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ABSTRACT

We study the estimation of a planted signal hidden in a recently introduced nested
matrix-tensor model, which is an extension of the classical spiked rank-one tensor
model, motivated by multi-view clustering. Prior work has theoretically examined
the performance of a tensor-based approach, which relies on finding a best rank-
one approximation, a problem known to be computationally hard. A tractable
alternative approach consists in computing instead the best rank-one (matrix) ap-
proximation of an unfolding of the observed tensor data, but its performance was
hitherto unknown. We quantify here the performance gap between these two ap-
proaches, in particular by deriving the precise algorithmic threshold of the un-
folding approach and demonstrating that it exhibits a BBP-type transition behav-
ior (Baik et al., 2005). This work is therefore in line with recent contributions
which deepen our understanding of why tensor-based methods surpass matrix-
based methods in handling structured tensor data.

1 INTRODUCTION

In the age of artificial intelligence, handling vast amounts of data has become a fundamental aspect
of machine learning tasks. Datasets are often high-dimensional and composed of multiple modes,
such as various modalities, sensors, sources, types, or domains, naturally lending themselves to be
represented as tensors. Tensors offer a richer structure compared to traditional one-dimensional
vectors and two-dimensional matrices, making them increasingly relevant in various applications,
including statistical learning and data analysis (Landsberg, 2012; Sun et al., 2014).

Yet, in the existing literature, there is a notable scarcity of theoretical studies that specifically ad-
dress the performance gaps between tensor-based methods and traditional (matrix) spectral methods
in the context of high-dimensional data analysis. While tensor methods have shown promise in var-
ious applications, including multi-view clustering, co-clustering, community detection, and latent
variable modeling (Wu et al., 2019; Anandkumar et al., 2014; Papalexakis et al., 2012; Wang et al.,
2023), little attention has been devoted to rigorously quantifying the advantages and drawbacks of
leveraging the hidden low-rank tensor structure. Filling this gap by conducting a thorough theoreti-
cal analysis is crucial for gaining a deeper understanding of the practical implications and potential
performance gains associated with tensor-based techniques.

In the specific case of multi-view clustering, Seddik et al. (2023a) recently proposed a spectral tensor
method and carried out a precise analysis of its performance in the large-dimensional limit. Their
method consists in computing a best rank-one (tensor) approximation of a nested matrix-tensor
model, which, in particular, generalizes the classical rank-one spiked tensor model of Montanari &
Richard (2014), and can be described as follows. Assume that we observe m transformations of a
p × n matrix M = µy⊤ + Z representing n points in dimension p split into two clusters centered
around ±µ, with y ∈ {−1, 1}n and Z a Gaussian matrix encoding the “inherent” dispersion of
individuals (that is, regardless of measurement errors) around the center of their respective cluster.
Mathematically, each view is thus expressed as

Xk = fk(µy
⊤ + Z) +Wk, k = 1, . . . ,m, (1)

where fk models the transformation applied to M on the k-th view and Wk is an additive observa-
tion noise with i.i.d. entries drawn from N (0, 1). The nested-matrix tensor model then arises when
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we take fk(M) = hk M, meaning the function fk simply rescales the matrix M by an unknown
coefficient hk ∈ R. With h = (h1 . . . hm)

⊤ ∈ Rm and ⊗ denoting the outer product, this gives

X =
(
µy⊤ + Z

)
⊗ h+ W ∈ Rp×n×m. (Nested Matrix-Tensor Model)

By seeking a best rank-one approximation of X to estimate its latent clustering structure, Seddik
et al. (2023a) showed empirically that it outperforms an unfolding approach based on applying an
SVD to an unfolding of X (Ben Arous et al., 2021; Lebeau et al., 2024), which is a matrix obtained
by rearranging the entries of a tensor (see Section 2.2). However, the tensor-based approach hinges
upon solving a problem which is worst-case NP-hard, unlike the unfolding approach. A natural
question is thus: what is the exact performance gap that exists between these two approaches, as a
function of some measure of difficulty of the problem (typically, a measure of signal-to-noise ratio)?

Here, in order to answer this question, we rigorously study the unfolding method by deploying tools
from random matrix theory. Specifically, our main contributions are

• within the framework of the general nested matrix-tensor model, we derive the limiting
spectral distribution of the unfoldings of the tensor (Theorems 1 and 3) and precisely quan-
tify how well the hidden low-rank (tensor) structure can be recovered from them in the
high-dimensional regime (Theorems 2 and 7);

• we perform a similar random matrix analysis of the model when the vector spanning the
third mode is known (Theorems 3 and 4), providing an optimal upper bound on the recovery
performance;

• in the context of multi-view clustering, we compare the performance of the tensor and
unfolding approaches to the optimal one and specify the gap between them thanks to our
theoretical findings (Theorem 5), supported by empirical results1.

Although the above described model arises from a rather particular choice of view transformations
fk, it is amenable to a precise estimation performance analysis, either by means of a tensor spectral
estimator as recently done by Seddik et al. (2023a), or via a matrix spectral estimator as we consider
in the present paper. Moreover, from a broader perspective (that is, beyond the multi-view clustering
problem considered here), this model can be viewed as a more flexible version of the rank-one spiked
model, incorporating a nested structure that allows for versatile data modeling, deviating from a
pure rank-one assumption. A common low-rank structure encoding the underlying latent clustering
pattern is shared by all slices Xk, which represent distinct views of the data. In particular, when the
variances of the elements in Z approach zero, the rank-one spiked model is retrieved. Hence, we
believe that the nested tensor-matrix model (and extensions) can be a useful tool in other contexts in
the broader area of statistical learning.

