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ABSTRACT

Aiming for safe control, Inverse Constrained Reinforcement Learning (ICRL)
considers inferring the constraints respected by expert agents from their demon-
strations and learning imitation policies that adhere to these constraints. While
previous ICRL works often neglected underlying uncertainties during training,
we contend that modeling these uncertainties is crucial for facilitating robust con-
straint inference. This insight leads to the development of an Uncertainty-aware
Inverse Constrained Reinforcement Learning (UAICRL) algorithm. Specifically, 1)
aleatoric uncertainty arises from the inherent stochasticity of environment dynam-
ics, leading to constraint-violating behaviors in imitation policies. To address this,
UAICRL constructs risk-sensitive constraints by incorporating distributional Bell-
man updates into the cumulative costs model. 2) Epistemic uncertainty, resulting
from the model’s limited knowledge of Out-of-Distribution (OoD) samples, affects
the accuracy of step-wise cost predictions. To tackle this issue, UAICRL develops
an information-theoretic quantification of the epistemic uncertainty and mitigates
its impact through flow-based generative data augmentation. Empirical results
demonstrate that UAICRL consistently outperforms other baselines in continuous
and discrete environments with stochastic dynamics. The code is available at
https://github.com/Jasonxu1225/UAICRL.

1 INTRODUCTION

Reinforcement Learning (RL) is an effective technique for solving sequential decision-making
problems, typically focusing on maximizing cumulative rewards. However, recent studies (Liu
et al., 2021; Satija et al., 2020; Yang et al., 2023) have argued that, to achieve safe control, the
optimal policy must adhere to the underlying constraints in the environment. For instance, in an
open-road environment, an autonomous driving policy must comply with traffic rules and social
norms. Explicitly specifying these constraints is challenging. A more practical alternative is to infer
the constraints from expert demonstrations by analyzing the behavioral patterns of expert agents.

To achieve this goal, Inverse Constrained Reinforcement Learning (ICRL) (Malik et al., 2021) extends
the Maximum Entropy Inverse Reinforcement Learning (MEntIRL) framework (Ziebart et al., 2008)
to infer constraints (rather than rewards) from expert demonstrations. ICRL alternates between
Constrained Reinforcement Learning (CRL) and Inverse Constraint Inference (ICI) until the imitation
policy can reproduce the expert demonstrations. During the process, traditional ICRL algorithms
(Scobee & Sastry, 2020; Malik et al., 2021; Gaurav et al., 2023; Liu & Zhu, 2022; Qiao et al., 2023)
often assume deterministic training environments, without considering the influence of underlying
uncertainties. Specifically, in the CRL phase, stochastic transition functions introduce aleatoric
uncertainty, thereby influencing the policy update in CRL and may result in constraint-violating
behaviors. In pursuit of safety control, human experts often exhibit risk-averse behaviors, so an
imitating agent cannot accurately replicate expert demonstrations unless it formulates a risk-sensitive
policy. In the ICI phase, due to the finite size of the training data, epistemic uncertainty arises when
game contexts lie outside the data distribution, leading to inaccurate cost predictions.

To achieve uncertainty-aware constraint inference, Liu et al. (2023); Papadimitriou et al. (2023)
proposed modeling the posterior distribution of step-wise constraints using variational inference and
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Monte Carlo sampling. McPherson et al. (2021); Baert et al. (2023) incorporated maximum causal
entropy likelihood into ICRL. Although causal entropy and constraint distribution are sensitive to
aleatoric and epistemic uncertainties respectively, none of the previous methods can handle both
uncertainties.

In this paper, we introduce the Uncertainty-aware Inverse Constrained Reinforcement Learning
(UAICRL), a novel ICRL framework that models both the aleatoric and epistemic uncertainties for
achieving robust constraint inference. Figure 1 provides an overview of UAICRL. Specifically,

1) We design a risk-sensitive constraint by modeling the distribution of cumulative costs and distorting
this distribution to represent risk measures. The predicted distribution is sensitive to aleatoric
uncertainty and we empirically justify these findings in our experiments. To enable efficient risk-
sensitive control in continuous spaces, we propose the Distributional Lagrange Policy Optimization
(DLPO), which incorporates distributional estimation and Lagrange mechanics into the classic
Proximal Policy Optimization (PPO) (Schulman et al., 2017) for constrained policy optimization.

2) We introduce a mutual-information-driven metric (Gabrié et al., 2018) to quantify epistemic
uncertainty in constraint inference and propose an information-theoretic ICI objective to minimize the
impact of epistemic uncertainty when updating the constraint function. A key technique to achieve this
objective involves augmenting the training data using the proposed Flow-based Trajectory Generation
(FTG) algorithm. FTG effectively generates a diverse set of trajectories based on the dataset and
task-dependent rewards, thus reducing the influence of OoD state-action pairs in constraint prediction.

Empirical evaluations show that UAICRL consistently achieves higher feasible rewards and lower
constraint violation rates in stochastic environments with both discrete and continuous state spaces,
outperforming other ICRL baselines. For a comprehensive evaluation, we conduct in-depth studies to
individually assess how effectively UAICRL handles the aleatoric and epistemic uncertainty.

2 PROBLEM FORMULATION

Constrained Reinforcement Learning (CRL). To solve a CRL problem, the agent optimizes
the control policy under a Constrained Markov Decision Processes (CMDPs) Mc, which can be
defined by a tuple (S,A, pT , pR, pC , ϵ, µ0, γ, T ) where: 1) S and A denote the space of states and
actions. 2) pT (s′|s, a) and pR(r|s, a) define the transition and reward probabilities. 3) pC(c|s, a) and
ϵ denote the probability of cost and the associated bound. 4) µ0 defines the initial state distribution.
5) γ ∈ (0, 1) is the discount factor and T defines the planning horizon (T = ∞ in principle). The
goal of the CRL policy π is to maximize expected discounted rewards under the constraint:

argmax
π

Eπ,pT ,pR,µ0

[ T∑
t=0

γtr(st, at)
]

s.t. Eπ,pT ,pC,µ0

[ T∑
t=0

γtc(st, at)
]
≤ ϵ (1)

Note that traditional CRL problems often assume the constraint signals are directly observable, but
in real-world problems, such constraint signals are not readily available, and we must infer these
constraints from the environment by solving the following inverse problem.

Inverse Constraint Inference (ICI). ICRL algorithms typically assume that reward signals are
observable and the goal is to infer the constraints. Inspired by Malik et al. (2021), we define Φ as
a Bernoulli feasibility variable that takes two values {ϕ+, ϕ−} such that p(ϕ+|s, a;ω) (ω denotes
model parameters) quantifies to what extent performing action a in the state s is feasible while
p(ϕ−|s, a;ω) denotes the probability this movement is infeasible. For clarity, in the rest of this paper,
we denote ϕ+ by ϕ. Accordingly, the step-wise cost is then defined as cω(s, a) = 1− p(ϕ|s, a;ω).
Under these definitions, the likelihood of generating the expert dataset De can be represented as:

p(De|Φ) =
1

(ZMcω )N

N∏
n=1

exp
[
r(τ (n))

]
1Mcω

(τ (n)) (2)

where 1) Mcω denotes the CMDP with constraint function cω , 2)N denotes the number of trajectories
in the expert dataset, 3) the normalizing term ZMcω =

∫
exp [r(τ)]1Mcω

(τ)dτ , and 4) the identifier
1Mcω

(τ (n)) can be defined as p(ϕ|τ (n);ω) =
∏T
t=1 p(ϕ|s

(n)
t , a

(n)
t ;ω). By substituting them to

Equation (2), we can update ω by the gradient of the log-likelihood function (Malik et al., 2021):
(3)

∇ω log [p(De|Φ)] =
N∑
n=1

[
∇ω

T∑
t=0

log[p(ϕ|s(n)t , a
(n)
t ;ω)]

]
−NEτ̂∼πMcω

[
∇ω

T∑
t=0

log[p(ϕ|ŝt, ât;ω)]
]
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where τ̂ is sampled from the current imitation policy πMcω . Intuitively, our goal is to differentiate the
trajectories generated by expert policies and imitation policies that may violate the constraints. When
the imitation policy under the learned constraint model cω matches the expert policy, this gradient
goes to 0, and the update stops.

