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ABSTRACT

Models for natural language and images benefit from data scaling behavior: the
more data fed into the model, the better they perform. This ’better with more’
phenomenon enables the effectiveness of large-scale pre-training on vast amounts
of data. However, current graph pre-training methods struggle to scale up data
due to heterogeneity across graphs. To achieve effective data scaling, we aim to
develop a general model that is able to capture diverse data patterns of graphs and
can be utilized to adaptively help the downstream tasks. To this end, we propose
UniAug, a universal graph structure augmentor built on a diffusion model. We
first pre-train a discrete diffusion model on thousands of graphs across domains to
learn the graph structural patterns. In the downstream phase, we provide adaptive
enhancement by conducting graph structure augmentation with the help of the
pre-trained diffusion model via guided generation. By leveraging the pre-trained
diffusion model for structure augmentation, we consistently achieve performance
improvements across various downstream tasks in a plug-and-play manner. To the
best of our knowledge, this study represents the first demonstration of a data-scaling
graph structure augmentor on graphs across domains.

1 INTRODUCTION

The effectiveness of existing foundation models (Radford et al., 2021; Touvron et al., 2023; Kirillov
et al., 2023) heavily relies on the availability of substantial amounts of data, where the relationship
manifests as a scaling behavior between model performance and data scale (Kaplan et al., 2020).
Consistent performance gain has been observed with the increasing scale of pre-training data in
both Natural Language Processing (Kaplan et al., 2020; Hoffmann et al., 2022) and Computer
Vision (Abnar et al., 2022; Zhai et al., 2022) domains. This data scaling phenomenon facilitates
the development of general models endowed with extensive knowledge and effective data pattern
recognition capabilities. In downstream applications, these models are capable of adaptively
achieving performance gains across different tasks.

In the context of graphs, the availability of large-scale graph databases (Rossi & Ahmed, 2015; Hu
et al., 2020; Leskovec & Krevl, 2014) enables possible data scaling across datasets and domains.
Existing works have demonstrated graph data scaling following two limited settings: in-domain
pre-training (Xia et al., 2023; Liu et al., 2024c) and task-specific selection for pre-training data (Cao
et al., 2023). During the pre-training process, each graph in the pre-training pool must be validated
as in-domain or relevant to the downstream dataset. Given a specific domain or task, the crucial
discriminative data patterns are likely confined to a fixed set (Mao et al., 2024c), leaving other
potential patterns in diverse graph data distribution as noisy input. In terms of structure, graphs
from different domains are particularly composed of varied patterns (Milo et al., 2002), making it
hard to transfer across domains. For example, considering the building blocks of the graphs, the
motifs shared by the World Wide Web hyperlinks only partially align with those shared by genetic
networks (Milo et al., 2002). Therefore, closely aligning the characteristics of the pre-training graphs
and the downstream data both in feature and structure is essential for facilitating positive transfer (Cao
et al., 2023). As a consequence, the necessity of such meticulous data filtering restricts these methods
from scaling up graphs effectively, as they can only utilize a small part of the available data. Given
the limitation of the graph pre-training methods, a pertinent question emerges: How can we effectively
leverage the increasing scale of graph data across domains?
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Rather than focusing solely on data patterns specific to particular domains, we aim to develop a
model that has a comprehensive understanding of data patterns inherent across various types of
graphs. In line with the principles of data scaling, we hypothesize that incorporating a broader
range of training datasets can help the model build an effective and universal graph pattern library,
avoiding an overemphasis on major data patterns specific to any single dataset (Mao et al., 2024a).
To construct such a general-purpose model, we propose to utilize a diffusion model operating only on
the structure as the backbone, for the following key reasons. (1) Unlike features, graph structures
follow a uniform construction principle, namely, the connections between nodes. This allows for
positive transfer across domains when the upstream and downstream data exhibit similar topological
patterns (Cao et al., 2023). In particular, while the graph representations of neurons and forward
electronic circuits are derived from distinct domains, they still share common motifs (Milo et al.,
2002). (2) Current supervised and self-supervised methods tend to capture only specific patterns of
graph data, with models designed for particular inductive biases (Mao et al., 2024a;c; Xu et al., 2018).
For instance, graph convolutional networks (GCNs) excel in node-level representation learning by
emphasizing homophily, whereas graph-level representation learning benefits from expressive GNNs
capable of distinguishing complex graph structures. (3) We opt for a structure-only model due to
the heterogeneous feature spaces across graphs, which often include missing features or mismatched
semantics (Mao et al., 2024b). For instance, node features yield completely different interpretations
in citation networks, where they represent keywords of documents, compared to molecular networks,
where they denote properties of atoms. To this end, we pre-train a structure-only diffusion model on
thousands of graphs, which serves as the upstream component of our framework.

In the downstream stage, we employ the pre-trained diffusion model as a Universal graph structure
Augmentor (UniAug) to enhance the dataset, where diffusion guidance (Ho & Salimans, 2022;
Dhariwal & Nichol, 2021; Gruver et al., 2024) is employed to align the generated structure with
the downstream requirements. Specifically, we generate synthetic structures with various guidance
objectives, and the resulting graphs consist of generated structures and original node features.
This data augmentation paradigm strategically circumvents feature heterogeneity and fully utilizes
downstream inductive biases by applying carefully designed downstream models to the augmented
graphs in a plug-and-play manner. Empirically, we apply UniAug to graphs from diverse domains
and consistently observe performance improvement in node classification, link prediction, and graph
property prediction. To the best of our knowledge, this study represents the first demonstration of a
data-scaling graph structure augmentor on graphs across domains.

2 PRELIMINARY AND RELATED WORK

Learning from unlabeled graphs Graph self-supervised learning (SSL) methods provide examples
of pre-training and fine-tuning paradigm (Hu et al., 2019; Hou et al., 2022; Kim et al., 2022; You
et al., 2021; Xu et al., 2021). However, these methods benefit from limited data scaling due to feature
heterogeneity, structural pattern differences across domains, and varying downstream inductive biases.
It is worth mentioning that DCT (Liu et al., 2024a) presents a pre-training and then data augmentation
pipeline on molecules. Despite its impressive performance improvement on graph-level tasks, DCT
is bounded with molecules and thus the use cases are limited.

Graph data augmentation There have been many published works exploring graph data augmenta-
tion (GDA) since the introduction of graph neural networks (GNNs), with a focus on node-level (Park
et al., 2021; Liu et al., 2022b; Azabou et al., 2023), link-level (Zhao et al., 2022; Nguyen & Fang,
2024), and graph-level (Han et al., 2022; Ling et al., 2023; Luo et al., 2022; Liu et al., 2022a; Kong
et al., 2022). These GDA methods have been generally designed for specific tasks or particular
aspects of graph data. In addition, they are often tailored for a single dataset and struggle to transfer
to unseen patterns, which limits their generalizability to a broader class of applications.

Diffusion models on graphs Diffusion models (Ho et al., 2020; Song et al., 2021; Rombach et al.,
2022) are latent variable models that learn data distribution by gradually adding noise into the data and
then recovering the clean input. Existing diffusion models on graphs can be classified into two main
categories depending on the type of noise injected, i.e. Gaussian or discrete. Previous works employed
Gaussian diffusion models both on general graphs (Niu et al., 2020; Jo et al., 2022) and molecules (Shi
et al., 2021; Xu et al., 2022). However, adding Gaussian noise into the adjacency matrix will destroy
the sparsity of the graph, which hinders the scalability of the diffusion models (Haefeli et al., 2022).
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Figure 1: The pipeline of UniAug. We pre-train a diffusion model across domains and perform structure
augmentation on the downstream graphs. The augmented graphs consist of generated structures and original
node features and are then processed by a downstream GNN.