Related work. In the machine learning literature, the notion of “view” is fairly general and models
data whose form may differ but all represent the same object seen from different (and complemen-
tary) angles (for instance, multiple descriptors of an image, translations of a text or features of a
webpage such as its hyperlinks, text and images). Various approaches have been considered to
address multi-view clustering problems. For instance, Nie et al. (2016; 2017b;a) consider a graph-
based model and construct a similarity matrix by integrating all views with a weighted sum before
applying spectral clustering. Other approaches, relying upon a space-learning-based model (Wang
et al., 2017; Zhang et al., 2017; Wang et al., 2019; Peng et al., 2019), reconstruct the data in an ideal
space where clustering is easy. Zhang et al. (2019) suggest a method which is more suitable for
large datasets by mixing binary coding and clustering. Tensor methods have also been considered:
Wu et al. (2019) propose an essential tensor learning approach for Markov chain-based multi-view
spectral clustering. Furthermore, Liu et al. (2021; 2023) design simple yet effective methods for
multi-view clustering relying on multiple kernel k-means. Our work differs from these previous
contributions in that it is focused on a tensor model having the specific form of equation Nested
Matrix-Tensor Model. Even though this model corresponds to a rather particular case of the general
setting given in equation 1, our results represent a first step towards precisely understanding how
tensor methods can contribute to addressing the latter.

1Note that these numerical results are only meant to illustrate our theoretical findings, showing their implica-
tions in practice. However, our work does not purport to explain the performance gap between any tensor-based
and any matrix-based multi-view clustering methods.
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Regarding the analysis of performance gaps between tensor- and matrix-based methods, we can
mention the recent work by Seddik et al. (2023b), where the authors proposed a data model that
consists of a Gaussian mixture assuming a low-rank tensor structure on the population means and
further characterized the theoretical performance gap between a simple tensor-based method and a
flattening-based method that neglects the low-rank structure. Their study has demonstrated that the
tensor approach yields provably better performance compared to treating the data as mere vectors.

Proofs and simulations. All proofs are deferred to the appendix. Python codes to reproduce
simulations are available in the following GitHub repository https://github.com/HugoLeb
eau/nested_matrix-tensor.

2 TENSORS AND RANDOM MATRIX THEORY

2.1 GENERAL NOTATIONS

The symbols a, a and A respectively denote a scalar, a vector and a matrix. Their random coun-
terparts are a, a and A, respectively. Tensors (be they random or not) are denoted A. The set of
integers {1, . . . , n} is denoted [n]. The unit sphere in Rn is Sn−1 = {x ∈ Rn | ∥x∥ = 1}. The set
of eigenvalues of a matrix A is called its spectrum and denoted sp(A). The support of a measure
µ is denoted suppµ. As usual, δx is the Dirac measure at point x. Given two sequences of scalars
fn and gn, the notation fn = Θ(gn) means that there exist constants C,C ′ > 0 and n0 such that
n ⩾ n0 =⇒ C |gn| ⩽ |fn| ⩽ C ′ |gn|. The convergence in distribution of a sequence of random
variables (xn)n⩾0 is denoted xn

D−−−−−→
n→+∞

L where L is the limiting distribution.

2.2 TENSORS AND RELATED OPERATIONS

For our purposes, we can think of tensors as multidimensional arrays. In this work, we will only
consider tensors of order 3, i.e., elements of Rn1×n2×n3 . For such a tensor T and (i, j, k) ∈ [n1]×
[n2] × [n3], Ti,j,k denotes its (i, j, k)-entry. T can be unfolded along one of its three modes to
construct a “matricized version” of the tensor: the unfolding of T along mode 1 is the matrix T (1) ∈
Rn1×n2n3 such that Ti,j,k = T

(1)
i,n3(j−1)+k, and likewise for T (2) and T (3) — the unfoldings of

T along modes 2 and 3. The inner product between two tensors T,T′ ∈ Rn1×n2×n3 is ⟨T,T′⟩ =∑n1,n2,n3

i,j,k=1 Ti,j,kT ′
i,j,k and the Frobenius norm of T is defined simply as ∥T∥F =

√
⟨T,T⟩.

The outer product ⊗ allows to construct an order-3 tensor from a matrix A ∈ Rn1×n2 and a vec-
tor w ∈ Rn3 , [A⊗w]i,j,k = Ai,jwk, or from three vectors (u,v,w) ∈ Rn1 × Rn2 × Rn3 ,
[u⊗ v ⊗w]i,j,k = uivjwk. In the latter case, the tensor is said to be rank-one.

Unfoldings of tensors defined with outer products are often expressed using Kronecker products ⊠.
Given two matrices (or vectors if the second dimension is set to 1) A ∈ Rn1×n2 ,B ∈ Rp1×p2 ,
their Kronecker product A⊠B is the n1p1×n2p2 matrix such that [A⊠B]p1(i−1)+r,p2(j−1)+s =

Ai,jBr,s. Among the numerous properties of the Kronecker product, we highlight the fact that it is
bilinear, associative, (A⊠B)

⊤
= A⊤ ⊠B⊤ and (A⊠B) (C ⊠D) = AC ⊠BD.