Figure 1: The flowchart of UAICRL.

Modeling Uncertainty in ICRL. An ICRL
agent iteratively solves the CRL and ICI
problems until the imitation policy can re-
produce expert demonstrations. However,
existing ICRL algorithms typically assume
a deterministic setting without consider-
ing uncertainties, but we argue that the
aleatoric and epistemic uncertainties can
emerge and significantly affect the training
and the convergence of ICRL. To address
them, we propose the 1) Distributional La-
grange Policy Optimization (DLPO) algorithm with a risk-sensitive constraint by modeling the
distribution of the cumulative costs (Section 3), and 2) Data-augmented Constraint Inference with
flow-based trajectory generation for constraint inference from limited demonstrations (Section 4).
Figure 1 shows the flowchart of UAICRL framework.

3 POLICY OPTIMIZATION WITH RISK-SENSITIVE CONSTRAINTS

To address the aleatoric uncertainty, risk-sensitive RL commonly incorporates the risk measure into
the optimization objective, for example, by constructing argmaxπ ρ

π
α[
∑T
t=0 γ

tO(St, At)] where
O refers to the objective, α ∈ [0, 1] defines the confidence level and ρ denotes the risk measure.
This approach imposes significant costs on the policies that may lead to hazardous consequences,
even if the likelihood of such events is low (e.g., a pedestrian being hit by a car on the highway).
Although safety is important, being too conservative can harm performance and hinder reward
accumulation (Mihatsch & Neuneier, 2002; Choi et al., 2021).

Risk-Sensitive Constraints for Policy Optimization. In this work, we present a novel approach that
disentangles the unified objective into two components: rewards and costs, where rewards indicate
the desired outcome, while costs account for negative consequences. For example, in autonomous
driving, rewards might correspond to how quickly a car reaches its destination, while costs capture the
need to adhere to traffic rules and safety constraints during driving. To drive a risk-sensitive policy,
the risk incurred by aleatoric uncertainty can be incorporated separately from reward optimization.
We formulate the trade-off between rewards and costs as a constrained optimization problem:

argmax
π

Eπ,pT ,pR,µ0

[ T∑
t=0

(
γtr(st, at) + βγtH[π(at|st)]

)]
s.t. ρα

[ T∑
t=0

γtC(St, At)
]
≤ ϵ (4)

where H[π(at|st)] refers to the causal entropy (Ziebart et al., 2010) and C(·) denotes the random
variable of state-action cost 1. To specify the risk measure, we define the trajectory-generating
probability as pπ(τ) = µ0(s0)

∏T−1
t=0 π(at|st)pT (st+1|st, at), where aleatoric uncertainty accu-

mulates in sequential decision-making due to the inherent stochasticity in the initial state distri-
bution µ0(s0), policy π, and transition function pT (st+1|st, at). We define the corresponding
risk envelope Uπα = {ζα : Γ → [0, 1

α ]|
∑
τ∈Γ ζ(τ)p

π(τ) = 1} to be a compact, convex, and
bounded set, based on which the risk measure can be induced by the distorted probability dis-
tribution pπζ = ζ · pπ. For example, the Conditional Value-at-Risk (CVaR) can be defined as
ρπα[

∑T
t=0 γ

tCt] = supζα∈Uπα Eτ∼pπ [ζα(τ)
∑T
t=0 γ

tCt].

Distributional Estimator for Cumulative Costs. The difficulty of constructing the distorted
probability-based risk measure lies in the unknown distribution of the cumulative costs. To estimate
the distribution, we define the variable of discounted cumulative costs as Zc(st) =

∑T−t
ι=0 γ

ιCι|S0 =
st. Based on Luo et al. (2022), we use N supporting quantiles parameterized with the rational-
quadratic function to represent Zcθ , where θ denotes model parameters. Then we can update Zcθ
through quantile regression (Bellemare et al., 2017).

1Throughout this paper, we use uppercase letters (e.g., C) to represent random variables and lowercase letters
(e.g., c) to represent instances of variables. For brevity, we use Ct as a shorthand of C(St, At).

3



Published as a conference paper at ICLR 2024

During training, when the agent performs an action a ∼ π(·|s) at state s, the agent receives a cost
c ∼ pC(·|s, a) and moves to a future state s′ ∼ pT (·|s, a). This stochastic process can be captured by
the distributional Bellman equation (state-form) (Gerstenberg et al., 2023):

Zcθ(s) =

∫
a∈A

π(a|s)
∫
s′∈S

pT (s
′|s, a)

∫
c∈C

pC(c|s, a)(bc,γ)#Zcθ(s′) da ds′ dc (5)

where the pushfoward operation (bc,γ)# involves shifting and scaling the distribution by c and γ. For

brevity, we denote the distributional Bellman equation as Zc(s)
∆
:= C(s,A) + γZc(S′). We show

that the predicted distribution is sensitive to the aleatoric uncertainty.
Proposition 1. (Liu et al., 2022). The key components for representing the aleatoric uncertainty can
be captured by the distributional Bellman equation under the measure of entropy.

The detailed proof is in Appendix A.1. Leveraging the aforementioned policy optimization objec-
tive (4) and distributional estimator (5), we design the Distributional Lagrange Policy Optimization
(DLPO) algorithm to learn the policy under risk-sensitive constraints. The implementation details are
shown in Algorithm 2 in Appendix B.1.

4 CONSTRAINT INFERENCE WITH FLOW-BASED DATA AUGMENTATION

Epistemic uncertainty arises due to the limited training data and the model’s lack of knowledge
about Out-of-Distribution (OoD) data. A common measure of epistemic uncertainty is the mutual
information I(ω; y|x,D) (Smith & Gal, 2018; van Amersfoort et al., 2020), which quantifies the
amount of information gained by the model ω when it observes the true label y for a given input x.
The greater the uncertainty of the model regarding the data, the more additional information it can
obtain once the true label y is observed.

Intuitively, epistemic uncertainty arises when the constraint model ω is required to predict the cost of
a trajectory τ̄ that locates OoD of training data (i.e., predict c(τ̄) = 1−p(ϕ|τ̄ ;ω)), which is generated
by exploratory behaviors during policy updates. To reduce the effect of epistemic uncertainty, we
need to minimize the mutual information I(ω; Φ|τ̄ ,D), which can be represented as follows:
Proposition 2. Let D denote the training dataset consisting of expert trajectories {τe} and imitation
trajectories {τ̂}. Let τ̄ denote an OoD trajectory. Let ω denote the constraint model parameters and
q(ω) denote the dropout distribution. I(ω; Φ|τ̄ ,D) can be empirically represented by:

H[p(Φ|τ̄ ,D)]− 1

M

∑
m

H[p(Φ|τ̄ ;ωm)] where ωm ∼ q(ω) (6)

The proof is in Appendix A.2. Specifically, 1) H[p(Φ|τ̄ ,D)] ∈ [0,∞) measures the amount of
information required to describe the feasibility Φ of an exploratory trajectory τ̄ based on the given
training dataset D. 2) H[p(Φ|τ̄ , ωm)] defines the entropy of constraint model parameterized by ωm.
To reduce the epistemic uncertainty, we integrate them into our ICI objective as follows.

