics

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
! | ! ! |
Gene1 Gene1 Gene1 Gene2 Gene1
x30 x100 x40 x20 x65
Gene3
x120

Gene6
x70

Figure 6: An illustration of the difference between scRNA-seq and SRT data.
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B 2D Sinusoid Positional Encodings

Since 2D sinusoidal PE achieves a competitive performance and has a lower complexity on SRT
data [16], in our transformer encoer, we generate a sinusoidal PE for cells in SRT data, formulated as:

PE(y.4.2i) = sin (x/mooo‘“'/ d) \PE(yy0i41) = €08 (x/loooo‘“'/ d) ,
| 4 (10)
PE(z,y,2j+d/2) = sin (y/100004j/d) s PE(z,y,2j+1+d/2) = cos (y/1000043/d) ;

where d is the total dimension of positional encoding, 4, € [0,d/4) specify a specific feature

dimension. Let C € RY*2 be a normalized coordinate matrix, where we normalize and truncate
coordinates in C to integers ranging in [0, 100). x,y then refer to the spatial coordinates from C,

eg.,xr = ét,O and y = C; 1 for cell ¢. In this way, we generate a PE matrix P € RV >4 for every
cell in SRT data, where P; is the PE vector for cell ;. Meanwhile, for scRNA-seq data, a randomly
initialized d-dimensional vector p’ is shared among all cells, which also results in a placeholder PE
matrix P.

C Broader Impact

Our method lies in an emerging and important application area, single-cell analysis. Especially,
we leverage a novel type of single-cell data, Spatially Resolved Transcriptomics (SRT). SRT is a
rapidly developing technology that allows scientists to map the gene expression of individual cells in
their tissue environment. It combines traditional imaging techniques with transcriptome analysis to
provide a spatially resolved, high-resolution view of gene expression in complex tissues. Essentially,
single-cell technologies and SRT allow researchers to see where specific genes are being expressed
within a tissue sample, which can help them better understand cellular interactions and the function
of specific genes in complex biological systems.

We evaluate our method on various downstream tasks and the empirical results demonstrate the
practical value of our method. Specifically, scRNA-seq Denoising improves the data quality of
scRNA-seq data, which often suffer from technical artifacts and dropout events [19, 20], as well as
significant batch effects between sequencing platforms and experiments [21, 22]. SRT imputation
helps to obtain more precise cell state profiles for SRT data, while also resulting in more accurate
integration and clustering between SRT data and scRNA-seq data. Perturbation prediction has great
clinical value to aid in drug design and disease mechanism research.

While our work offers a significant contribution to the field of single-cell analysis, there are potential
negative societal impacts that are important to consider: one of the primary potential negative societal
impacts is privacy and data security. Single-cell analysis involves working with sensitive genetic
information which, if mishandled, could lead to breaches in privacy and the misuse of personal
data. Another potential negative impact is over-reliance on automated analysis. The complexity of
single-cell data requires careful interpretation, and the risk of false-positive or false-negative results
may be elevated due to computational errors or algorithmic biases. It is crucial to remember that these
tools should serve as aids to human understanding and decision-making rather than replacements.

As single-cell technologies continue to evolve, it is critical that we continue to consider and address
these broader societal impacts. Moving forward, it is crucial that our work is coupled with ongoing
discussions on best practices in data management, privacy protection, and equitable access to
technology. This includes strengthening collaborations with ethicists, policymakers, and regulatory
bodies to navigate these complex issues.

D Pre-training Settings

D.1 Hyperparameter Settings

We pre-trained CellPLM model with 3 different parameter sizes: 10M, 20M and 40M, with the
hyperparameters specified in Table 3. However, according to our preliminary experiments in Fig. 7,
the performance does not significantly increase with the larger model. Therefore, we consider
CellPLM 10M as an optimal model and conduct fine-tuning experiments based on this version.
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CellPLM-10M  CellPLM-20M  CellPLM-40M

encoder hidden dim 256 384 512
encoder layers 4 6 10
latent dimension 64 64 64
decoder hidden dim 128 192 256
decoder layers 2 2 2
model dropout 0.1 0.1 0.1
cell mask rate 0.5 0.5 0.5
gene mask rate 0.7 0.7 0.7
learning rate 2e-4 2e-4 2e-4
weight decay le-8 le-8 le-8

num of cluster
(for GMM)

Table 3: Hyperparameters for pretrained Cel//PLM models of different sizes.

16 16 16

catpvsov N 0 540
I, 0 14

CellPLM-20M 0.670
0.945

cetpiv-toy I 0.620
N, 0920

0.00 010 020 030 040 050 060 070 0.80 0590 100
®m SRT Impute ®mscRNAseq Denoise

Figure 7: Comparisons of model sizes on zero-shot performances. scRNAseq denoise refers to RMSE
performance on PBMC 5K dataset, SRT imputation refers to RMSE perfromance on Lung?2 dataset.