Recent works adapted discrete diffusion models to graphs with categorical transition kernels (Vignac
et al., 2023; Chen et al., 2023b;a). We denote the adjacency matrix of a graph as A0 ∈ {0, 1}n×n

with n nodes. With details in Appendix A, we write the forward process to corrupt the adjacency
matrix into a sequence of latent variables as Bernoulli distribution
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where π is the converging non-zero probability, αt is the noise scale, and ᾱt =
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where p̃θ(Ã0 | At) represents the denoising network that predicts the original adjacency matrix from
the noisy adjacency matrix. The parameters are estimated by optimizing the variational lower bound
on the negative log-likelihood (Austin et al., 2021)
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)
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(
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))]
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(3)

3 METHOD

In this section, our goal is to build UniAug to understand the diverse structure patterns of graphs and
perform data augmentation with a range of objectives. As illustrated in Fig.1, UniAug consists of two
main components: a pre-trained diffusion model and the downstream adaptation through structure
augmentation. We first collect thousands of graphs from varied domains with diverse patterns. To
construct a general model free of downstream inductive biases, we train a self-conditioned discrete
diffusion model on graph structures. In the downstream stage, we train an MLP guidance head on
top of the diffusion model with objectives across different levels of granularity. We then augment
the downstream dataset by generating synthetic structures through guided generation, where the
augmented graph is composed of generated structures and original node features. Subsequently, we
apply the augmented data to train a task-specific model for performing downstream tasks. Below,
we elaborate on the data collection process, the architecture of the discrete diffusion model, and the
guidance objectives employed.

3.1 PRE-TRAINING DATA COLLECTION

3
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Figure 2: Normalized structural properties of Network Repos-
itory and Github Star. We enlarge the distribution coverage
of our graph collection by combining both datasets.

In light of the data scaling spirit, we
expect our pre-training data to con-
tain diverse data patterns with suffi-
cient volume. As graphs from dif-
ferent domains exhibit different pat-
terns (Milo et al., 2002), we wish
to build a collection of graphs from
numerous domains to enable a uni-
versal graph pattern library with pre-
training. Within the publicly avail-
able graph databases, Network Repos-
itory (Rossi & Ahmed, 2015) provides
a comprehensive collection of graphs
with varied scales from different do-
mains, such as biological networks,
chemical networks, social networks,
and many more. Among the thou-
sands of graphs in the Network Repos-
itory, some of them contain irregu-
lar patterns, including multiple levels
of edges, extremely high density, et
cetera. To ensure the quality of the
graphs, we analyze the graph properties following Xu et al. (Xu et al., 2023) and filter out the outliers.
In addition, we observe that the coverage of graphs in the Network Repository is incomplete according
to the network entropy and scale-free exponent, as we observe a relatively scattered space in the
middle of Fig. 2. To fill in the gap, we include a subset of the GitHub Star dataset (Rozemberczki
et al., 2020) by random sampling 1000 graphs into our graph collection. The selected graphs are
utilized to train a discrete diffusion model.

3.2 PRE-TRAINING THROUGH DIFFUSION MODEL

Diffusion models have demonstrated the ability to facilitate transferability from a data augmentation
perspective on the images (Trabucco et al., 2024; You et al., 2024; He et al., 2023). Unlike the
traditional hand-crafted data augmentation methods, diffusion models can produce more diverse
patterns with high quality Trabucco et al. (2024). With the aid of diffusion guidance (Ho & Salimans,
2022; Dhariwal & Nichol, 2021), these methods can achieve domain customization tailored to specific
semantic spaces (You et al., 2024; He et al., 2023). Despite the success of data augmentation through
diffusion models on images, the non-Euclidean nature of graph structures poses challenges for
data-centric learning on graphs. In addition, the fact that most graphs in the Network Repository are
unlabeled exacerbates the challenges, as the absence of labeled data results in substantially lower
generation quality for diffusion models (Dhariwal & Nichol, 2021; Bao et al., 2022).

To address the aforementioned challenges, we propose to construct a self-conditioned discrete
diffusion model on graph structures. Unlike Gaussian-based diffusion models, discrete diffusion
models (Hoogeboom et al., 2021; Austin et al., 2021; Campbell et al., 2022; Vignac et al., 2023)
operate with discrete transition kernels between latent variables, as shown in Section 2. The key
reason we opt for the discrete diffusion models lies in the sparse nature of graphs, where adding
Gaussian noise into the adjacency matrix will result in a dense graph (Haefeli et al., 2022). On the
contrary, discrete diffusion models effectively preserve the sparse structure of graphs during the
diffusion process, thus maintaining the efficiency of the models on graphs.

To accommodate for unlabeled graphs, we adopt a self-supervised labeling strategy as an auxiliary
conditioning procedure (Gao et al., 2022; Hu et al., 2023). By leveraging the self-labeling technique,
we are able to upscale the diffusion model to data with more diverse patterns (Gao et al., 2022). The
self-labeling technique requires two components: a feature extractor and a self-supervised annotator.

Feature extractor. We extract graph-level features by calculating graph properties, including the
number of nodes, density, network entropy, average degree, degree variance, and scale-free exponent
following Xu et al. (2023). The first two represent the scale of the graph corresponding to nodes and
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edges, and the rest indicate the amount of information contained within a graph (Xu et al., 2023). We
compute the properties of one graph and concatenate them to get a graph-level representation.

Self-supervised annotator. To assign labels to graphs in a self-supervised manner, we employ
clustering algorithms on the graph-level representations. The number of clusters is determined jointly
by the silhouette score (Rousseeuw, 1987) and the separation of the graphs. The candidates of the
number of clusters are chosen to ensure different clusters are well separated. Among the candidates,
we select the final number of clusters by maximizing the mean Silhouette Coefficient of all samples.

Next we detail the parameterization of the denoising model p̃θ(Ã0 | At) with the self-assigned graph-
level labels k. The denoising model recovers the edges of the original adjacency matrix by predicting
the connectivity of the upper triangle, which can be formulated as a link prediction problem (Zhang
& Chen, 2018; Kumar et al., 2020). Following the link prediction setup, the denoising model is
composed of a graph transformer (GT) (Shi et al., 2020) and an MLP link predictor. Denote the
hidden dimension as d, we treat the node degrees as node features and utilize a linear mapping
fd : R 7→ Rd to match the dimension. Similarly, we utilize another linear mapping ft : R 7→ Rd for
timestep t and learnable embeddings fk : {0, . . . ,K} 7→ Rd for labels k, where K is the number of
clusters. The outputs are summed together and then fed into the GT. Mathematically, we have

ht = GT
(
fd

(
degree

(
At

))
+ ft(t) + fk(k),A

t
)
,

p̃θ(Ã
0
ij | At; t,k) := p̃θ(Ã

0
ij | ht) = MLP

(
[ht

i,h
t
j ]
)
.

(4)

With the above denoising network, our diffusion model is trained on the collected graphs by optimizing
the variational lower bound in (3). After the pre-training process, we perform adaptive downstream
enhancement through graph structure augmentation.