4.1 DATA-AUGMENTED INVERSE CONSTRAINT INFERENCE

To reduce the impact of epistemic uncertainty, we can augment the conventional ICI objective
(Obj. 3) with the mutual information term I(ω; Φ|τ̄ ,D). Since I(ω; Φ|τ̄ ,D) is intractable, based on
Proposition 2, we instead maximize the following objective with its empirical representation:

(7)
1

M

∑
m

EDe

[ T∑
t=0

log[p(ϕ|set , aet ;ωm)]
]
− ED̂

[ T∑
t=0

log[p(ϕ|ŝt, ât;ωm)]
]
− α

(
H[p(Φ|τ̄ ,D)]−H[p(Φ|τ̄ ;ωm)]

)
where α controls the trade-off between the log-likelihood and mutual information, and we use dropout
layers (Srivastava et al., 2014) for q(ω) by following Smith & Gal (2018). Besides, the conditional
entropy H[p(Φ|τ̄ ,D)] is independent of ω, which reaches zero (its minimum) when p(Φ, τ̄ ,D) =
p(D), indicating that the dataset has already recorded the trajectory and its feasibility (i.e., (Φ, τ̄) ∈
D). To achieve the goal, we expand the dataset by generating trajectories {(ΦG, τG)}, obtaining the
augmented expert and nominal dataset DG

e and D̂G. By substituting them to objective (7), we get the
following data-augmented constraint inference objective:

1

M

∑
m

EDGe

[ T∑
t=0

log[p(ϕ|set , aet ;ωm)]
]
− ED̂G

[ T∑
t=0

log[p(ϕ|ŝt, ât;ωm)]
]
+ αH[p(Φ|τ̄ ;ωm)] (8)

We propose an approach that can generate a diverse set of expert and nominal trajectories as follows.
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4.2 FLOW-BASED TRAJECTORY GENERATION

We propose a Flow-based Trajectory Generation (FTG) algorithm to perform conditional generation
for maximizing p(Φ, τ̄ |D). Unlike the traditional trajectory generation with policy rollout, FTG
learns the transition densities from the trajectory dataset D. Moreover, the generation is guided by
the feasibility Φ = {ϕ, ϕ−} of trajectories, rather than the reward-maximizing policy.

To learn FTG, we define the non-negative trajectory flow function F : T → R+, where T denotes the
trajectory set. Intuitively, F (τ) quantifies the mass of particles (Bengio et al., 2021) passing through
τ , and denser particles indicate a higher probability of generating the trajectory. Under this setting, the
state flow F (s) is the integral of trajectory flows passing through this state: F (st) =

∫
τ∋st F (τ)dτ .

The transition probabilities can be defined as pF (st+1|st) = F (st→st+1)
F (st)

where F (st → st+1) =∫
τ=(...,st→st+1,... )

F (τ) embeds the flow passing through the action at. The trajectory generation

probability pF (τ) =
∏T−1
t=0 pF (st+1|st). In order to generate {ΦG, τG}, the generated trajectories

τ must correspond to a specific ϕ. This is achieved by a careful design of the reward function. The
reward functions for generating the expert (Φ = ϕ) and nominal trajectories (Φ = ϕ−) can be set as:

Re(st) =

{
1, t = T ∧ st ∈ τe
0, otherwise

and R̂(st) =

{
1, t = T ∧ st ∈ τ̂

0, otherwise
(9)

To generate expert trajectories, we assign a positive reward (+1) to the terminated state of the recorded
expert trajectories τe ∈ De and 0s to others. The same approach is applied for generating nominal
trajectories. We train two flow functions Fe and F̂ by utilizing Re(st) and R̂(st) respectively.

Learning Flow Functions. A common approach to updating the flow function F (·) is flow matching:
for a state st ∈ S, the inflows

∫
a:T (s,a)=st

F (s, a)da must match outflows
∫
a∈A F (st, a)da. To

enable flow matching in continuous environments, we sampleM actions independently and uniformly
from the continuous action space A. These actions serve as an approximation of flows that can be
utilized to train the flow network. The resulting loss function is approximated as Li et al. (2023):

(10)

Lξ(τ) =
sT∑

st=s0

{
log

[
ϵ+

M∑
m=1

expFξ

(
G(st, am), am

)]
− log

[
ϵ+ λR(st) +

M∑
m=1

expFξ(st, am)
]}2

where: 1) ξ denotes the parameters of the flow network F (·). 2) G(·) is a retrieval neural network
with (st+1, at) as the input and st as the output (i.e., to predict the parent of a state), which can
be trained by MSE Loss based on given trajectories. 3)

∑M
m=1 Fξ (st, am) is an approximation of

flows with M sampled actions. 4) ϵ can balance the use of small and large flows, thereby preventing
numerical problems when computing the logarithm of extremely small flows.

Trajectory Generation. FTG aims to generate trajectories τG = (s0, a0, . . . , sT , aT ) by starting
from the initial state s0 and iteratively sampling the action at based on the scale of the flow F (st, at),
thereby transitioning to the next state st+1. In this process, actions with larger flow will be sampled
with higher probabilities. To label τG, we set Φ to ϕ if the generation is based on the expert flows
(i.e., Fe, learned with Re), and ϕ− for nominal ones. The detailed implementation of FTG is shown
in Algorithm 3 in Appendix B.1. Leveraging the modeling capability of the generative model, FTG
learns intricate feature patterns of input data, generating trajectories that resemble the training data in
the latent space, even if they are absent in the original state-action space. The incorporation of this
data significantly mitigates the impact of epistemic uncertainty during constraint inference.

Building upon the aforementioned ideas for modeling aleatoric and epistemic uncertainties, Algo-
rithm 1 presents the whole UAICRL algorithm.

5 RELATED WORKS

Learning constraints from demonstrations. Given the demonstrations, prior works mainly focused
on inferring implicit constraints by determining the permissibility of actions under specific states.
In discrete state-action spaces, Chou et al. (2020b); Park et al. (2020) learned constraint sets to
differentiate feasible from infeasible state-action pairs. Scobee & Sastry (2020) proposing inferring
the constraint set under the maximum entropy principle, and McPherson et al. (2021); Baert et al.
(2023) extended it to stochastic environments using maximum causal entropy (Ziebart et al., 2010). In
continuous domains, the goal is to infer boundaries between feasible and infeasible state-action pairs.
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Algorithm 1: Uncertainty-aware Inverse Constrained Reinforcement Learning (UAICRL)
Input: Expert dataset De = {τe}, augmented data size I .
Initialize the cost model cω , policy πψ , expert flow F eξ , and nominal flow F̂ξ̄;
Update F eξ with De by minimizing the flow loss (10);
do

Update πψ based on the risk-sensitive CRL objective (4) and distributional estimator (5);
Sample nominal trajectories D̂ = {τ̂} with πψ in the environment, and update F̂ξ̄ with D̂ by

the flow loss (10);
Initialize the augmented expert and nominal datasets DG

e = De and D̂G = D̂;
for i = 1, 2, . . . , I do

Generate expert and nominal trajectories τGe and τ̂G with F eξ and F̂ξ̄;
Add the generated trajectories to datasets: DG

e = DG
e ∪ τGe and D̂G = D̂G ∪ τ̂G;

end
Update the cost model cω with the ICI objective (8) based on DG

e and D̂G;
while D̂ do not match De;

Malik et al. (2021); Gaurav et al. (2023); Qiao et al. (2023) used neural networks to approximate
constraints. Some recent studies (Liu et al., 2023; Chou et al., 2020a; Papadimitriou et al., 2023) ap-
plied Bayesian Monte Carlo and variational inference to infer a posterior distribution of constraints in
high-dimensional state space. These constraint distributions can only model the epistemic uncertainty.

Uncertainty-Aware Reinforcement Learning. Incorporating uncertainty awareness in RL algo-
rithms is essential for efficient exploration and control, with numerous downstream applications
(Hoel et al., 2023; Liu et al., 2022; Wu et al., 2023). Several existing works study defining uncertainty
measures in RL environments, primarily using dropout layers (Chen et al., 2017) or ensemble models
(Lütjens et al., 2019; An et al., 2021), such as Bootstrapped DQN methods (Osband et al., 2016;
Da Silva et al., 2020) and their offline extensions (Kumar et al., 2019; An et al., 2021). Another
approach to measuring uncertainty is through Distributional RL (Luo et al., 2022; Bellemare et al.,
2017; Dabney et al., 2018; Mavrin et al., 2019), which directly models the distribution of future
returns with distributional Bellman operator. Besides, Risk-sensitive RL (Mihatsch & Neuneier,
2002; Chow et al., 2015; Prashanth et al., 2022; Ni & Lai, 2022; Luo et al., 2023) is indeed a closely
related research area, in which agents employ risk measures, such as exponential utility, variance, and
Value-at-Risk, to develop risk-aware policies. In contrast to prior works that apply risk measures for
rewards maximization, our work builds upon CMDPs and emphasizes capturing the cost uncertainty.