D.2 Datasets for Pre-training

The dataset for pre-training contains 11.4 million cells from scRNA-seq and SRT data. scRNA-seq
data consist of 4.7 million cells from human tumor cell atlas (HTCA, https://humantumoratlas.
org/), 1.4 million cells from human cell atlas (HCA, https://www.humancellatlas.org/), and
2.6 million cells from Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/).
All of them are public available data. A more detailed list will be disclosed in our GitHub repository.
Note that although our CellPLM is capable to handle various input feature sets, when we concatenated
these scRNA-seq datasets, we used inner join by default of Anndata package. As a result, all sScCRNA-
seq datasets only contain a 13, 500 common gene set. We will address this issue and increase the size
of the gene set in future versions of Cell[PLM.

The SRT datasets we used are publicly available on Nanostring official website: https://
nanostring.com/products/cosmx-spatial-molecular-imager/nsclc-ffpe-dataset/,
where 2.7 million cells and 1, 000 genes are measured.

E Additional Experimental Details

In this section, we provide more experimental details about fine-tuning, baselines, and evaluation
metrics under each downstream task.

E.1 scRNA-seq Denoising

Downstream Task Datasets. In scRNA-seq denoising task, we evaluate Cell[PLM on two datasets,
i.e., PBMC 5K and Jurkat from 10x Genomics [39]. It is worth noting that during the prepossessing
stage, we performed sub-setting on both datasets to ensure that all the genes were included in the gene
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set of pre-training data. Additionally, any genes with zero counts were removed from the analysis.
We list the statistics of them in Table 4.

Table 4: scRNA-seq denoising datasets
SKPBMC Jurkat
Number of genes 33,538 32,738

Number of cells 5,247 3,258
Num genes picked 7,197 7,618

Evaluation Metrics. Following the setting of sScGNN [13], scGNN2.0 [40] and Deeplmpute [41], we
performed synthetic dropout simulation with missing at random (MAR) setting. While scGNN only
considered a simple scenario, i.e., randomly flipped 10% of the non-zero entries to zeros, DeepImpute
applied cell-wise mask with masking probability given by a multinomial distribution. Specifically,
we adapted the setting from DeepImpute with exponential kernel. For cell 7 that contains at least 5
expressed genes, the probability that one non-zero count x; ; is masked during the training process is
given by Exp(0, 20):

1 =
Pij = 55¢ 20,
bi,j
Gij = 7; )

where J; is the number of non-zero counts within cell 7. We masked 10% of the non-zero counts
according to {g¢; ; }].']i=0 and evaluate model performance on the masked entries. We calculate the
root mean squared error (RMSE) and mean absolute error (MAE) between the predicted values and
ground truth.

Baselines (1) DeepImpute [41] employed a strategy of dividing genes into subsets and constructing
deep neural networks to impute scRNA-seq data. We implemented DeepImpute with default settings
in DANCE [62] package. (2) scGNN2.0 [40] incorporated a feature autoencoder, a cluster autoen-
coder and a graph attention autoencoder for simultaneous imputation and clustering. sScGNN2.0 is
implemented by DANCE package with default settings. (3) GraphSCI [63] combined autoencoders
with graph convolution networks among a gene-gene similarity graph. We accommodated the imple-
mentation of GraphSCI in DANCE package. (4) SAVER [42] leveraged Poisson LASSO regression
to model the scRNA-seq counts with Poisson—gamma mixture. We utilized R package SAVER to
illustrate the performance of it. (5) DCA [43] introduced an autoencoder framework based on zero
inflated negative binomial (ZINB) distribution. We applied DCA to aforementioned datasets with
its Python pacakge. (6) MAGIC [44] utilized Markov affinity to capture gene-gene relationship and
impute missing gene expression. We adapted its Python package to access the performance of it.
(7) sclmpute [45] developed a Gamma and Gaussian mixture model to identify dropout values. We
revealed the performance of scImpute with its R pacakge.

Fine-tuning. Since denoising task requires model to recover the gene expression matrix, we can
directly get the zero shot performance of CellPLM by specifying the gene set of target dataset.
Additionally, we fine-tuned CellPLM by replacing the pre-trained decoder with a MLP head and
initializing encoder with pre-trained weights. Additionally, for methods require model selection on
validation set, we performed another 10% simulation dropout and treat masked entries as validation
set. The fine-tuned CellPLM was trained on MSE reconstruction loss, while the best model was
selected by evaluating MSE on validation set.