3.3 DOWNSTREAM ADAPTATION THROUGH DATA AUGMENTATION

The downstream phase of UniAug is to augment the graph topology through guided generation. This
guidance process serves to provide downstream semantics for the diffusion model, thus bridging the
gap between the pre-training distribution and the downstream datasets. Among the techniques for
diffusion guidance, gradient-based methods (Dhariwal & Nichol, 2021; Gruver et al., 2024) offer
versatile approaches by incorporating external conditions that are not present during training. For the
discrete diffusion process, we opt for the gradient-based NOS method (Gruver et al., 2024) due to its
flexibility and efficiency. Specifically, we build an MLP regression head gθ : Rd 7→ Rr that takes the
hidden representations ht as the input and outputs the guidance objective of dimension r. Denote τ
as the temperature, γ as the step-size, λ as the regularization strength, and ε drawn from N (0, I), we
sample from p̃′(Ã0 | ht) ∝ p̃θ(Ã

0 | ht) exp (gθ (h
t)) via Langevin dynamics

ht,′ ← ht,′ − γ∇ht,′

[
λKL

(
p̃′
(
Ã0 | ht,′

)
∥ p̃′

(
Ã0 | ht

))
− gθ

(
ht,′)]+√

2γτε. (5)

One key question to answer is how to choose the proper guidance objectives. Our goal is to find
numerical characteristics that can best describe the structural properties of a graph. This includes
supervision signal and self-supervised information on the level of node, edge, and graph.

Node level. Node labels provide the supervision signal for node classification tasks. Beyond node
labels, node degrees are a fundamental factor in the evolutionary process of a graph (Liu et al., 2011).
From the perspective of network analysis, centrality measures indicate the importance of nodes
from various viewpoints (Borgatti, 2005). Empirically, we observe that utilizing different node-level
heuristics as guidance targets tends to yield similar outcomes. Therefore, we focus on node labels
and node degrees.

Edge level. Edge-level heuristics can be broadly classified into two categories: local structural
heuristics, such as Common Neighbor and Adamic Adar (Adamic & Adar, 2003), and global
structural heuristics, such as Katz (Katz, 1953) and SimRank (Jeh & Widom, 2002). Similar to
node-level heuristics, empirical observations suggest that different edge-level heuristics tend to yield
comparable guidance effects. In this work, we focus on the Common Neighbors (CN) heuristic due to
its efficiency. Another edge-level guidance objective is to recover the adjacency matrix from the node
representations in a link prediction way, similar to how we parameterize the denoising network. We
anticipate that such link prediction objective helps to align the generated graph with the downstream
data on the granularity of edges.
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Table 1: Comparison between GDA methods, pre-training methods, and UniAug. By cross-domain transfer, we
emphasize the ability of the method to train on vastly different domains and benefit all of them.

GDA methods Pre-training methods UniAug
GraphAug CFLP Half-Hop FLAG AttrMask D-SLA GraphMAE

Effective on graph-level task ✓ – – ✓ ✓ ✓ ✓ ✓
Effective on edge-level task – ✓ – ✓ – ✓ – ✓
Effective on node-level task – – ✓ ✓ – – ✓ ✓
In-domain transfer – – – – ✓ ✓ ✓ ✓
Cross-domain transfer – – – – – – – ✓

Graph level. Graph labels offer the supervision signal for graph classes or regression targets. In
addition, we incorporate graph-level properties (Xu et al., 2023) as quantitative measures to bridge
the gap between the pre-training distribution and the downstream dataset. We empirically observe
that graph label guidance offers significantly higher performance boosts compared to properties on
graph-level tasks. Therefore, we focus on graph labels in our experiments.

We provide our choice of objectives for each task in Appendix B. We note that all the above
objectives are natural choices inspired by heuristics and downstream tasks. There exist many other
self-supervised objectives to be explored, such as community-level spectral change (Tan et al., 2024)
and motif occurrence prediction (Rong et al., 2020). We leave the study of objectives as one future
work. With the diffusion guidance, we assemble the augmented graphs with generated structures and
original node features. The augmented graphs are then fed into downstream-specific GNNs.

3.4 COMPARISON TO EXISTING METHODS

The data augmentation paradigm of UniAug allows us to disentangle the upstream and downstream.
We construct a diffusion model as the upstream component to comprehend the structural patterns
of graphs across various domains. In addition, we leverage downstream inductive biases with
downstream-specific models in a plug-and-play manner. This allows UniAug to facilitate cross-
domain transfer, offering a unified method that benefits graphs across different domains for various
downstream tasks. On the contrary, existing GDA methods are typically designed for specific tasks
and hard to transfer to unseen patterns. In the meantime, existing pre-training methods fail to transfer
across domains due to heterogeneity in features and structures. This comparison highlights the
success of UniAug as a data-scaling graph structure augmentor across domains. We summarize the
comparison between methods in Table 1.

4 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of UniAug. We first pre-train
our discrete diffusion model on thousands of graphs collected from diverse domains. For each
downstream task, we train an MLP guidance head with corresponding objectives on top of the
diffusion model. We then perform structure augmentation using UniAug and subsequently train a
task-specific GNN on augmented data for prediction. Through the experiments, we aim to answer the
following research questions:

• RQ1: Can UniAug benefit graphs from various domains across different downstream tasks?
• RQ2: What is the scaling behavior of UniAug corresponding to data scale and amount of compute?
• RQ3: Which components of UniAug are effective in preventing negative transfer?

4.1 MAIN RESULTS

To get a comprehensive understanding of UniAug, we evaluate it on 25 downstream datasets from 7
domains for graph property prediction, link prediction, and node classification. The statistics of the
datasets can be found in Appendix C, and technical details of the experiments are in Appendix D.

Baselines. We evaluate our model against three main groups of baselines. (1) Task-specific GNNs:
For graph property prediction, we use GIN (Xu et al., 2018); for link prediction, we use GCN (Kipf
& Welling, 2017) and NCN (Wang et al., 2024); and for node classification, we use GCN (Kipf &
Welling, 2017). (2) Graph pre-training methods: These include AttrMask, CtxtPred, EdgePred, and

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Mean and standard deviation of accuracy (%) with 10-fold cross-validation on graph classification.
The best result is bold. The highlighted results indicate negative transfer for pre-training methods compared to
GIN. The last column is the average rank of each method.

DD Enzymes Proteins NCI1 IMDB-B IMDB-M Reddit-B Reddit-12K Collab A.R.

GIN 75.81 ± 6.11 66.00 ± 7.52 73.32 ± 4.03 78.30 ± 3.20 71.10 ± 2.90 49.07 ± 2.81 90.85 ± 1.30 48.63 ± 1.62 74.54 ± 2.41 5.56

AttrMask 72.93 ± 3.09 23.66 ± 6.09 73.10 ± 3.90 77.67 ± 2.53 71.20 ± 2.40 48.00 ± 3.14 87.50 ± 3.31 48.00 ± 1.60 75.64 ± 1.52 8.00
CtxtPred 75.14 ± 2.67 21.67 ± 3.87 72.21 ± 4.60 78.99 ± 1.29 70.70 ± 1.55 48.20 ± 2.23 90.35 ± 2.31 47.62 ± 2.50 75.60 ± 1.49 7.67
EdgePred 75.64 ± 2.77 22.00 ± 3.32 71.22 ± 3.53 77.82 ± 2.95 70.20 ± 2.23 47.80 ± 2.42 90.80 ± 1.69 48.35 ± 1.44 74.64 ± 2.24 8.56
InfoMax 75.23 ± 3.43 22.50 ± 6.76 71.30 ± 5.18 76.94 ± 1.48 71.60 ± 2.06 46.70 ± 2.46 89.15 ± 2.84 48.98 ± 1.83 75.44 ± 1.12 8.00
JOAO 75.98 ± 2.86 22.17 ± 3.67 71.57 ± 5.31 76.87 ± 2.27 71.02 ± 1.81 48.85 ± 2.06 90.17 ± 2.13 49.01 ± 1.90 74.77 ± 1.71 7.11
D-SLA 74.66 ± 3.30 22.67 ± 4.21 71.97 ± 4.17 77.95 ± 2.11 71.92 ± 2.75 47.28 ± 1.88 89.77 ± 1.87 48.50 ± 1.33 75.99 ± 2.08 7.00
GraphMAE 76.07 ± 3.25 23.00 ± 3.64 70.45 ± 4.19 79.08 ± 2.72 71.50 ± 2.01 47.93 ± 3.03 86.10 ± 3.63 47.67 ± 1.16 74.84 ± 1.36 7.67