6 EMPIRICAL EVALUATION

In this section, we empirically evaluate the effectiveness of UAICRL by answering the following
questions: 1) How well does UAICRL perform in discrete (Section 6.1) and continuous (Section 6.2)
environments under varying degrees of stochasticity? 2) Can UAICRL handle more complex, real-
world highway driving scenarios (Section 6.3)? 3) How well do the key components of UAICRL
(DLPO and FTG) address the aleatoric and epistemic uncertainty, respectively (Section 6.4)?

Table 1: Baseline methods for constraint inference.

Method Continues
Space

Constraint
Optimization

Maximum
Entropy

Aleatoric
Uncertainty

Epistemic
Uncertainty

GACL ✓ ✗ ✗ ✗ ✗
B2CL ✓ ✓ ✗ ✗ ✗
ICRL ✓ ✓ ✓ ✗ ✗

VICRL ✓ ✓ ✓ ✗ ✓
UAICRL-NRS ✓ ✓ ✓ ✗ ✓
UAICRL-NDA ✓ ✓ ✓ ✓ ✗

UAICRL ✓ ✓ ✓ ✓ ✓

Comparison Methods. Our experi-
ments include the following baselines:
1) Generative Adversarial Constraint
Learning (GACL) extends Genera-
tive Adversarial Imitation Learning
(GAIL) (Ho & Ermon, 2016) and em-
ploys a discriminator D(s, a) to dif-
ferentiate validate state-action pairs
from infeasible ones. The logD(s, a)
is directly appended to the reward function as a penalization. 2) Binary Classifier Constraint Learning
(BC2L) employs a binary classifier as the constraint model without utilizing the Maximum Entropy
(MEnt) framework. 3) Inverse Constrained Reinforcement Learning (ICRL) (Malik et al., 2021)
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follows the MEnt framework with a risk-neutral constraint. 4) Variational ICRL (VICRL) (Liu
et al., 2023) captures epistemic uncertainty in constraint inference using Beta distribution based on
ICRL. Additionally, we perform ablation studies where 5) UAICRL-NRS removes the risk-sensitive
constraint from UAICRL and 6) UAICRL-NDA removes the data augmentation from UAICRL.
Table 1 summarizes these methods.

Experiment Settings. We conduct empirical evaluations utilizing an ICRL benchmark (Liu et al.,
2023), and extend it to include stochastic dynamics by incorporating noise into transitions. Fol-
lowing Malik et al. (2021), evaluation metrics include: 1) Constraint Violation Rate measures the
probability that a policy violates constraint in a trajectory. 2) Feasible Cumulative Rewards calculate
the total rewards obtained by the agent before violating any constraints.

6.1 DISCRETE ENVIRONMENT: STOCHASTIC GRIDWORLD

Figure 2: Three different Gridworld settings with blue, red,
and black markers indicating the starting, target, and con-
strained locations respectively.

We construct three Gridworld envi-
ronments with different constraints,
where the agent’s objective is to nav-
igate from a starting location to a tar-
get location while avoiding the added
constraints, as shown in Figure 2. The
environment exhibits a certain degree
of stochasticity, where, with a specific
probability (ps = 0.01 and 0.001), the
environment receives a random action
instead of an agent’s action. To be
compatible with the environment set-
tings, we utilize the discretized implementation of UAICRL by following Liu et al. (2023); Malkin
et al. (2022). Appendix B.2 shows the implementation details.

Table 2: Evaluation of different methods in three Gridworlds
with the random rate ps = 0.01 and 0.001.

ps = 0.01 ps = 0.001
Gridworld
Setting 1

Gridworld
Setting 2

Gridworld
Setting 3

Gridworld
Setting 1

Gridworld
Setting 2

Gridworld
Setting 3

Feasible
Rewards

BC2L 0.451 0.716 0.125 0.647 0.602 0.192
GACL 0.032 0.109 0.000 0.011 0.070 0.000
ICRL 0.244 0.532 0.033 0.356 0.368 0.089

VICRL 0.537 0.310 0.051 0.778 0.610 0.070
UAICRL 0.650 0.683 0.359 0.797 0.739 0.401

Constraint
Violation

Rate

BC2L 0.33 0.19 0.58 0.29 0.27 0.52
GACL 0.43 0.29 0.78 0.67 0.11 0.84
ICRL 0.53 0.33 0.63 0.36 0.27 0.73

VICRL 0.35 0.33 0.45 0.19 0.28 0.53
UAICRL 0.13 0.09 0.34 0.09 0.07 0.38

Table 2 shows the evaluation perfor-
mance, where bolding denotes the
best results (highest rewards or lowest
violation rates) in each setting. Check
Appendix D.1 for training curves. We
find that UAICRL generally outper-
forms other methods with lower con-
straint violation rates and higher re-
wards, while GACL and ICRL can
hardly work well. BC2L and VICRL
achieve relatively satisfactory results in the first two settings but perform poorly in the third setting.

6.2 CONTINUOUS ENVIRONMENT: STOCHASTIC MUJOCO

We utilize five MuJoCo environments in the benchmark (Liu et al., 2023) and additionally incorporate
Gaussian noise into the transition function as pT (st+1|st, at) = f (st, at) +N (µ, σ). Each experi-
ment is repeated with four random seeds, over which the mean ± standard deviation (std) results are
reported. More details are shown in Appendix C.2.

Figure 3 displays the training curves in stochastic MuJoCo environments with noise σ = 0.1 (check Ap-
pendix D.2 for results with σ = 0.01 and 0.001). We observe that UAICRL-NRS and UAICRL-NDA
can generally outperform the baselines in most environments, which underscores the effectiveness of
employing data augmentation for modeling epistemic uncertainty and utilizing distributional estimator
for capturing aleatoric uncertainty. By modeling both uncertainties, UAICRL generally obtains high
feasible rewards (bottom row Fig. 3) whilst having a low constraint violation rate (top row Fig. 3).
This demonstrates UAICRL’s robustness and its superior performance compared to other methods.
Note that although the reward shaping method, GACL, exhibits the fewest constraint violations in the
Blocked Ant environment, it struggles to optimize rewards and underperforms in other environments.
This underperformance is primarily attributed to the estimation errors encountered during the early
stages of training. Interestingly, we find that increased stochasticity does not necessarily result in
poorer model performance. This is because larger noise levels are more readily detectable, leading
models to exhibit sensitivity to the risk of constraint violations. For a more comprehensive analysis
of these phenomena, we provide a more detailed discussion in Appendix E.
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Figure 3: The constraint violation rate (top) and feasible rewards (bottom) in five MuJoCo environ-
ments during training with stochasticity of N (0, 0.1).

6.3 REALISTIC ENVIRONMENT: STOCHASTIC HIGHWAY DRIVING

Figure 4: Model performance in the HighD environment
with velocity constraint under N (0, 0.1).

We conduct experiments in a realistic high-
dimensional Highway Driving (HighD) en-
vironment (Krajewski et al., 2018; Liu
et al., 2023), which defines a complex high-
way driving task with constraints and re-
quires the agent to drive safely to the desti-
nation by observing human drivers’ demon-
strations. In this paper, we focus on the ve-
locity constraint, which guarantees the ego
car to drive at a safe velocity. Additionally,
we add Gaussian noise to the agent’s action
at to introduce the control-level stochastic-
ity. We report both the constraint violation rate (left, Figure 4) and feasible rewards (right, Figure 4)
under noise N (0, 0.1) (check Appendix D.3 for complete results with N (0, 0.01) and N (0, 0.001)).
Additionally, Appendix D.4 shows the results of recovering multiple kinds of constraints. We find
that although GACL violates the fewest constraints, it is too conservative to pursue rewards, which
limits its practical application. Other baselines including BC2L, ICRL, and VICRL can obtain high
rewards, but their constraint violation rates are still relatively high. Instead, UAICRL can achieve the
highest rewards while maintaining a satisfactorily low constraint violation rate, indicating its great
potential to handle uncertainties even in complex environments.