Example. With a = [A1,: . . . An1,:]
⊤ ∈ Rn1n2 ,

[A⊗w]
(1)

= A (In2
⊠w)

⊤
, [u⊗ v ⊗w]

(1)
= u (v ⊠w)

⊤
,

[A⊗w]
(2)

= A⊤ (In1
⊠w)

⊤
, [u⊗ v ⊗w]

(2)
= v (u⊠w)

⊤
,

[A⊗w]
(3)

= wa⊤, [u⊗ v ⊗w]
(3)

= w (u⊠ v)
⊤
.

2.3 RANDOM MATRIX TOOLS

The results presented below are derived using tools from the theory of large random matrices (Bai &
Silverstein, 2010; Pastur & Shcherbina, 2011; Couillet & Liao, 2022), the main tools of which are
recalled here.
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Given a random symmetric matrix S ∈ Rn×n, we are interested in the behavior of its (real) eigen-
values and eigenvectors as n→ +∞2. A first kind of result is the weak convergence of its empirical
spectral distribution (ESD) 1

n

∑
λ∈sp(S) δλ towards a limiting spectral distribution (LSD) µ. The

latter is often characterized by its Stieltjes transform mµ : s ∈ C \ spS 7→
∫
R

µ(dt)
t−s , from which

µ can be recovered using the inverse formula µ(dt) = limη→0
1
πℑ[mµ(t + iη)]. A second kind of

result is the almost sure convergence of the alignment between a vector x ∈ Rn and an eigenvector
x̂ of S, i.e., the quantity

∣∣x⊤x̂
∣∣2, towards a fixed value in [0, 1].

A central tool to derive such results is the resolvent QS(s) = (S− sIn)
−1, defined for all s ∈

C\spS. Indeed, 1
n TrQS(s) is the Stieltjes transform evaluated at s of the ESD of S, so studying its

asymptotic behavior shall give us insight into mµ. The alignments can as well be studied through the
resolvent thanks to the property

∣∣x⊤x̂
∣∣2 = − 1

2iπ

∮
γ
x⊤QS(s)x ds where γ is a positively-oriented

complex contour circling around the eigenvalue associated to x̂ (assuming it has multiplicity one)
and leaving all other eigenvalues outside.

Because of the random nature of QS, we will first seek a deterministic equivalent, i.e., a deterministic
matrix Q̄S such that both quantities 1

n TrA
(
QS − Q̄S

)
and a⊤ (QS − Q̄S

)
b vanish almost surely

as n → +∞ for any (sequences of) deterministic matrices A and vectors a, b of bounded norms
(respectively, operator and Euclidean). This is denoted QS ←→ Q̄S. The following lemma will be
extensively used to derive such equivalents.

Lemma 1 (Stein (1981)). Let z ∼ N (0, 1) and f : R→ R be a continuously differentiable function.
When the following expectations exist, E [zf(z)] = E [f ′(z)].

3 MAIN RESULTS

Before presenting its practical applications in Section 4, we recall the definition of the nested matrix-
tensor model in a general framework. Consider the following statistical model.

T = βTM⊗ z +
1
√
nT

W ∈ Rn1×n2×n3 , M = βMxy⊤ +
1
√
nM

Z ∈ Rn1×n2 , (2)

where nM = n1 + n2 and nT = n1 + n2 + n3, x, y and z are of unit norm and the entries of W
and Z are independent Gaussian random variables3: Wi,j,k

i.i.d.∼ N (0, 1), Zi,j
i.i.d.∼ N (0, 1). M is a

rank-1 signal βMxy⊤ corrupted by noise Z, modelling the data matrix, whereas T models its multi-
view observation βTM⊗ z corrupted by noise W. The positive parameters βM and βT control the
signal-to-noise ratio (SNR). Our interest is the statistical recovery of x, y or z in the regime where
n1, n2, n3 → +∞ with 0 < cℓ = limnℓ/nT < 1 for all ℓ ∈ [3]. This models the fact that, in
practice, we deal with large tensors whose dimensions have comparable sizes.

Seddik et al. (2023a) have studied the spectral estimator of x, y and z based on computing the best
rank-one approximation of T, that is, by solving

(x̂, ŷ, ẑ) = argmax
(u,v,w)∈Sn1−1×Sn2−1×Sn3−1

⟨T,u⊗ v ⊗w⟩.

Concretely, they used random matrix tools to assess its performance in the recovery of x, y and
z, by deploying a recent approach developed by Goulart et al. (2022); Seddik et al. (2022). In this
work, we study instead the performance of a spectral approach based on computing the dominant
singular vectors of the (matrix) unfoldings of T, aiming to precisely quantify the performance gap
between these different approaches.

Because M has the structure of a standard spiked matrix model (Benaych-Georges & Nadakuditi,
2011; Couillet & Liao, 2022) with a rank-one perturbation βMxy⊤ of a random matrix 1√

nm
Z, we

shall assume βM = Θ(1) since we know that it is in this “non-trivial regime” that the recovery of x

2Strictly speaking, we consider a sequence of matrices Sn but the dependence on n is dropped as the
assumption n→ +∞ models the fact that, in practice, n is large.