S-Mixup 73.12 ± 3.27 66.85 ± 7.04 74.61 ± 5.08 78.91 ± 1.61 69.61 ± 4.43 48.33 ± 5.36 88.65 ± 3.12 48.30 ± 2.50 75.89 ± 3.26 6.67
GraphAug 75.21 ± 2.63 68.14 ± 7.92 74.21 ± 3.70 79.53 ± 3.21 74.00 ± 3.41 48.11 ± 1.85 90.50 ± 3.17 49.00 ± 1.99 76.02 ± 2.67 3.67
FLAG 76.87 ± 7.21 68.35 ± 7.45 74.31 ± 4.21 79.03 ± 3.75 68.83 ± 4.67 47.21 ± 3.45 89.11 ± 2.40 47.48 ± 3.01 75.32 ± 3.13 7.00

UniAug 78.13 ± 2.61 71.50 ± 5.85 75.47 ± 2.50 80.54 ± 1.77 73.50 ± 2.48 50.13 ± 2.05 92.28 ± 1.59 49.48 ± 0.71 77.00 ± 2.02 1.11

InfoMax (Hu et al., 2019), JOAO (You et al., 2021), D-SLA (Kim et al., 2022), and GraphMAE (Hou
et al., 2022). For each of these methods, we pre-train it on the same pre-training set as UniAug.
While most of the pre-training graphs lack node features, we calculate the node degrees as the input.
Each method consists of three pre-trained variants with different backbone GNNs, including GIN,
GCN, and GAT. We note that all these methods require the downstream graphs to have the same
node feature space as the pre-training data. Therefore, in the fine-tuning stage, we replace the node
features of the downstream datasets with node degrees, evaluate all three variants, and report the
highest performance for each method in each task. We are aware that simply using the node degrees
could lead to a decline in performance for the baseline methods. Thus, we include more results with
semi-supervised and self-supervised settings in Appendix D. (3) Graph data augmentation (GDA)
methods: For graph property prediction, we include S-Mixup (Ling et al., 2023), GraphAug (Luo
et al., 2022), FLAG (Kong et al., 2022), GREA (Liu et al., 2022a), and DCT (Liu et al., 2024a); for
link prediction, we include CFLP (Zhao et al., 2022); and for node classification on heterophilic
graphs, we include Half-Hop (Azabou et al., 2023). The GDA methods are implemented based on
chosen task-specific GNNs.

Table 3: Mean and standard deviation of MAE ↓ across 10
runs on molecule regression. The last column is the average
rank of each method. Among the methods, all pre-training
methods discard atom and bond features due to dimension
mismatch and we include the best-performing method JOAO
into comparison; GIN and UniAug remove the bond features;
others incorporate both.

ogbg-Lipo ogbg-ESOL ogbg-FreeSolv A.R.

GINE* 0.545 ± 0.019 0.766 ± 0.016 1.639 ± 0.146 5.00
GIN 0.543 ± 0.021 0.729 ± 0.018 1.613 ± 0.155 3.67

JOAO 0.859 ± 0.007 1.458 ± 0.040 3.292 ± 0.117 7.00

FLAG* 0.528 ± 0.012 0.755 ± 0.039 1.565 ± 0.098 3.00
GREA* 0.586 ± 0.036 0.805 ± 0.135 1.829 ± 0.368 6.00
DCT* 0.516 ± 0.071 0.717 ± 0.020 1.339 ± 0.075 1.33

UniAug 0.528 ± 0.006 0.677 ± 0.026 1.448 ± 0.049 1.67

*Results are taken from DCT (Liu et al., 2024a).

Graph property prediction. We employ
graph label guidance for UniAug through-
out the graph-level tasks by training a 2-
layer MLP as the guidance head on the
graph labels in the training set. In the
augmentation stage, we generate multiple
graphs per training sample, and the gener-
ated graphs are then fed into the baseline
GIN. We present the results of molecule re-
gression in Table 3 and graph classification
in Table 2. Three key observations emerge
from the analysis: (1) Existing pre-training
methods show negative transfer compared
to GIN. Some special cases are the En-
zymes and molecule regression datasets,
where all pre-training methods fail to yield
satisfactory results. In these datasets, the
features are one of the driving components
for graph property prediction, while the pre-training methods fail to encode such information due to
incompatibility with the feature dimension. This reveals one critical drawback of the pre-training
methods: their inability to handle feature heterogeneity. (2) GDA methods yield inconsistent results
across different datasets. While these methods enhance performance in some datasets, they cause per-
formance declines in others. This variability is directly reflected in the average rank, where some of
them even fall behind the GIN. (3) Unlike the pre-training methods and GDA methods, UniAug shows
consistent performance improvements against GIN with a large margin. In the molecule regression
tasks, UniAug effectively compensates for the absence of bond features and achieves performance
comparable to DCT, which is a data augmentation method pre-trained on in-domain molecule graphs.
Note that we replace the original node features with node degrees when pre-training the baselines on
our graph collection due to missing features and mismatched semantics. We understand that removing
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Table 4: Mean and standard deviation across 10 runs on link prediction. Results are scaled ×100. The last
two methods are based on NCN, while the rest are GCN-based. The best result is bold for two backbones,
respectively. The highlighted results indicate negative transfer for pre-training methods compared to GCN.
The last column is the average rank of each GCN-based method.

Cora Citeseer Pubmed Power Yeast Erdos Flickr A.R.MRR MRR MRR Hits@10 Hits@10 Hits@10 Hits@10

GCN 30.26 ± 4.80 50.57 ± 7.91 16.38 ± 1.30 30.61 ± 4.07 24.71 ± 4.92 35.71 ± 2.65 8.10 ± 2.58 4.14

AttrMask 13.43 ± 1.93 20.23 ± 1.29 16.39 ± 3.62 29.92 ± 2.61 25.10 ± 4.77 30.85 ± 3.13 8.77 ± 1.65 6.43
CtxtPred 15.68 ± 2.91 22.31 ± 1.31 13.10 ± 3.70 29.30 ± 3.55 22.96 ± 4.28 34.82 ± 2.55 3.61 ± 1.01 7.86
EdgePred 15.31 ± 3.54 22.91 ± 1.87 17.85 ± 4.45 29.54 ± 3.78 25.78 ± 4.51 34.65 ± 3.84 6.86 ± 3.24 5.43
InfoMax 16.35 ± 2.57 22.90 ± 1.30 15.91 ± 2.71 29.29 ± 4.72 26.33 ± 4.12 35.82 ± 4.12 3.23 ± 0.38 6.00
JOAO 17.21 ± 3.66 23.10 ± 1.41 15.33 ± 3.70 28.98 ± 4.01 26.47 ± 4.65 33.77 ± 3.05 6.01 ± 1.57 6.00
D-SLA 15.55 ± 3.12 23.05 ± 1.54 16.10 ± 3.96 29.37 ± 2.88 26.15 ± 3.32 36.02 ± 4.58 6.70 ± 2.03 5.29
GraphMAE 15.94 ± 1.73 20.35 ± 1.52 13.80 ± 1.36 27.69 ± 1.99 26.51 ± 2.92 35.63 ± 3.61 8.41 ± 2.44 6.14

CFLP 33.62 ± 6.44 55.20 ± 4.16 17.01 ± 2.75 16.02 ± 8.31 24.23 ± 5.23 28.74 ± 2.38 OOM 6.43

UniAug-GCN 35.36 ± 7.88 54.66 ± 4.55 17.28 ± 1.89 34.36 ± 1.68 27.52 ± 4.80 39.67 ± 4.51 9.46 ± 1.18 1.29

NCN 31.72 ± 4.48 58.03 ± 3.45 38.26 ± 2.56 27.36 ± 5.00 39.85 ± 5.07 36.81 ± 3.29 8.33 ± 0.92 –
UniAug-NCN 35.92 ± 7.85 61.69 ± 3.21 40.30 ± 2.53 30.20 ± 1.46 42.11 ± 5.74 39.26 ± 2.84 8.85 ± 0.90 –

Table 5: Mean and standard deviation of accuracy (%) across 10 splits on node classification of heterophilic
graphs. The best result is bold. The highlighted results indicate negative transfer for pre-training methods
compared to GCN. The last column is the average rank of each method.