6.4 IN-DEPTH STUDY ON UNCERTAINTY MANAGEMENT PERFORMANCE

To comprehend the critical factors contributing to uncertainty awareness, we study the model’s
capabilities of representing aleatoric and epistemic uncertainties from the following perspectives:

Figure 5: Model performance in the Blocked
Half-Cheetah environment with stochasticity of
N (0, 0.1) when given ground-truth constraints.

"Can DLPO lead to more robust control un-
der stochastic dynamics?" To address this
question, we provide each agent with the ground-
truth constraints in the environment. We focus
solely on whether DLPO can learn constraint-
satisfying behavior while being influenced by
aleatoric uncertainty. We report both the con-
straint violation rate (left, Fig. 5) and feasible
rewards (right, Fig. 5) in the Half-Cheetah envi-
ronment with stochasticity of N (0, 0.1) (check
Appendix D.2 for complete results). The com-
pared methods include: 1) DLPO-Neutral and
DLPO-Averse, which refer to the options of ap-
plying expectation and CVaR(0.25) as the risk measures (ρ) in Objective 4. 2) Classic PPO-Lagrange,
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following the implementation in Liu et al. (2023). Our findings indicate that by implementing
the risk-sensitive constraint, the policy learns to respect the constraints while collecting rewards.
Furthermore, in most cases, the DLPO-Averse method employing CVaR as the risk measure results in
fewer constraint violations compared to the risk-neutral approach. However, CVaR sometimes leads
to overly conservative behavior, hindering the agent from efficiently pursuing rewards.

Figure 6: The trajectories generated by PPO-Lag and DLPO,
along with the predicted cost distributions at the critical state
denoted by the red circle.

Based on the same motivation, we
train agents in Gridworld environ-
ments under known constraints to bet-
ter understand the advantages of the
distributional estimator. Fig. 6 visu-
alizes the trajectories generated by
the PPO-Lagrange (left) and DLPO
(right) in a Girdworld setting (check
Fig. D.3 for results in remaining set-
tings). We notice that DLPO can
maintain an appropriate distance from
the constrained locations, effectively mitigating the impact of noise. Specifically, at s(4, 4), PPO-Lag
chooses to move left, whereas DLPO decides to move upper left, maintaining a larger gap to the
constraints. We use red circles to highlight the critical locations, where the agents display different
actions, and visualize the predicted cost distribution at these locations. We find that these distributions
are sensitive to the choices of actions, consequently assigning larger expectations and variances to
actions with a higher risk of constraint violation (e.g., moving lower left at s(4, 4) in Fig. 6).

Figure 7: The constraint map recovered by MEICRL and
UAICRL, along with the trajectories generated by our FTG.

"Can FTG facilitate more accurate
constraint inference?" Despite the
ablation studies in the main experi-
ments (e.g., compare UAICRL and
UAICRL-NDA), for a better under-
standing of the effectiveness of FTG,
we visualize the inferred constraint
from MEICRL (Malik et al., 2021)
and our UAICRL with FTG. Figure 7
illustrates the recovered costs in a
Gridworld setting (check Fig. D.4 for results in remaining settings). The generated trajectory
is not included in the expert dataset due to its restricted size. Generating such trajectories enhances
the diversity of the dataset, mitigating the redundant constraints learned by MEICRL (refer to white
circles). This finding suggests that when trained with additionally generated trajectories, the constraint
model can predict step-wise costs more accurately, thereby reducing the epistemic uncertainty.
6.5 LIMITATIONS

Theoretical Results. While our study indeed encompasses theoretical findings, it still lacks a rigorous
theoretical analysis. Existing theoretical results on IRL (Metelli et al., 2021; Lindner et al., 2022;
Metelli et al., 2023) depended on the construction of the feasible set of rewards, but defining the exact
feasible set for the constraint is challenging due to its various types (e.g., hard, soft or probabilistic
constraints) and optimization techniques (e.g., Lagrange methods). A rigorous theoretical study is
beyond the scope of our current work. Nevertheless, we affirm the importance of such understanding
and suggest extending the theoretical outcomes from IRL to ICRL as a future work.

Limited Risk Measure. For fairness and simplicity, our study predominantly employs the widely
used CVaR method. Although the performance of other metrics like VaR and Entropic Value-at-Risk
(EVaR) has not been studied, they could be easily integrated into our framework for future exploration.

7 CONCLUSION

This paper presents UAICRL, a novel ICRL framework capable of modeling both aleatoric and
epistemic uncertainties. This is achieved through the use of a distributional estimator and a flow-based
generator, enabling uncertainty-aware constraint inference. Empirical results show that UAICRL
outperforms a range of ICRL methods in both discrete and continuous environments, as well as in a
real-world highway driving task. Looking forward, a promising extension would be to incorporate
robust optimization methods into our UAICRL framework. This would enable learning more robust
constraints for safe control in environments with unpredictable noise.
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A PROOF

A.1 PROOF OF PROPOSITION 1

Let Z, C̄π denote the vector-valued random variables of size |S|, where Z(s) =
∑∞
t=0 γ

tCt|S0 = s
and C̄π(s) =

∫
a∈A π(a|s)C(s, a)da. Let P π denote the state transition probability matrix under

policy π, where Pπs,s′ =
∫
a∈A P (s′|s, a) dπ (a|s). Assuming the Bellman consistency holds by

Z
∆
:= C̄π + γP πZ, we show that the uncertainty of distributions Z under an entropy measure can

be given by:
H(Z) = H[C̄π]− |S| log(1− γ) + log |det (dπ)| (11)

where dπ = (1− γ) (I − γP π)
−1 ∈ [0, 1]|S|×|S| is the induced matrix for distributions over states

by following policy π and transition PT .

Proof:

H(Z)
(a)
= H

[
(I − γP π)

−1
C̄π

]
(12)

(b)
= log

∣∣∣det [(I − γP π)
−1

]∣∣∣+H[C̄π] (13)

(c)
= log

∣∣∣∣det [ dπ

1− γ

]∣∣∣∣+H[C̄π] (14)

(d)
= −|S| log(1− γ) + log |det [dπ]|+H[C̄π] (15)

(a) holds by following the Bellman consistency Z
∆
:= C̄π + γP πZ. To show the invertibility of

(I − γP π), it is sufficient to demonstrate that the matrix is full rank. Specifically, for any non-zero
vector x ∈ R|S|:

∥(I − γP π)x∥∞ = ∥x− γP πx∥∞
≥ ∥x∥∞ − γ ∥P πx∥∞
≥ ∥x∥∞ − γ∥x∥∞
= (1− γ)∥x∥∞
≥ 0

(b) holds by applying the properties of differential entropy and utilizing the invertibility of (I−γP π).