3The “interpolation trick” of Lytova & Pastur (2009, Corollary 3.1) allows to extend these results to non-
Gaussian noise up to a control on the moments of the distribution.
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or y given M is neither too easy (too high SNR) nor too hard (too small SNR) and a phase-transition
phenomenon (Baik et al., 2005) between impossible and possible recovery can be observed. How-
ever, we shall see that the algorithmic phase transition related to the unfolding approach takes place
when βT = Θ(n

1/4
T ) in lieu of βT = Θ(1). This is different from the tensor spectral approach for

which both βM and βT are Θ(1) in the non-trivial regime, supposing a better performance of the
latter method, although, practically, no known algorithm is able to compute it below βT = Θ(n

1/4
T )

(Montanari & Richard, 2014).

3.1 UNFOLDINGS ALONG THE FIRST TWO MODES

We start by studying the recovery of y (resp. x) from the unfolding T(2) (resp. T(1)). In a multi-
view clustering perspective — which motivates our work and which will be developed in Section 4
— we are especially interested in the recovery of y since it carries the class labels. Therefore, we
present our results for T(2) only. As x and y play a symmetric role, it is easy to deduce the results
for T(1) from those presented below. The recovery of z from T(3) is dealt with in Appendix A.

Following the model presented in equation 2, the unfolding along the second mode of T develops as

T(2) = βTβMy (x⊠ z)
⊤
+

βT√
nM

Z⊤ (In1
⊠ z)

⊤
+

1
√
nT

W(2). (3)

Hence, a natural estimator ŷ of y is the dominant left singular vector of T(2) or, equivalently, the
dominant eigenvector of T(2)T(2)⊤. The latter being symmetric, it is better suited to the tools
presented in Section 2.3. Our first step is to characterize the limiting spectral distribution of this
random matrix. However, one must be careful with the fact that the dimensions of T(2) ∈ Rn2×n1n3

do not have sizes of the same order, causing the spectrum of T(2)T(2)⊤ to diverge as n1, n2, n3 →
+∞. In fact, its eigenvalues gather in a “bulk” centered around a Θ(nT ) value and spread on an
interval of size Θ(

√
nT ) — a phenomenon which was first characterized by Ben Arous et al. (2021).

For this reason, in Theorem 1, we do not specify the LSD of T(2)T(2)⊤ per se but of a properly
centered-and-scaled version of it, whose spectrum no longer diverges. Moreover, it is expected that
the rank-one signal βTβMy (x⊠ z)

⊤ causes the presence of an isolated eigenvalue in the spectrum
of T(2)T(2)⊤ with corresponding eigenvector positively correlated with y when it is detectable, i.e.,
when βTβM is large enough.

Our second step is thus to precisely specify what is meant by “large enough” and characterize the
asymptotic position of this spike eigenvalue and the alignment with y of its corresponding eigenvec-
tor. It turns out that the signal vanishes if βT does not scale with nT . Precisely, β2

TnT /
√
n1n2n3

must converge to a fixed positive quantity4, denoted ρT , to reach the “non-trivial regime” — that
is, one where the signal and the noise in the model have comparable strengths. However, because
the noise in Z is also weighted by βT , this affects the shape of the bulk. Hence, the value of ρT
influences the limiting spectral distribution of T(2)T(2)⊤ and shall appear in its defining equation5.
Having said all this, we are now ready to introduce the following theorem.

Theorem 1 (Limiting Spectral Distribution). As n1, n2, n3 → +∞, the centered-and-scaled matrix
nT√

n1n2n3
T(2)T(2)⊤ − n2+n1n3√

n1n2n3
In2 has a limiting spectral distribution ν̃ whose Stieltjes transform

m̃(s̃) is solution to

ρT c2
1− c3

m̃3(s̃) +

(
1 + s̃

ρT c2
1− c3

)
m̃2(s̃) +

(
s̃+

ρT (c2 − c1)

1− c3

)
m̃(s̃) + 1 = 0, s̃ ∈ C \ supp ν̃

where ρT = lim
β2
TnT√

n1n2n3
.

Proof. See Appendix B.

4In fact, β2
TnT /

√
n1n2n3 only needs to stay bounded between two strictly positive quantities, i.e., stay

Θ(1). It is however easier for the present analysis to consider that it converges (as it allows to express the LSD)
and this assumption has no practical implications.

5This may be at first surprising because ρT relates to the strength of the signal while the LSD stems from
the noise. We see that Z plays an ambivalent role of both a signal and a noise term.
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Figure 1: Empirical Spectral Distribution (ESD) and Limiting Spectral Distribution (LSD) of
T(2)T(2)⊤ (left) and T(3)T(3)⊤ (right) with n1 = 600, n2 = 400 and n3 = 200. Both spectra
show an isolated eigenvalue close to its predicted asymptotic position, represented by the green
dashed line. Left: ρT = 2, βM = 1.5. The centered-and-scaled LSD ν̃ and spike location ξ̃ are
defined in Theorems 1 and 2. Right: ϱ = 4, βM = 3. The LSD is a shifted-and-rescaled semi-circle
distribution and the normalized spike location is ϱ+ 1

ϱ as precised in Theorems 6 and 7.