Cornell Wisconsin Texas Actor Chameleon* Squirrel* A.R.

GCN 59.41 ± 6.03 51.68 ± 4.34 63.78 ± 4.80 30.58 ± 1.29 40.94 ± 3.91 39.11 ± 1.74 3.83

AttrMask 44.86 ± 5.43 53.73 ± 4.31 60.54 ± 5.82 25.31 ± 1.03 35.81 ± 2.88 30.63 ± 1.68 5.83
CtxtPred 40.81 ± 7.78 36.67 ± 17.23 58.92 ± 4.32 23.97 ± 2.63 24.36 ± 4.13 26.26 ± 7.50 9.50
EdgePred 42.70 ± 5.51 48.04 ± 6.63 59.37 ± 5.11 22.99 ± 6.22 21.02 ± 5.06 27.94 ± 8.41 8.83
InfoMax 39.19 ± 12.75 39.80 ± 16.38 58.87 ± 4.06 23.30 ± 4.37 22.59 ± 4.91 27.52 ± 9.09 10.17
JOAO 40.13 ± 8.60 44.70 ± 7.45 57.06 ± 3.43 24.17 ± 5.02 25.81 ± 3.79 31.72 ± 7.03 8.33
D-SLA 41.05 ± 6.88 42.13 ± 9.58 59.93 ± 4.29 23.74 ± 4.06 26.49 ± 4.27 28.50 ± 6.90 8.00
GraphMAE 47.05 ± 4.37 57.06 ± 4.59 63.70 ± 5.51 24.69 ± 0.68 37.18 ± 3.08 31.94 ± 1.65 5.00

Half-Hop 62.46 ± 7.58 76.47 ± 2.61 72.35 ± 4.27 33.95 ± 0.68 38.59 ± 2.89 37.34 ± 2.18 3.00
UniAug 68.11 ± 6.72 69.02 ± 4.96 73.51 ± 5.06 33.11 ± 1.57 43.84 ± 3.39 41.90 ± 1.90 2.00
UniAug + Half-Hop 72.43 ± 5.81 79.61 ± 5.56 77.03 ± 4.27 34.97 ± 0.55 41.94 ± 2.77 38.79 ± 2.61 1.50

*Chameleon and Squirrel are filtered to remove duplicated nodes (Platonov et al., 2023).

the node features may result in a performance drop for the baseline methods. Therefore, we adapt
the semi-supervised (You et al., 2020) and self-supervised (Sun et al., 2020) setting for the baselines
for a comprehensive benchmark in Appendix D.1 Table 13, where we observe that UniAug presents
consistently satisfactory performance according to the average rank, matching or outperforming the
best baseline. These findings affirm that the pre-training and structure augmentation paradigm of
UniAug effectively benefits the downstream datasets at the graph level.

Link prediction. We choose three guidance objectives for UniAug, including node degree, CN,
and link prediction objective, as described in Section 3.3. For each objective, we train an MLP to
provide guidance information. We then augment the graph structure by generating a synthetic graph
and preserving the original training edges, ensuring that the augmented graph does not remove any
existing edges. The augmented graph is then fed into a GCN for link prediction. We summarize the
results in Table 4, which show similar patterns to those observed in graph property prediction: (1)
Existing pre-training methods provide negative transfer, especially on datasets with node features.
(2) GDA method CFLP leads to performance drops on the datasets without features and also suffers
from high computation complexity during preprocessing. (3) UniAug enhances performance across
all tested datasets. In addition, we employ UniAug to NCN (Wang et al., 2024), one of the state-
of-the-art methods for link prediction. The results demonstrate consistent performance boosts from
UniAug when we apply NCN as the backbone. The structure augmentation paradigm of UniAug
allows plug-and-play applications to any downstream-specific models, showcasing its adaptability
and effectiveness. In addition, we study the effects of three guidance objectives. More details can be
found in Appendix D.2.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

SMA FUL EXT SMA FUL EXT SMA FUL EXT
Enzymes IMDB-B Proteins

60

65

70

75

80

Ac
cu

ra
cy

SMA FUL EXT SMA FUL EXT SMA FUL EXT SMA FUL EXT
Yeast Power Cora Erdos

20

25

30

35

40

45

M
et

ri
cs

 V
al

ue
s

Figure 3: Effects of pre-training data scale on graph classification (left) and link prediction (right). The groups
SMA, FUL, and EXT represent SMALL, FULL, and EXTRA data collection.
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Figure 4: Effects of pre-training amount of compute on graph classification (left) and link prediction (right),
where one PF-days = 1015 × 24× 3600 = 8.64× 1019 floating point operations.

Table 6: Results of node classification on ho-
mophily graphs. Results are scaled ×100.

Cora Citeseer Pubmed

ACC ↑ GCN 81.75 ± 0.73 70.71 ± 0.76 79.53 ± 0.25
UniAug 81.78 ± 0.60 71.17 ± 0.58 79.54 ± 0.35

SD ↓ GCN 24.51 ± 1.06 22.57 ± 0.80 27.02 ± 0.56
UniAug 23.45 ± 0.90 19.90 ± 0.81 26.50 ± 0.55

Node classification. To demonstrate the effective-
ness of UniAug in node-level tasks, we transform
the node classification into subgraph classification.
Specifically, we extract the aggregation tree of
each node, i.e., 2-hop subgraph for a 2-layer GCN,
and label the subgraph with the center node. We
then adopt a strategy similar to graph classification
and train a 2-layer classifier as a guidance head.
Inspired by the success of structure augmentation
on heterophilic graphs (Bi et al., 2022; Azabou et al., 2023), we evaluate UniAug on 6 heterophilic
datasets. We observe phenomena similar to those seen in graph- and link-level tasks in Table 5.
One thing to mention is the combination of UniAug and Half-Hop. Half-Hop offers performance
improvements in four out of six datasets via data augmentation, and combining it with UniAug
yields even higher results. This highlights the flexibility of UniAug and opens up possibilities for
further exploration of its use cases. Given the impressive results of UniAug on heterophilic graphs,
we anticipate it will also help to balance the performance disparities among nodes with different
homophily ratios on homophilic graphs (Mao et al., 2024a). We split the nodes into five groups
according to their homophily ratios and calculate the standard deviation (SD) across groups. As
shown in Table 6, UniAug matches the performance of vanilla GCN and also reduces the performance
discrepancies corresponding to SD.

4.2 SCALING BEHAVIOR OF UniAug

In light of the neural scaling law (Kaplan et al., 2020; Hoffmann et al., 2022; Abnar et al., 2022; Zhai
et al., 2022; Liu et al., 2024b), we expect UniAug to benefit from an increased coverage of data and
more compute budget. In this subsection, we investigate the scaling behavior of UniAug in terms of
data scale and amount of compute for pre-training.