(c) holds by defining dπ = (1 − γ) (I − γP π)
−1. We aim to demonstrate that dπ ∈ [0, 1]|S|×|S|

represents the induced matrix for distributions over states when following policy π. Specifically,
the (s)th row of dπ corresponds to the distribution over states induced by following policy π after
starting with s0 = s. This follows directly from the definition of dπ .

dπ = (1− γ)

∞∑
t=1

(γP π)
t

=
(1− γ) [1− (γP π)

∞
]

1− (γP π)

=
(1− γ)

1− (γP π)

Proposition 1 provides a decomposition of the entropy of Z into three components. 1) The first
component is the entropy of the cost variables, which quantifies the uncertainty associated with the
current costs. 2) The second component captures the uncertainty induced by the discount factor,
which determines the degree to which the current uncertainty estimation should be influenced by the
stochasticity of future rewards or transitions. 3) The third component is a log-absolute determinant of
the induced distribution matrix, which measures the extent to which the transition function PT and
the policy π stretch or alter the initial state-action distribution. These components correspond to the
key elements of aleatoric uncertainty.
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A.2 PROOF OF PROPOSITION 2

Proof:

The mutual information term can be factorized as follows:

I(ω; Φ|τ̄ ,D)
(a)
= H[p(Φ|τ̄ ,D)]− Ep(ω|D)

[
H[p(Φ|τ̄ ;ω)]

]
(16)

(b)
= H[p(Φ|τ̄ ,D)]−

∫
p(ω|D)H[p(Φ|τ̄ ;ω)]dω (17)

(c)
≃ H[p(Φ|τ̄ ,D)]−

∫
q(ω)H[p(Φ|τ̄ ;ω)]dω (18)

(d)
≃ H[p(Φ|τ̄ ,D)]− 1

M

∑
m

H[p(Φ|τ̄ ;ωm)] where ωm ∼ q(ω) (19)

(a) holds by following the meaning of mutual information (i.e., the amount of information gained by
the model ω if receiving a label Φ for a new trajectory τ̄ , given the dataset D).

(c) holds by using the variational inference to approximate the intractable posterior p(ω|D) with a
simpler approximating distribution q(ω). For neural networks, the dropout distribution is commonly
used.

(d) holds by sampling from the approximating distribution (e.g., the dropout distribution) with Monte
Carlo method.

B IMPLEMENTATION DETAILS

B.1 MORE ALGORITHMS

We show the Distributional Lagrange Policy Optimization (DLPO) and Flow-based Trajectory
Generation (FTG) in Algorithm 2 and Algorithm 3, respectively.

Algorithm 2: Distributional Lagrange Policy Optimization (DLPO)
Input: Lagrange multiplier λ, risk measure ρ, GAE lambda λg , rollout rounds B, update rounds

K, policy πψ , reward value critic V r and distributional cost value critic Zc;
Initialize state s0 from CMDP and the roll-out dataset Droll;
for b = 1, 2, . . . , B do

Perform policy πψ and collect trajectories τb = [s0, a0, r0, c0, . . . , sT , aT , rT , cT ];
Calculate reward advantages Art and return Rrt via GAE (Schulman et al., 2016) ;
Calculate cost advantages Act =

∑T
ι=t(γλg)

ι [cι + γρ(Zc(sι+1))− ρ(Zc(sι))];
Add samples to the dataset Droll = Droll ∪ {st, at, rt, Art , Rrt , ct, Act};

end
for κ = 1, 2, . . . ,K do

Sample a data point sκ, aκ, rκ, Arκ, R
r
κ, cκ, A

c
κ from the dataset Droll;

Calculate the clipping loss LCLIP =

min
[

πψ(aκ|sκ)
πψ,old(aκ|sκ) (A

r
κ − λ(Acκ − ϵ)), clip(

πψ(aκ|sκ)
πψ,old(aκ|sκ) , 1− δ, 1 + δ)(Arκ − λ(Acκ − ϵ))

]
;

Update policy parameters ψ by minimizing the loss: −LCLIP − βH[πψ(aκ|sκ)] ;
Update the reward critic V r by minimizing the loss: LV F = ∥V r(sκ)−Rκ∥22;
Update the cost distribution Zc by distributional Bellman operator (Equation 5) ;

end
Update the Lagrange multiplier λ by minimizing the loss Lλ = λ[EDroll(c)− ϵ] ;

B.2 DISCRETIZED IMPLEMENTATION

We follow the Policy Iteration Lagrange algorithm (see Algorithm 2 in Liu et al. (2023)) to solve
discretized control problems. Based on it, we simply incorporate a distributional term into the value
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Algorithm 3: Flow-based Trajectory Generation (FTG)

Input: Flow neural network Fξ, retrieval neural network Gχ, trajectory dataset D = {τi}Ni=1,
empty probability buffer P , empty generated trajectory buffer DG, generate rounds I;

// Flow matching
while not converge do

Sample a minibatch B of trajectory data from D;
Update retrieval network Gχ by minimizing the loss: MSELoss(st, Gχ (st+1, at));
Uniformly sample M actions {am}Mm=1 from action space A for each state st in B;

Calculate inflows Fin = log
[
ϵ+

∑M
m=1 expFξ (Gχ (st, am) , am)

]
;

Calculate outflows Fout = log
[
ϵ+ λR (st) +

∑M
m=1 expFξ (st, am)

]
;

Update flow network Fξ by flow matching (Eqn. 10);
end
// Trajectory generation
for κ = 1, 2, . . . , I do

Initialize state s0 from CMDP, set t = 0;
Append s0 to the generated trajectory τGκ ;
while s ̸= terminal do

Uniformly sample K actions {ai}Ki=1 from action space A;
Generate the action probability buffer P by calculating edge flow for each action:
P = {Fξ (st, ai)}Ki=1;

Sample at ∼ P and execute at to move to the next state st+1;
Append st+1 to the generated trajectory τGκ ;

end
Append generated trajectory τGκ to buffer DG;

end

matrix and modify the flow-based data augmentation into a discretized version following Malkin et al.
(2022).

B.3 EXPERIMENTAL SETTINGS

For training the ICRL models, we utilized a total of 8 NVIDIA GeForce RTX 3090 GPUs, each
equipped with 24 GB of memory. The training process was conducted on a single running node,
utilizing 8 CPUs per task. The random seeds in the MuJoCo and HighD environment are 123, 321,
456, and 654. With the allocated resources described above, running one seed in the virtual and
realistic environments typically required a duration of 2-4 and 3-5 hours, respectively. To optimize all
of our networks, we employed the Adam optimization algorithm (Kingma & Ba, 2015). The learning
rate was updated using an exponential decay schedule parameterized by a decay factor in every
iteration. Given our primary focus on stochastic environments where absolute constraint satisfaction
is challenging, we opt for a small but positive constraint bound ϵ =1e-8. We summarize the main
hyperparameters in Teble B.1.

C ENVIRONMENTAL DETAILS

C.1 GRIDWORLD

In this paper, we establish a map with dimensions of 7 × 7 units and construct three distinct settings,
as illustrated in Figure 2. At each time, the agent is permitted to navigate to any of the adjacent eight
grids by moving one step. Starting from the initial location, a reward of 1 is granted if the agent
successfully traverses to the target location while avoiding the imposed constraints, and a reward of
0 is assigned for any other situations. Moreover, we modify the environment to simulate a certain
degree of stochasticity. Specifically, there exists a random rate (ps = 0.01 and 0.001) with which the
environment receives a random action instead of the intended action executed by the agent.
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Table B.1: List of the utilized hyperparameters in UAICRL. To ensure equitable comparisons, we
maintain consistency in the parameters of the same neural networks across different models.

Parameters HalfCheetah Ant Walker Swimmer Pendulum
General

Expert Rollouts 10 50 50 50 50
Max Length 1000 500 500 500 100
Gamma 0.99 0.99 0.99 0.99 0.99

PPO
Steps 2048 2048 2048 2048 2048
Reward-GAE-λ 0.95 0.9 0.9 0.9 0.9
Cost-GAE-λ 0.95 0.9 0.9 0.95 0.9
Policy Network πθ 64, 64 64, 64 64, 64 64, 64 64, 64
Reward Network V rθ 64, 64 64, 64 64, 64 64, 64 64, 64
Cost Network Zcθ 256, 256 256, 256 256, 256 256, 256 256, 256
Learning Rate θ 3e-4 3e-5 1e-4 3e-4 1e-4
Target KL 0.01 0.02 0.02 0.01 0.02

Lagrangian
Initial Value 1 0.05 0.1 1 0.1
Learning Rate 0.1 0.02 0.05 0.01 0.05

Constraint Function
Network Cω 20 40, 40 64, 64 20 20
Learning Rate ω 0.05 0.005 0.001 0.001 0.001
Backward Iterations 10 5 5 5 5

DLPO
Quantiles 64 64 64 64 64
Risk Measure CVaR CVaR CVaR CVaR CVaR
Risk Level 0.25 0.95 0.95 0.95 0.25

FTG
Network Fξ 256, 256 256, 256 256, 256 256, 256 256, 256
Learning Rate ξ 3e-4 3e-4 3e-4 3e-4 3e-4
Sample Action Size 10000 10000 10000 10000 10000
Sample Flows 50 50 50 50 50

C.2 MUJOCO

The five MuJoCo robotics environments are built upon MuJoCo (see Figure C.1).