As mentioned in Section 2.3, the LSD ν̃ is characterized by its Stieltjes transform, uniquely defined
as the solution of a polynomial equation6. The influence of ρT on the LSD of T(2)T(2)⊤ is made
explicit in this equation and it is interesting to remark that, if ρT = 0 (i.e., in the absence of signal),
this equality reduces to m̃2(s̃) + s̃m̃(s̃) + 1 = 0, which is a well-known characterization of the
Stieltjes transform of the semi-circle distribution (Pastur & Shcherbina, 2011, Corollary 2.2.8). Note
also that the condition ρT = Θ(1) amounts to saying that βT = Θ(n

1/4
T ), which coincides with the

conjectured “computational threshold” under which no known algorithm is able to detect a signal
without prior information (Montanari & Richard, 2014; Ben Arous et al., 2021).

The ESD and LSD of T(2)T(2)⊤ with parameters (ρT , βM ) = (2, 1.5) are represented in the left
panel of Figure 1. We observe a good agreement between the actual and predicted shape of the bulk.
As expected, we see an isolated eigenvalue on the right which only appears for sufficiently high
values of ρT and βM . The following theorem specifies this behavior and quantifies the alignment
between the signal y and the spike eigenvector ŷ.

Theorem 2 (Spike Behavior).

Let ξ̃ =
ρT
β2
M

(
c1

1− c3
+ β2

M

)(
c2

1− c3
+ β2

M

)
+

1

ρT

(
c2

1−c3
+ β2

M

)
and ζ = 1− 1

β2
M

(
c2

1−c3
+ β2

M

)

 β2

M

ρT

(
c2

1−c3
+ β2

M

)
2

+
c2

1− c3

(
c1

1− c3
+ β2

M

) .

If ζ > 0, then the centered-and-scaled matrix nT√
n1n2n3

T(2)T(2)⊤ − n2+n1n3√
n1n2n3

In2 has an isolated

eigenvalue asymptotically located in ξ̃ almost surely. Furthermore, in this case, the alignment be-
tween the corresponding eigenvector ŷ and the true signal y converges to ζ almost surely, i.e.,∣∣ŷ⊤y

∣∣2 −−−−−−−−−→
n1,n2,n3→+∞

ζ almost surely.

Proof. See Appendix C.

Naturally, we must assume ρT , βM > 0 for ξ̃ and ζ to be well defined. The location of the iso-
lated eigenvalue in the spectrum of T(2)T(2)⊤ predicted from the expression of ξ̃ is represented as
the green dashed line in the left panel of Figure 1. In fact, Theorem 2 reveals a phase transition
phenomenon between impossible and possible recovery of the signal with the estimator ŷ. This is

6Although this is not the only solution to this equation, it is the only one that has the properties of a Stieltjes
transform, such as ℑ[s̃]ℑ[m̃(s̃)] > 0 for all s̃ ∈ C \ R (see, e.g., Tao (2012) for other properties).
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Figure 2: Asymptotic alignment ζ+ = max(ζ, 0) between the signal y and the dominant eigen-
vector of T(2)T(2)⊤, as defined in Theorem 2, with c1 = 1

2 , c2 = 1
3 and c3 = 1

6 . The curve ζ = 0 is
the position of the phase transition between the impossible detectability of the signal (below) and
the presence of an isolated eigenvalue in the spectrum of T(2)T(2)⊤ with corresponding eigenvector
correlated with the signal (above). It has an asymptote βM = ( c1c2

1−c3
)1/4, represented by the red

dashed line, as ρT → +∞.

precisely quantified by the value of ζ+ = max(ζ, 0): the closer it is to 1, the better is the estimation
of y. The precise dependence of ζ on ρT and βM is hard to interpret directly from its expression.
Figure 2 displays ζ+ as a function of ρT and βM . The expression of the curve ζ = 0 marking the
position of the transition from impossible to possible recovery is given by the following proposition.

Proposition 1 (Phase Transition). If β4
M > c1c2

1−c3
, then ζ = 0 ⇐⇒ ρT =

β2
M(

c2
1−c3

+β2
M

)√
β4
M− c1c2

1−c3

.

We see that, if β4
M ⩽ c1c2

1−c3
, it is impossible to find ρT > 0 such that ζ > 0. This is due to

the fact that β4
M = c1c2

1−c3
corresponds to the position of the phase transition in the estimation of y

from M. If the signal is not detectable from M, there is obviously no chance to recover it from T.
Moreover, as ρT grows, the value of βM such that ζ = 0 coincides with ( c1c2

1−c3
)1/4 but it goes to

+∞ as ρT approaches 0. This shows the importance of having βT = Θ(n
1/4
T ) (in which case it is

more convenient to work with the rescaled version ρT of βT ): if βT is an order below (ρT → 0)
then we are stuck in the “Impossible recovery” zone while if βT is an order above (ρT → +∞) then
estimating from T is just like estimating from M. It is precisely in the regime βT = Θ(n

1/4
T ) that this

phase-transition phenomenon can be observed, thereby justifying its designation as “non-trivial”.
Remark. It should be noted that the aforementioned impossibility of (partially) recovering the sought
signal in a given regime refers only to the case where such a recovery is carried out by the unfolding
method. In other words, our discussion concerns algorithmic thresholds pertaining to such method,
and not statistical ones.