Data coverage During the data collection process, we prepare three versions of the training data
with increasing magnitude and growing coverage on the graph distribution. We first sample 10 graphs
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per category from the Network Repository (Rossi & Ahmed, 2015) to build a SMALL collection.
Next, we gather all the graphs from the Network Repository and filter out large-scale graphs and
outliers for a FULL collection. In addition, we add a 1000 graphs subset of the GitHub Star dataset
from TUDataset (Morris et al., 2020) to enlarge the coverage of diverse patterns and form an EXTRA
collection. We pre-train three versions of UniAug respectively on the three collections and evaluate
them on graph classification and link prediction. As shown in Fig. 3, we observe a clear trend of
increase in performance as we enlarge the coverage of pre-training data. This paves the way to scale
up UniAug to even more pre-training graphs with an expanding distribution of graphs.

Amount of compute We sought to understand how effectively our diffusion model can learn data
patterns as we continue to train it. To this end, we checkpointed UniAug every 2,000 epochs (5×10−3

PF-days) while training on the EXTRA collection, and then applied it to graph classification and
link prediction tasks. The results are illustrated in Fig. 4. We observe that downstream performance
generally improves with prolonged training, while the trend slows down for some datasets when we
reach 8,000 epochs. We take the checkpoint at the 10,000th epoch for evaluations. Given the scaling
behavior observed, we anticipate UniAug to become even more effective with additional resources.

4.3 PREVENTING NEGATIVE TRANSFER

Table 7: Demonstration of negative transfer on graph classi-
fication (up) and link prediction (down).

Enzymes Proteins IMDB-B IMDB-M

GIN 66.00 ± 7.52 73.32 ± 4.03 71.10 ± 2.90 49.07 ± 2.81

UniAug 71.50 ± 5.85 75.47 ± 2.50 73.50 ± 2.48 50.13 ± 2.05
w/o self-cond 71.11 ± 7.50 73.31 ± 4.63 71.50 ± 2.27 49.00 ± 2.74
w/o guidance 62.17 ± 3.93 71.15 ± 4.56 53.80 ± 3.29 35.33 ± 3.17
w/ cross-guide 51.50 ± 7.64 72.46 ± 4.35 71.10 ± 2.38 49.20 ± 2.59

Cora Citeseer Power Yeast Erdos
MRR MRR Hits@10 Hits@10 Hits@10

GCN 30.26 ± 4.80 50.57 ± 7.91 30.61 ± 4.07 24.71 ± 4.92 35.71 ± 2.65

UniAug 35.36 ± 7.88 54.66 ± 4.55 34.36 ± 1.68 27.52 ± 4.80 39.67 ± 4.51
w/o self-cond 27.97 ± 16.11 37.65 ± 6.00 28.95 ± 7.73 23.54 ± 8.28 34.33 ± 6.18
w/o guidance 29.60 ± 6.06 51.41 ± 7.10 25.57 ± 6.04 25.26 ± 6.06 37.11 ± 4.16
w/ cross-guide 32.37 ± 4.20 50.59 ± 5.67 32.99 ± 2.54 26.76 ± 3.88 36.30 ± 3.67

In the previous parts of the experi-
ments, we showcase the positive trans-
fer of UniAug across different tasks.
We now investigate which aspects
of the design prevent negative trans-
fer. UniAug consists of two main
components: a pre-trained diffusion
model and the structure augmentation
through guided generation. In the
pre-training process, we inject self-
supervised graph labels into the dif-
fusion model and we wonder about
the performance of its unconditioned
counterpart. Regarding the augmen-
tation process, we examine the im-
pact of diffusion guidance by explor-
ing outcomes when the guidance is either removed or applied using another dataset from a different
domain (cross-guide). We summarize the results in Table 7 for graph classification and link pre-
diction. All modifications investigated lead to performance declines in both tasks. We observe
that removing guidance results in significant negative transfers for graph classification, while the
effects of self-conditioning are more pronounced for link prediction. We conclude that both the self-
conditioning strategy and diffusion guidance are crucial in preventing negative transfer, underscoring
their importance in the design of UniAug.

5 CONCLUSION AND DISCUSSION

In this work, we propose a graph structure augmentation pipeline UniAug to leverage the increasing
scale of graph data. We collect thousands of graphs from various domains and pre-train a self-
conditioned discrete diffusion model on them. In the downstream stage, we augment the graphs by
preserving the original node features and generating synthetic structures. We apply UniAug to node-,
link-, and graph-level tasks and achieve consistent performance gain. We have successfully developed
a showcase that benefits from cross-domain graph data scaling using diffusion models.

One limitation of the current analysis is the absence of an investigation into the effects of model
parameters due to limited resources. Given the scaling behavior of UniAug in terms of data scale
and amount of compute, we anticipate that a large-scale model will provide significant performance
improvements. One future direction is to investigate the adaptation of fast sampling methods to the
discrete diffusion models on graphs. This will lead to lower time complexity and enable broader
application scenarios.
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A DERIVATION OF DIFFUSION PROCESS

In the following, we will formulate the existing discrete diffusion models into binary diffusion on
the adjacency matrix. We denote the adjacency matrix of a graph as A0 ∈ {0, 1}n×n with n nodes.
Following D3PM (Austin et al., 2021), we corrupt the adjacency matrix into a sequence of latent
variables A1:T = A1,A2, . . . ,AT by independently injecting noise into each element with a Markov
process

q
(
At | At−1

)
=

∏
i,j:i<j

Cat
(
At

ij ;p = At−1
ij Qt

)
, (6)

where Qt ∈ [0, 1]2×2 is the transition probability of timestep t. The above Markov process is called
forward process. Existing works provide different designs for the transition matrix Qt, including

Uniform (Chen et al., 2023a) :
(
1− βt βt

βt 1− βt

)
;

Absorbing (Chen et al., 2023b) :
(
1 0
βt 1− βt

)
;

Predefined (Vignac et al., 2023) :
(
1− βt · π βt · p
(1− π)βt 1− (1− π)βt

)
,

(7)

where π is the converging non-zero probability and βt is the noise scale. All three transition matrices
can be written as binary diffusion with Bernoulli distribution

q
(
At | At−1

)
= Bernoulli

(
At;αtAt−1 +

(
1− αt

)
π
)
,

q
(
At | A0

)
= Bernoulli

(
At; ᾱtA0 +

(
1− ᾱt

)
π
)
,

q
(
At−1 | At,A0

)
=

q
(
At | At−1

)
q
(
At−1 | A0

)
q (At | A0)

,

(8)

where αt = 1 − βt and ᾱt =
∏t

i=1 α
i. The prior AT is determined by π with p

(
AT

ij

)
=

Bernoulli(π), i.e., the existence of each edge follows a Bernoulli distribution with probability π. The
main difference of the forward process among the existing works is the choice of π, where π = 0
for EDGE (Chen et al., 2023b), π = 0.5 for D4Explainer (Chen et al., 2023a), and a pre-computed
average density π for DiGress (Vignac et al., 2023).

In our early experiments, we observe that the absorbing kernel π = 0 surpasses the other two in terms
of efficiency and effectiveness for graph generation. The forward process with non-zero π will add
non-existing edges, which brings in additional computations. When sampling from prior, non-zero
π will introduce additional uncertainty because we will first sample every edge from Bernoulli(π).
Therefore, we choose the absorbing prior π = 0 in this work and leave the exploration of other
transition kernels as a future work.

We note that in our implementation, we choose the number of timesteps T as 128 according to our
early experiments and some existing works (Wang et al., 2023; Chen et al., 2023b). We leave the
study of the effects of diffusion timesteps on downstream tasks as a future work.

B GUIDANCE OBJECTIVE FOR DOWNSTREAM TASKS

We mention various guidance objectives in Section 3.3 with different granularity. Here, we specify
the objectives we use for each downstream task. Our empirical results suggest that supervision signals
will lead to better performance. Thus, we use node labels for node classification and graph labels for
graph property prediction in Section 4. Regarding link prediction, we anticipate that both node-level
and edge-level objectives may help the downstream adaptation. Therefore, we choose three objectives
including node degree, CN heuristic, and link prediction objective.