E.2 Spatial Tanscriptomic Imputation

Downstream Task Datasets. To evaluate spatial tanscriptomic imputation models at single-cell
resolution, we collected two samples from MERSCOPE FFPE Human Immuno-oncology Data [46].
Specifically, we chose "Lung cancer 2" and "Liver cancer 2" as our samples, and subsequently
referred to them as "Lung2" and "Liver2" respectively. The Lung2 and Liver2 datasets were subsetted
to align with the gene set of the pre-training data. Additionally, we removed the fields of view (FOVs)
that contained fewer than 100 cells and retained only the first 100 FOVs from both datasets. Note
that all baselines require reference scRNA-seq datasets to impute the unseen genes of SRT data, we
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collected GSE131907 [64] and GSE151530 [65] for lung cancer and liver cancer, respectively. The
statistics of all datasets are illustrated in Table 5.

Table 5: Spatial tanscriptomic imputation datasets.
Lung2 Liver2  GSE131907 GSE151530

Number of genes 500 500 29,634 18,667
Number of cells 836,739 598,141 208,506 56,721

Num genes picked 462 446 All ALL
Num cells picked 40,114 20,629 All All

Evaluation Metrics. Following the evaluation pipeline proposed by Avsar et al. [51], we selected
target genes of SRT data with stratified sampling according to gene sparsity. Specifically, we
grouped genes into four categories: low sparse, moderate sparse, high sparse, and very-high sparse.
Empirically, the boundaries were defined as [z < 75,75 < z < 90,90 < z < 95,95 < z] to
approximate the Gaussian mean and standard deviation slices. Subsequently, we randomly selected
25 genes from each sparsity group and remove them from training data. After training the models,
we calculate the evaluation metrics on the target genes. Namely, we compute the root mean squared
error (RMSE), Pearson’s correlation coefficient (PCC) and cosine similarity (Cosine) between the
ground truth values and the corresponding imputed values in a gene-wise approach.

Baselines. (1) SpaGE [47] relied on domain adaptation to map scRNA-seq data onto SRT data and
utilized a k-nearest-neighbor (k-NN) graph to predict unseen genes. We implemented SpaGE with
default settings on both datasets. (2) stPlus [48] developed an autoencoder framework for learning cell
embeddings and imputing SRT genes using a weighted k-NN approach. The performance of stPlus is
accessed by its Python package. (3) gimVI [49] introduced a variational autoencoder based model
with protocol-specific treatments on sScCRNA-seq data and SRT data. We applied the scvi-tools [66]
Python package with default settings to evaluate the performance of gimVI. (4) Tangram [50] utilized
a deep learning approach to learn the spatial alignment of scRNA-seq data based on a reference SRT
dataset with consistent spatial maps. We evaluated Tangram with its Python package.

Fine-tuning. Similar to scRNA-seq denoising, the spatial tanscriptomic imputation task requires the
ouput of the model to be the gene expression. Thus, we directly fine-tune Cel/l[PLM on the pre-trained
weights while specifying the input genes and target genes. The last two batches were hold out for
validation.

E.3 Perturbation Prediction

Downstream Task Datasets. We included the Adamson Perturb-Seq dataset [54] for one-gene
perturbations and the Norman Perturb-Seq dataset [55] for two-gene perturbations. We followed the
preprocess pipeline of GEARS [53] and both datasets were then gene-wise subsetted to fit in the gene
set of pre-training data. The statistics are summaried in Table 6.

Table 6: Perturbation prediction datasets.

Adamson Norman

Number of genes 5,060 5,045

Number of cells 68,603 91,205
Num genes picked 3,246 2,353
Num one-gene pert. 87 105
Num two-gene pert. - 131

Evaluation Metrics. Following the setting of GEARS [53], we applied data split such that the testing
perturbation are unseen during the training process. Specifically, For Adamson dataset, we randomly
hold out 25% of the perturbations for testing and 10% of the perturbations within the training set
for validation. For Norman dataset, two settings for two-gene perturbations are implemented for
evalutation purpose: 1/2 unseen and 2/2 unseen. We excluded all two-gene combinations in which at
least one of the individual genes involved in the combination belonged to the unseen set. Finally, we
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evaluate the performance by calculating the root mean squared error (RMSE) between the predictions
and the true values within the testing set.

Baselines. (1) GEARS [53] utilized gene co-expression knowledge graph and Gene Ontology-derived
knowledge graph to model the influence of perturbations. We followed the recommended parameter
settings within its Python package to access the performance. (2) scGen [56] built a conditional
variational autoencoders and incoporated vector arithmetics to model phenomena response. We
implemented scGen with its Python package on both datasets.

Fine-tuning. For one perturbation, we set the input of perturbed genes to be —100 to mimic the
gene perturbation action. During the fine-tuning process, we substituted the original batch-aware
decoder with a simplified MLP decoder. Additionally, we initialized the remaining components of
CellPLM with pre-trained weights. The final model was chosen to be the best-performed model on
the validation set.
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