Figure C.1: MuJoCo environments. From left to right, the environments are Half-cheetah, Ant,
Walker, Swimmer, and Inverted Pendulum, respectively.

We modify them by incorporating predefined constraints and adjusting reward terms for ICRL. To
simulate the stochasticity in the environment dynamics, we incorporate a Gaussian noise η ∼ N (µ, σ)
into the transition function at each step such that p (st+1 | st, at) = f (st, at) + η. In this work, we
utilize µ = 0 with σ = 0.1, 0.01 and 0.001 to represent different scales of noise. We provide a more
comprehensive description as follows:

1) Blocked Half-Cheetah. In this environment, the agent controls a robot with two legs. The reward
obtained by the agent is determined by the distance the robot walks between two time steps, and a
penalty based on the magnitude of the input action. The game continues until a maximum time step
of 1000 is reached. Due to the fact that the robot is easier to move backward than forward, we define
a blocked region where the X-coordinate < −3. So the robot is restricted to move within the region
where the X-coordinate ≥ −3.

2) Blocked Ant. In this environment, the agent controls a robot with four legs. The rewards obtained
by the agent depend on the distance of the robot from the origin, and a healthy bonus for maintaining
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Table C.1: The stochastic MuJoCo environments with constraints

Name Obs. Dim. Act. Dim. Constraints Stochasticity

Blocked Half-Cheetah 18 6 X-Coordinate ≥ -3 N (µ, σ)
Blocked Ant 113 8 X-Coordinate ≥ -3 N (µ, σ)

Blocked Walker 18 6 X-Coordinate ≥ -3 N (µ, σ)
Blocked Swimmer 10 2 X-Coordinate ≤ 0.5 N (µ, σ)
Biased Pendulum 4 1 X-Coordinate ≥ -0.015 N (µ, σ)

balance. The game terminates when a maximum time step of 500 is reached. Similarly to the Blocked
Half-Cheetah environment, we establish a constraint that blocks the region with X-coordinate < −3.
As a result, the robot is only permitted to move within the region where the X-coordinate ≥ −3.

3) Blocked Walker. In this environment, the agent controls a two-legged robot and learns how to make
it walk. The termination conditions for the game are either when the robot loses its balance or when
it reaches the maximum time step of 500. The reward obtained by the agent is determined by the
distance the robot walks between two time steps, along with a penalty based on the magnitude of the
input action. Similar to the above environments, we impose a constraint that blocks the region where
the X-coordinate < −3. Consequently, the robot is only allowed to move within the region where the
X-coordinate ≥ −3.

4) Blocked Swimmer. In this environment, the agent controls a robot with two rotors connecting
three segments, and learns how to move. The reward obtained by the agent is determined by the
distance the robot walks between the current and previous time steps, along with a penalty based
on the magnitude of the input action. The game ends when the robot reaches the maximum time
step of 500. In contrast to the aforementioned environments, the Swimmer robot is easier to move
forward than to move backward. Therefore, we constrain the region where the X-coordinate > 0.5.
Consequently, the robot is only allowed to move within the region where the X-coordinate ≤ 0.5.

5) Biased Pendulum. In this environment, the agent controls a pole to balance it on a cart. The
game terminates either when the pole falls or when the maximum time step of 100 is reached. To
increase difficulty, we assign higher rewards to the left locations, where the constraints are also
imposed. Specifically, we introduce a constraint that blocks the region with X-coordinate < −0.015.
At each step, a reward of 0.1 is provided if the X-coordinate ≥ 0, and a reward of 1 is given if the
X-coordinate ≤ −0.01. The reward gradually decreases from 1 to 0.1 when the X-coordinate falls
within (−0.01, 0). Consequently, the agent is challenged to resist the temptation of higher rewards
and stay within safe regions.

The MuJoCo environment settings in this work are summarized in Table C.1

C.3 HIGHWAY DRIVING

Figure C.2 illustrates the Highway Driving environment. In this scenario, the ego car is displayed in
blue while other cars are shown in red. The ego car has limited visibility and can only observe objects
within its vicinity (marked in blue). The objective is to navigate the car to reach the destination point
without going off-road, colliding with other cars, or violating time limits and other constraints (e.g.,
velocity).

In this paper, we mainly focus on the velocity constraint, where we limit the speed of the ego car to
no more than 40 m/s, to ensure the ego car can drive at a safe speed. Additionally, we add Gaussian
noise to the agent’s action at each time step to introduce the control-level stochasticity.

Figure C.2: The Highway Driving (HighD) environment.
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D MORE EXPERIMENTAL RESULTS

D.1 MORE RESULTS IN GRIDWORLD

Figure D.1 and Figure D.2 show the training curves in Gridworlds with the random rate ps = 0.01
and 0.001, respectively.

Figure D.1: The constraint violation rate (top) and feasible rewards (bottom) in three Gridworld
settings with the random rate ps = 0.01.

Figure D.2: The constraint violation rate (top) and feasible rewards (bottom) in three Gridworld
settings with the random rate ps = 0.001.
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Figure D.3 illustrates the trajectories generated by PPO-Lag and DLPO in the last two Gridworld
settings, along with the predicted constraint distributions.

Figure D.3: Each row refers to a Gridworld scenario. We illustrate the trajectories generated by
PPO-Lag and DLPO, along with the predicted cost distributions at the critical state denoted by red
circles.

Figure D.4 illustrates the constraint map recovered by MEICRL and UAICRL in the last two
Gridworld settings, along with the trajectories generated by the expert flow model. White circles
denote the redundant constraints learned by MEICRL.

Figure D.4: Each row refers to a Gridworld scenario. We illustrate the constraint map recovered by
MEICRL and UAICRL , along with the trajectories generated by the expert flow model.

D.2 MORE RESULTS IN MUJOCO

Table D.1 shows the evaluation performance in MuJoCo environments with N (0, 0.1).
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Table D.1: Evaluation of different methods in the MuJoCo environments with the stochasticity of
N (0, 0.1). We report the mean ± std results averaged over 4 random seeds.

Blocked
Half-Cheetah

Blocked
Ant

Blocked
Walker

Blocked
Swimmer

Biased
Pendulum

Feasible
Rewards

BC2L 333.4±175.2 595.0±225.2 222.1±94.9 91.9±46.1 0.1617±0.1295
GACL 577.2±135.4 387.5±205.1 55.5±5.5 64.7±30.6 0.0572±0.0439
ICRL 343.0±224.2 965.0±432.4 166.9±49.0 91.0±42.8 0.1440±0.1184

VICRL 615.4±299.9 641.8±297.4 91.5±25.3 105.5±29.1 0.1447±0.1139
UAICRL 1714.4±222.0 1313.5±533.2 399.8±106.3 177.3±30.7 0.2551±0.1347

Constraint
Violation

Rate

BC2L 0.69±0.20 0.31±0.16 0.0±0.0 0.89±0.05 0.91±0.07
GACL 0.29±0.16 0.29±0.14 0.0±0.0 0.92±0.04 0.87±0.10
ICRL 0.67±0.21 0.52±0.18 0.0±0.0 0.90±0.05 0.93±0.05

VICRL 0.57±0.21 0.37±0.17 0.0±0.0 0.88±0.03 0.91±0.07
UAICRL 0.07±0.06 0.42±0.17 0.0±0.0 0.86±0.03 0.52±0.20

Figure D.5 and Figure D.6 show the additional experimental results in MuJoCo environments with
constraint recovery under the stochasticity of N (0, 0.01) and N (0, 0.001), respectively.