C DATASETS

The license of the datasets use in this work is in Table 8.
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Table 8: List of datasets and corresponding License

Dataset License

Network Repository CC BY-SA
Github Star CC BY 4.0
Cora NLM license
Citeseer NLM license
Pubmed NLM license
WebKB MIT license
Wikipedia Network MIT license
Actor MIT license
Power BSD License
Yeast BSD License
Erdos BSD License
Amazon Photo MIT license
Flickr MIT license
DD CC BY 4.0
Enzymes CC BY 4.0
Proteins CC BY 4.0
NCI1 CC BY 4.0
IMDB CC BY 4.0
Reddit CC BY 4.0

Graph property prediction datasets include DD and Proteins (Dobson & Doig, 2003), En-
zymes (Schomburg et al., 2004), NCI1 (Wale et al., 2008), IMDB-Binary, IMDB-Multi, Reddit-
Binary, and Reddit-Multi-12K (Yanardag & Vishwanathan, 2015), ogbg-Lipo, ogbg-ESOL and
ogbg-FreeSolv (Hu et al., 2020). The statistics are summarized in 9.

Table 9: Statistics of graph property prediction datasets.

Domain Dataset Task type # Graphs # Tasks # Nodes # Edges

Biology

DD Classification 1,178 2 284 716

Enzymes Classification 600 6 33 64

Proteins Classification 1,113 2 40 73

Academic Collab Classification 5,000 3 74 2458

Social

IMDB-B Classification 1,000 2 20 97

IMDB-M Classification 1,500 3 13 66

Reddit-5k Classification 4,999 5 509 595

Reddit-12k Classification 11,929 11 391 1305

Chemical

NCI Classification 4,110 2 30 32

ogbg-Lipo Regression 4200 1 27 59

ogbg-ESOL Regression 1128 1 13 27

ogbg-FreeSolv Regression 642 1 9 17

Link prediction datasets include Cora, Citeseer, and Pubmed (Sen et al., 2008), Power (Watts &
Strogatz, 1998), Yeast (Bu et al., 2003), Erdos (Batagelj & Mrvar, 2006), Amazon Photo (Shchur
et al., 2018), and Flickr (Leskovec & Krevl, 2014). The statistics are summarized in 10.

Table 10: Statistics of link prediction datasets.

Cora Citeseer Pubmed Power YST ERD Flickr

Domain Citation Transport Biology Academic Social

#Nodes 2,708 3,327 18,717 4,941 2,284 6,927 334,863
#Edges 5,278 4,676 44,327 6,594 6,646 11,850 899,756
Mean Degree 3.9 2.81 4.74 2.67 5.82 3.42 5.69

Node classification datasets include Cora, Citeseer, and Pubmed (Sen et al., 2008), WebKB (Texas,
Cornell, and Wisconsin) (Pei et al., 2020), Wikipedia Network (Chameleon and Squirrel) (Pei et al.,
2020), and Actor (Tang et al., 2009). The first three are homophilic graphs, and the others are
heterophilic. The statistics are summarized in 11.
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Table 11: Statistics of node classification datasets.

Cora Citeseer Pubmed Cornell Wisconsin Texas Chameleon* Squirrel* Actor

Domain Citation Web Social

#Nodes 2,708 3,327 19,717 183 251 183 890 2,223 7,600
#Edges 5,278 4,676 44,324 295 499 309 8,854 46,998 33,544
#Classes 7 6 3 5 5 5 5 5 5

*Chameleon and Squirrel are filtered to remove duplicated nodes (Platonov et al., 2023).

D EXPERIMENT

In this section, we introduce the implementation details and additional results for the experiments.
Throughout all the experiments, we train all the methods with Adam optimizer on an A100 GPU. We
train the guidance head of UniAug with cross-entropy loss for class labels and mean squared error
loss for all other objectives. For multi-class objectives, we apply the label smoothing (Szegedy et al.,
2016) technique following NOS (Gruver et al., 2024). Denote y as the one-hot label and C as the
number of classes, we have

yt = ᾱt ∗ y + (1− ᾱt) /C ∗ 1. (9)

D.1 GRAPH PROPERTY PREDICTION

For graph classification, we follow (Errica et al., 2020) for the setting with 10-fold cross-validation.
We utilize a 5-layer GIN with latent dimensions of 64 throughout the datasets. For molecule regression,
we implement a 5-layer GIN with a virtual node, and the latent dimensions are 300. We have mainly
four hyperparameters for UniAug: step-size γ and regularization strength λ in (5), number of repeats
per training graph, and whether augment validation and test graphs with the trained guidance head.
For each training graph, we repeatedly generate structures and plug in the original node features for
multi-repeat augmentation. We perform the update in (5) for 5 times per each sampling step. The
hyperparameters are tuned from the choices in Table 12.

Table 12: Hyperparameter choices for graph property prediction.

λ 0.01
γ [0.1, 0.5, 1.0]
# repeats [1, 5, 10, 32, 64]
Aug val and test [True, False]

In Section 4.1, we aim to benchmark the capability of cross-domain pre-training of different methods
on the same set of pre-training graphs. While the pre-training graphs contain vastly different features,
we have to align the feature space to allow pre-training for the baseline methods. There are two ways
to tackle the feature heterogeneity issues in the existing literature. One line of them utilizes LLMs to
align text-space graphs (Chen et al., 2024), which is not applicable to broader classes of graphs. Other
works, like GCOPE (Zhao et al., 2024), perform dimension reduction to align the feature dimension
of different graphs. We emphasize that dimension reduction methods fail to deal with extreme cases
like missing features. This phenomenon is pretty common in real life, as a large proportion of the
graphs in the Network Repository do not have corresponding features. Therefore, we simply use the
node degrees as the features in Section 4.1.

We understand that removing the node features may result in a performance drop for the baseline
methods. Note that most of the baselines follow the pre-training paradigm of (Hu et al., 2019) with
domain-specific model designs for chemistry and biology datasets, and thus cannot be directly applied
to the chosen graph classification datasets. Therefore, we adapt the semi-supervised (You et al.,
2020) and self-supervised (Sun et al., 2020) setting for the baselines for a comprehensive benchmark.
The semi-supervised setting involves pre-training with all data of that specific dataset and finetuning
the training set of each split. Meanwhile, baselines of the self-supervised setting pre-train on the
whole dataset and then classify the learned graph embeddings with a downstream SVM classifier.
The results are summarized in Table 13, where the best and second-best results are highlighted in
bold and italic, respectively. We observe that UniAug presents consistently satisfactory performance
according to the average rank, matching or outperforming the best baseline.
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Table 13: Mean and standard deviation of accuracy (%) with 10-fold cross-validation on graph classification.
The best and second-best results are highlighted in bold and italic. The last column is the average rank.

DD Proteins NCI1 IMDB-B IMDB-M Reddit-B Collab A.R.