3.2 ESTIMATION WITH WEIGHTED MEAN

Before diving into the application of the previous results to multi-view clustering (where we will be
interested in the estimation of the class labels contained in y), we propose an analysis of a related
matrix model corresponding to the optimal estimation of y when z is perfectly known. These results
will give us an optimistic upper bound on the performance of the estimation of y from T.

In case z is known, y can be estimated with the following weighted mean of T along mode 3,

T̄ =

n3∑
k=1

zkT:,:,k = βTβMxy⊤ +
ς
√
nM

N (4)

7
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where Ni,j
i.i.d.∼ N (0, 1) and ς2 = β2

T + nM

nT
. It is well known that the dominant right singular

vector of T̄ is an optimal estimator of y under this model (Onatski et al., 2013; Löffler et al., 2020).
Hence, we study the spectrum of 1

ς2 T̄
⊤T̄, which is a sample covariance matrix — a standard model

in random matrix theory (Pastur & Shcherbina, 2011; Bai & Silverstein, 2010). Its eigenvalue dis-
tribution converges to the Marchenko-Pastur distribution (Marčenko & Pastur, 1967), as expressed
in the following theorem.

Theorem 3 (Limiting Spectral Distribution). Let E± =
(√

c1
1−c3

±
√

c2
1−c3

)2
. As n1, n2 → +∞,

the matrix 1
ς2 T̄

⊤T̄ has a limiting spectral distribution µ explicitly given by

µMP(dx) =

[
1− c1

c2

]+
δx(dx) +

1

2π c2
1−c3

x

√
[x− E−]

+
[E+ − x]

+
dx.

Similarly to the previous spiked models, the rank-one information βTβMxy⊤ induces the pres-
ence of an isolated eigenvalue in the spectrum of 1

ς2 T̄
⊤T̄. The following theorem characterize its

behavior and that of its corresponding eigenvector.

Theorem 4 (Spike Behavior). If
(

βT βM

ς

)4
> c1c2

(1−c3)
2 , then the spectrum of 1

ς2 T̄
⊤T̄ exhibits an iso-

lated eigenvalue asymptotically located in ς2

β2
T β2

M

(
β2
T β2

M

ς2 + c1
1−c3

)(
β2
T β2

M

ς2 + c2
1−c3

)
almost surely.

Moreover, in this case, the corresponding eigenvector û is aligned with the signal y,∣∣û⊤y
∣∣2 −−−−−−−−−→

n1,n2,n3→+∞
1− ς2

β2
Tβ

2
M

c2
1− c3

β2
T β2

M

ς2 + c1
1−c3

β2
T β2

M

ς2 + c2
1−c3

almost surely.

For more details on standard spiked matrix models, see Couillet & Liao (2022, §2.5).

4 PERFORMANCE GAPS IN MULTI-VIEW CLUSTERING

We shall now illustrate our results in the context of multi-view clustering. As explained in the
introduction, we consider the observation of a tensor X ∈ Rp×n×m following the nested matrix-
tensor model,

X =
(
µȳ⊤ + Z

)
⊗ h+ W with

 Zi,j
i.i.d.∼ N

(
0, 1

p+n

)
Wi,j,k

i.i.d.∼ N
(
0, 1

p+n+m

) . (5)

The two cluster centers are ±µ and ȳi = ± 1√
n

depending on the class of the i-th individual. The
third vector h encodes the variances along the different views of µȳ⊤ + Z. The clustering is
performed by estimating the class labels with the dominant left singular vector ŷ of X(2). It is thus
a direct application of the results of Section 3.1, where (∥µ∥, ∥h∥) plays the role of (βM , βT ). In
fact, the behavior of the alignment

∣∣ŷ⊤y
∣∣2 given by Theorem 2 can be further precised with the

following theorem.

Theorem 5 (Performance of Multi-View Spectral Clustering). Let (cp, cn, cm) = (p,n,m)
p+n+m , ρ =

∥h∥2 p+n+m√
pnm and

ζ = 1− 1

∥µ∥2
(

cn
1−cm

+ ∥µ∥2
)

 ∥µ∥2

ρ
(

cn
1−cm

+ ∥µ∥2
)
2

+
cn

1− cm

(
cp

1− cm
+ ∥µ∥2

) .

Then,
√

n
1−ζ (ŷj −

√
ζȳj)

D−−−−−→
n→+∞

N (0, 1) for all j ∈ {1, . . . , n}, i.e., ŷj approximately follows

N
(√

ζȳj ,
1−ζ
n

)
. Therefore, the clustering accuracy of the estimator ŷ converges almost surely to

Φ
(√

ζ
1−ζ

)
where Φ : x 7→ 1√

2π

∫ x

−∞ e−
t2

2 dt is the standard Gaussian cumulative distribution
function.
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Figure 3: Empirical versus theoretical multi-view clustering performance with parameters
(p, n,m) = (150, 300, 60), varying ∥µ∥ and two values of ∥h∥ : 0.5 in blue and 1.5 in orange.
The solid curve (O) is an optimistic upper bound given by Theorem 4, as it can be reached when
the variances along each view are perfectly known. The dash-dotted curve (T) is the performance
achieved with a rank-one approximation of X (Seddik et al., 2023a). The dashed curve (U) is the
performance predicted by Theorem 5 with the unfolding approach.