Figure D.5: The constraint violation rate (top) and feasible rewards (bottom) in MuJoCo environments
with constraint recovery under the stochasticity of N (0, 0.01).

Figure D.6: The constraint violation rate (top) and feasible rewards (bottom) in MuJoCo environments
with constraint recovery under the stochasticity of N (0, 0.001).

Figure D.7, D.8, and D.9 show the complete results in MuJoCo environments when given ground-truth
constraints under the stochasticity of N (0, 0.1), N (0, 0.01) and N (0, 0.001), respectively.
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Figure D.7: The constraint violation rate (top) and feasible rewards (bottom) in MuJoCo environments
with the stochasticity of N (0, 0.1) when given ground-truth constraints.

Figure D.8: The constraint violation rate (top) and feasible rewards (bottom) in MuJoCo environments
with the stochasticity of N (0, 0.01) when given ground-truth constraints.

Figure D.9: The constraint violation rate (top) and feasible rewards (bottom) in MuJoCo environments
with the stochasticity of N (0, 0.001) when given ground-truth constraints.
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D.3 MORE RESULTS IN HIGHD

Figure D.10 shows the additional experimental results in the HighD environment with constraint
recovery under the stochasticity of N (0, 0.01) and N (0, 0.001), respectively.

Figure D.10: Model performance in the HighD environment with velocity constraint under N (0, 0.01)
(top) and N (0, 0.001) (bottom).

D.4 MULTIPLE CONSTRAINT RECOVERY

To investigate the model performance under multiple constraint scenarios, we expand the HighD
environment to incorporate both speed and distance constraints by generating an expert dataset,
wherein the agent adheres to both constraints. Figure D.11 shows the results under the stochasticity
of N (0, 0.1). We find that UAICRL still outperforms other baselines with the highest rewards while
keeping a low constraint violation rate of both constraints, demonstrating its ability of uncertainty
awareness with respect to multiple constraints. In addition, in comparison with the single constraint
scenario (as shown in Figure 4), the rewards accrued by the policies exhibit a significant reduction,
while the rate of constraint violations remains unaffected.

Figure D.11: Model performance in the HighD environment with both the speed and distance
constraints under N (0, 0.1).
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E MORE COMPREHENSIVE ANALYSIS

In this section, we provide a comprehensive analysis of the experimental results to supplement the
discussion presented in the main body of the paper (Section 6.2). The aim is to delve deeper into the
nuances of our experiments, offering a more detailed examination of the insights that could not be
fully explored within the constraints of the main text. We summarize some meaningful findings and
provide some explanations as follows:

(1) "The baseline methods exhibit relatively unsatisfactory results in the experiments."

This is because this paper primarily investigates the robustness of various methods in the face of
aleatoric and epistemic uncertainties. As such, we intentionally control the scale of noise and the
number of demonstrations, as detailed in our experimental settings (Section C). The baseline methods
partially or completely disregard these factors (refer to Table 1). Specifically, 1) baseline methods
that do not address stochastic transition dynamics fail to learn constraints that ensure the safety of
the learned policy. This oversight can negatively influence control performance. 2) If epistemic
uncertainty in Out-of-Distribution (OoD) data points is not taken into account, it could lead to
inaccurate cost predictions, subsequently affecting policy updates and overall performance.

(2) "When comparing the results across different levels of stochasticity, larger noise does not neces-
sarily result in poorer model performance."

The reason is that when noise levels are relatively low, its impact becomes challenging for the
distributional value function to detect, resulting in a constraint that is less sensitive to the risk.
Conversely, as the level of noise (i.e., stochasticity) increases, the variance of the estimated distribution
becomes prominent, thereby making the constraint more responsive to the risk of unsafe behaviors.
Our algorithms can thus induce stricter constraint functions and thus a lower constraint violation rate.

(3) "The divergence trend observed in the UAICRL method, particularly in the Blocked Walker task."

As shown in the results, we find that different algorithms display varying trends in their reward and
constraint violation rates throughout the training curves. This divergence is most noticeable in the
Blocked Walker environment. For instance, by the end of training, the rewards for UAICRL and
UAICRL-NDA progressively increase, while those for other methods tend to remain unchanged
or even decrease. To understand this phenomenon, it’s important to note that both UAICRL and
UAICRL-NDA implement risk-sensitive constraints. These constraints enable the agent to more
effectively manage the aleatoric uncertainty resulting from noise, thereby facilitating the learning of
risk-aware policies. This could result in considerable improvement in policy updates, particularly
when the agent encounters critical situations or locations. For instance, these constraints enable the
agent to initially learn to maintain a safe distance from hazardous zones. This strategy allows the
agent to better understand how to accrue rewards without entering dangerous events.

(4) "Most methods struggle to learn a safe policy with low constraint violation rate in the Blocked
Swimmer task."

There are several factors contributing to the complexity of the Blocked Swimmer task: 1) The
Swimmer environment itself is inherently challenging to solve by RL methods. Previous works report
similar difficulties in RL control (Franceschetti et al., 2022). 2) The mechanical dynamics of the
Swimmer Robot make it easier for the robot to move forward than backward. The block region is
also defined in front of the robot (where the X-coordinate > 0.5). The intrinsic robust dynamics may
strongly compel the robot to proceed forward, leading to constraint violations even in deterministic
settings (refer to Figure 2 in Liu et al. (2023)). 3) Thirdly, the stochastic transition dynamics further
complicate the safe control, even when agents are aware of the ground-truth constraints (refer to
PPO-Lag in Figure D.7). The task becomes even more difficult when the agent is required to predict
constraints from provided demonstrations. In conclusion, the Blocked Swimmer environment already
presents a challenge for traditional constrained RL. The challenge is amplified when constraints need
to be inferred (as in the ICRL setting) and when transition dynamics are stochastic.

(5) "The discrepancy in the performance of GACL, which performs well in the Block Ant task but not
in other tasks in Fig. D.5 and D.6."

The observed discrepancy in GACL’s performance, where it works well in the Blocked Ant task but
underperforms in other environments, can be attributed to its approach to constraint learning. Unlike
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traditional constrained RL problems, GACL directly appends the discriminator logD(s, a) to the
reward function as a penalty, resulting in a modified reward function r′(s, a) = r(s, a) + logD(s, a).
This modification allows us to investigate the impact of simple reward shaping on constraint learning.
We find GACL performs well in the Blocked Ant since this environment has the highest dimension in
all environments. In other environments with lower dimensions, the discriminator logD(s, a) is prone
to overfitting the imperfect data early in training. The log-probability penalty from this low-quality
discriminator applies a substantial penalty to many feasible regions, rendering the algorithm incapable
of learning. However, in high-dimensional environments (like the Ant task), the discriminator is
less likely to overfit. As a result, the impact of early mistakes in the discriminator is less significant,
enabling continuous learning.

(6) "In some environments in Figure 3, UAICRL performs similarly to UAICRL-NDA."

We observe that in environments with high-dimensional state-action space (HalfCheetah, Ant, and
Walker), UAICRL significantly outperforms UAICRL-NDA with higher rewards and lower constraint
violation rates. However, in environments with relatively lower state-action dimensions (Swimmer and
Pendulum), the difference of performance between UAICRL and UAICRL-NDA is less significant.
This is because, in the high-dimensional environment, a training dataset of a fixed size can only
encompass a limited number of data points within the input space. In contrast, in simpler or lower-
dimensional environments, the input space is smaller. As a result, a dataset of the same size can cover
a larger proportion of data points. This increased coverage reduces the chances of Out-of-Distribution
(OoD) data points and the impact of epistemic uncertainty. Consequently, the incorporation of the
data augmentation component does not lead to a substantial enhancement in performance.
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