Semi-supervised

CtxtPred 74.66±0.51 70.23±0.63 73.00±0.30 – – 88.66±0.95 73.69±0.37 6.80
InfoMax 75.78±0.34 72.27±0.40 74.86±0.26 – – 88.66±0.95 73.76±0.29 5.60
GraphCL 76.17±1.37 74.17±0.34 74.63±0.25 – – 89.11±0.19 74.23±0.21 4.60

JOAO 75.81±0.73 73.31±0.48 74.86±0.39 – – 88.79±0.65 75.53±0.18 4.60

Self-supervised

InfoGraph – 74.44±0.31 76.20±1.06 73.03±0.87 49.69±0.53 82.50±1.42 70.65±1.13 5.17
GraphCL – 74.39±0.45 77.87±0.41 71.14±0.44 48.58±0.67 89.53±0.84 71.36±1.15 4.50

JOAO – 74.55±0.41 78.07±0.47 70.21±3.08 49.20±0.77 85.29±1.35 69.50±0.36 5.17
GraphMAE – 75.30±0.39 80.40±0.30 75.52±0.66 51.63±0.52 88.01±0.19 80.32±0.46 2.17

UniAug 78.13±2.61 75.47±2.50 80.54±1.77 73.50±2.48 50.13±2.05 92.28±1.59 77.00±2.02 1.43

D.2 LINK PREDICTION

For link prediction, we follow the model designs and evaluation protocols of (Li et al., 2024). For
results based on GCN and NCN, we use a GCN encoder to produce node embeddings and perform
link prediction with a prediction head. The prediction head of GCN is a 3-layer MLP. The number
of layers and the latent dimension of the GCN encoder are taken from (Li et al., 2024). We have
mainly three hyperparameters for UniAug: step-size γ and regularization strength λ, and the number
of updates in (5) per each sampling step. In addition, inspired by the pseudo labeling strategy (Botao
et al., 2023), we provide an option threshold q for the sampling process of the diffusion model.
Specifically, we only keep the edges with the probability of existence higher than q for each sampling
step. After the sampling process, we recover the training edges of the original graph structure. The
hyperparameters are tuned from the choices in Table 14.

Table 14: Hyperparameter choices for link prediction.

λ [0.01, 1, 100]
γ [0.1, 1.0, 10.0]
q [None, 0.9, 0.99, 0.999]
# updates [5, 10, 20]

One thing to mention is that we handle the large graphs by graph partitioning with METIS (Karypis
& Kumar, 1998). Specifically, we augment the partitions of a large graph and then assemble the
partitions back into a single graph. The edges between different partitions are recovered after the
assembling process.

Table 15: Effects of different guidance objectives.

Cora Citeseer Pubmed Power Yeast Erdos Flickr
MRR MRR MRR Hits@10 Hits@10 Hits@10 Hits@10

Link guide 30.45 ± 2.90 54.66 ± 4.55 16.97 ± 0.92 33.41 ± 2.95 25.80 ± 4.10 36.79 ± 1.98 9.46 ± 1.18
Degree guide 32.73 ± 6.71 51.13 ± 5.51 16.37 ± 0.58 32.88 ± 2.02 27.52 ± 4.80 39.67 ± 4.51 9.11 ± 0.88
CN guide 35.36 ± 7.88 50.86 ± 5.73 17.28 ± 1.89 34.36 ± 1.68 26.67 ± 4.02 36.18 ± 4.32 9.28 ± 1.18

As mentioned in Section 4.1, we choose three guidance objectives for link prediction with different
granularity. The effects of different objectives can be found in Table 15. We observe that the outcomes
of different objectives differ across datasets and there is no consistently winning strategy.

D.3 NODE CLASSIFICATION

For node classification on heterophilic graphs, we use the fixed splits from Geom-GCN (Pei et al.,
2020) for Cornell, Wisconsin, Texas, and Actor. For Chameleon and Squirrel, we remove duplicated
nodes following (Platonov et al., 2023) and take their fixed splits. Regarding node classification on
homophilic graphs, we employ the semi-supervised setting (Yang et al., 2016). The GCN backbone
is implemented as a 2-layer classifier. Similar to graph property prediction, we have mainly four
hyperparameters for UniAug: step-size γ and regularization strength λ in (5), number of repeats per
training graph, and whether augment validation and test graphs with the trained guidance head. The
hyperparameters are tuned from the choices in Table 16.
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Table 16: Hyperparameter choices for node classification.

λ 0.01
γ [0.1, 0.5, 1.0]
# repeats [1, 5, 10]
Aug val and test [True, False]

D.4 INVESTIGATION ON SCALING

In Section 4.2, we investigate the scaling behavior of UniAug regarding data scale and pre-training
time. We omit some of the results for a better visualization. Here we present the numerical results in
Table 17 and Table 18.

Table 17: Effects of pre-training data scale on graph classification (up) and link prediction (down).

Enzymes Proteins IMDB-B IMDB-M

GIN 66.00 ± 7.52 73.32 ± 4.03 71.10 ± 2.90 49.07 ± 2.81

UniAug- SMALL 66.83 ± 7.38 73.50 ± 5.61 69.80 ± 2.70 48.93 ± 3.20
UniAug- FULL 71.33 ± 6.51 74.05 ± 4.82 73.11 ± 2.35 49.67 ± 2.41
UniAug- EXTRA 71.17 ± 7.10 75.47 ± 2.50 73.50 ± 2.48 50.13 ± 2.05

Cora Citeseer Power Yeast Erdos
MRR MRR Hits@10 Hits@10 Hits@10

GCN 30.26 ± 4.80 50.57 ± 7.91 30.61 ± 4.07 24.71 ± 4.92 35.71 ± 2.65

UniAug- SMALL 32.25 ± 8.71 47.91 ± 3.87 32.25 ± 3.72 25.81 ± 4.89 36.28 ± 3.56
UniAug- FULL 32.81 ± 7.44 48.32 ± 6.00 32.97 ± 3.75 26.36 ± 4.62 36.07 ± 4.20
UniAug- EXTRA 35.36 ± 7.88 54.66 ± 4.55 34.36 ± 1.68 27.52 ± 4.80 39.67 ± 4.51

Table 18: Effects of pre-training amount of compute on graph classification (up) and link prediction (down).

10−3 PF-days Enzymes Proteins IMDB-B IMDB-M

5 68.18 ± 6.21 73.32 ± 3.63 71.20 ± 2.90 48.28 ± 2.75
10 69.00 ± 5.10 74.30 ± 5.33 72.80 ± 3.85 48.60 ± 2.23
15 68.83 ± 5.88 75.11 ± 3.18 71.77 ± 2.38 48.60 ± 2.48
20 70.79 ± 5.73 74.87 ± 5.30 73.04 ± 2.82 49.47 ± 2.20
25 71.50 ± 5.85 75.47 ± 2.50 73.50 ± 2.48 50.13 ± 2.05

10−3 PF-days
Cora Citeseer Power Yeast Erdos
MRR MRR Hits@10 Hits@10 Hits@10

5 27.56 ± 4.36 49.45 ± 9.20 22.81 ± 9.47 23.62 ± 9.77 35.33 ± 3.16
10 31.02 ± 6.53 50.72 ± 6.22 32.49 ± 2.52 26.70 ± 4.85 36.10 ± 4.66
15 33.24 ± 7.97 49.02 ± 5.92 32.88 ± 3.31 27.80 ± 4.55 39.70 ± 3.67
20 34.71 ± 9.08 52.90 ± 3.84 33.69 ± 3.23 26.90 ± 3.93 39.33 ± 3.16
25 35.36 ± 7.88 54.66 ± 4.55 34.36 ± 1.68 27.52 ± 4.80 39.67 ± 4.51

E BROADER IMPACT

In this work, we build a universal graph structure augmentor that benefits from data scaling across
domains. Given the consistent performance improvements for different tasks, we expect this work
to contribute significantly towards the goal of building a graph foundation model. In the meantime,
we showcase the power of the deep generative models on graphs by introducing new application
scenarios. We anticipate such success will contribute to the community of generative models and
graph learning.

It is important to mention that the model backbones of our method and baselines heavily rely on
neighboring node information as an inductive bias. However, this characteristic can result in biased
predictions, especially when patterns in neighborhood majorities dominate, leading to potential
ethical issues in model predictions.
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