Proof. See Appendix D for a sketch.

Figure 3 compares the performances of the unfolding approach predicted by Theorem 5 with that of
the “tensor approach” (Seddik et al., 2023a) which performs clustering with a rank-one approxima-
tion of X. Moreover, an optimistic upper bound on the best achievable performance, given by the
solid curve, can be derived from Theorem 4. Empirical accuracies are computed for both approaches
and show a good match between theory and simulation results. It appears that the unfolding approach
has a later phase transition and a lower performance than the tensor approach. This was expected
since they do not have the same non-trivial regime (Θ(n

1/4
T ) against Θ(1)). As ∥h∥ increases, the

performance gap between both approaches reduces. The performance of the tensor approach rapidly
comes very close to the upper bound: the two curves almost coincide for ∥h∥ = 1.5.

These results show the superiority of the tensor approach in terms of accuracy of the multi-view
spectral clustering. In particular, by contrast with the unfolding-based estimator, the tensor approach
has near-optimal performance, as quantified by Theorem 4. Nevertheless, when considering “not too
hard” problems (i.e., for which ∥µ∥ and ∥h∥ are not too close to the phase transition threshold), the
performances of both methods are close and the unfolding approach may be more interesting given
its ease of implementation and lower computational cost.

5 CONCLUSION AND PERSPECTIVES

Under the nested matrix-tensor model, we have precisely quantified the multi-view clustering per-
formance achievable by the unfolding method and compared it with a previously studied tensor
approach (Seddik et al., 2023a). This analysis has showed the theoretical superiority of the latter in
terms of clustering accuracy. In particular, the tensor approach can, in principle, recover the signal at
a Θ(1) signal-to-noise ratio, while the matrix approach needs this ratio to diverge as n1/4

T . However,
the tensor approach is based on an NP-hard formulation, and no efficient algorithm capable of suc-
ceeding at a Θ(1) signal-to-noise ratio is currently known. In practice, for a sufficiently large ratio,
one may combine these approaches by initializing a tensor rank-one approximation algorithm (such
as power iteration) with the estimate given by the unfolding method. Overall, this work advances
our understanding of tensor data processing through rigorous theoretical results. Finally, a natural
question for future work is how to extend our results to more general view functions fk.
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A UNFOLDING ALONG THE THIRD MODE

For the sake of completeness, we study in this section the recovery of z from the third unfolding of
T. Following the model in equation 2, the expression of T(3) is

T(3) = βTzm
⊤ +

1
√
nT

W(3) (6)

where m = [M1,: . . . Mn1,:]
⊤ ∈ Rn1n2 .

This unfolding has the peculiarity that the rank-one perturbation βTzm
⊤ mixes signal (the vector z)

and noise (contained in M). Still, as for the previous unfoldings, the dominant left singular vector of
T(3) remains a natural estimator of z and we study the asymptotic spectral properties of T(3)T(3)⊤.
Because of the long shape of T(3) (one dimension grows faster than the other), the spectrum of
T(3)T(3)⊤ diverges in the same way as that of T(2)T(2)⊤. Therefore, we must proceed to a similar
rescaling. The following theorem states that, after proper rescaling, the distribution of eigenvalues
of T(3)T(3)⊤ approaches the semi-circle distribution.
Theorem 6 (Limiting Spectral Distribution). As n1, n2, n3 → +∞, the limiting spectral distribu-
tion of the centered-and-scaled matrix nT√

n1n2n3
T(3)T(3)⊤ − n3+n1n2√

n1n2n3
In3

converges weakly to a
semi-circle distribution on [−2, 2],

µSC(dx) =
1

2π

√
[4− x2]

+
.

Proof. See Appendix E.

The ESD and LSD of T(3)T(3)⊤ are plotted in the right panel of Figure 1. The result of Theorem
6 is not surprising: the “non-trivial” shape of the LSD of T(2)T(2)⊤ (Theorem 1) is due to the
presence of a “signal-noise” βT√

nM
Z⊤ (In1 ⊠ z)

⊤ in the expression of T(2) but, when βT is set to

0, we have observed that the LSD of T(2)T(2)⊤ is simply a semi-circle. This is coherent with the
case that interest us here: in T(3), the “signal-noise” is restrained to the rank-one perturbation and
therefore does not impact the LSD of T(3)T(3)⊤, which is then a semi-circle.

Because of the rank-one perturbation βTzm
⊤, the spectrum of T(3)T(3)⊤ exhibits an isolated

eigenvalue which can be observed in the right panel of Figure 1. Our next step is to character-
ize the behavior of this spike eigenvalue and the correlation with z of its corresponding eigenvector.
Before introducing the formal result in Theorem 7, let us have a close look at the expression of
T(3)T(3)⊤ to understand, with hand-waving arguments, what should be the non-trivial regime in
this case.

T(3)T(3)⊤ = β2
T ∥M∥

2
F zz⊤ +

βT√
nT

(
zm⊤W(3)⊤ +W(3)mz⊤

)
+

1

nT
W(3)W(3)⊤

Starting from the right, the term 1
nT

W(3)W(3)⊤ is already understood thanks to Theorem 6 and
yields a semi-circle as limiting spectral distribution. The crossed-terms in the middle have zero
mean and are expected to vanish. On the left, remains the rank-one term zz⊤ weighted by β2

T ∥M∥
2
F,

which is a random quantity because of the noise Z in M. However, the quantity ∥M∥2F is expected
to rapidly concentrate around its mean n1n2

nM
+β2

M . Hence, guessing from the results on the previous

unfoldings, we would need the quantity β2
T

(
n1n2

nM
+ β2

M

)
nT√

n1n2n3
to converge to a fixed positive

value denoted ϱ. Indeed, this is precisely what is found when this analysis is rigorously carried out
(see Appendix E), meaning that βT = Θ(n

−1/4
T ). In other words, if βT is a constant (βT = Θ(1)),

we are above the non-trivial regime and therefore should expect (asymptotically) exact recovery.
This is because the strength of the signal is “boosted” by ∥M∥2F = Θ(nT ).

Remark. ϱ is defined as the limit of β2
T

(
n1n2

nM
+ β2

M

)
nT√

n1n2n3
which is the same as that of

β2
T

n1n2

nM

nT√
n1n2n3

since βM = Θ(1). However, we keep the β2
M term in the definition of ρT as

it yields better predictions in our simulations.
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Theorem 7 (Spike Behavior). If ϱ = lim
β2
TnT√

n1n2n3

(
n1n2

nM
+ β2

M

)
> 1, then the centered-and-scaled

matrix nT√
n1n2n3

T(3)T(3)⊤− n3+n1n2√
n1n2n3

In3 has an isolated eigenvalue asymptotically located in ϱ+ 1
ϱ

almost surely. Furthermore, in this case, the alignment between the corresponding eigenvector ẑ and
the true signal z converges to 1− 1

ϱ2 almost surely, i.e.,∣∣ẑ⊤z∣∣2 −−−−−−−−−→
n1,n2,n3→+∞

1− 1

ϱ2
almost surely.

Proof. See Appendix F.

Once the quantity ϱ is defined, we recognize in Theorem 7 the same results as that of the spiked
Wigner model (Benaych-Georges & Nadakuditi, 2011).
Remark. In practice, we work with large but finite tensors. Hence, it makes no sense to say that
βT = Θ(n

1/4
T ) or βT = Θ(n

−1/4
T ). In fact, the characterization of the “non-trivial” regime is only

important here to reveal the relevant quantities, i.e., ρT and ϱ, which we will use in practice without
worrying whether βT is in the right regime or not.

B PROOF OF THEOREM 1

Denote Q(s) =
(
T(2)T(2)⊤ − sIn2

)−1
the resolvent of T(2)T(2)⊤ defined for all s ∈ C \

spT(2)T(2)⊤.

B.1 COMPUTATIONS WITH STEIN’S LEMMA

Before delving into the analysis of Q, we will derive a few useful results thanks to Stein’s lemma
(Lemma 1). They are gathered in the following Proposition 2.
Proposition 2.

E
[
W(2)T(2)⊤Q

]
=

n1n3√
nT

E [Q]− 1
√
nT

E
[
(n2 + 1)Q+ s

(
QTrQ+Q2

)]
(7)

E
[
M⊤ (In1

⊠ z)
⊤
T(2)⊤

(
Q+

1

nT

(
QTrQ+Q2

))]
= βTE

[
M⊤MQ

]
(8)

E
[
Z⊤MQ

]
=

1
√
nM

E
[
(n1 − n2 − 1)Q−

(
s− n1n3

nT

)(
QTrQ+Q2

)]
− s

nT
√
nM

E
[
4Q3 + 2Q2 TrQ+QTrQ2 +QTr2 Q

]
− 1

nT
√
nM

E
[
(n2 + 2)QTrQ+ (n2 + 4)Q2

]
(9)

E
[
yx⊤ZQ

]
= − βT√

nM
E
[
y (x⊠ z)

⊤
T(2)⊤ (QTrQ+Q2

)]
(10)

βTE
[
yx⊤MQ

]
= E

[
y (x⊠ z)

⊤
T(2)⊤

(
Q+

1

nT

(
QTrQ+Q2

))]
(11)

In order to prove these results, we will need the following expressions for the derivatives of Q.
Proposition 3.

∂Qa,b

∂W(2)
c,d

= − 1
√
nT

(
Qa,c

[
T(2)⊤Q

]
d,b

+ Qc,b

[
T(2)⊤Q

]
d,a

)
(12)

∂Qa,b

∂Zc,d
= − βT√

nM

(
Qa,d

[
QT(2) (In1

⊠ z)
]
b,c

+ Qd,b

[
QT(2) (In1

⊠ z)
]
a,c

)
(13)
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Proof. Since ∂Q = −Q∂
(
T(2)T(2)⊤)Q,

∂Qa,b

∂Wi,j,k
= −

n2∑
e=1

n1∑
f=1

n3∑
g=1

n2∑
h=1

Qa,e

(
∂Tf,e,g

∂Wi,j,k
Tf,h,g + Tf,e,g

∂Tf,h,g

∂Wi,j,k

)
Qh,b

= − 1
√
nT

(
n2∑
h=1

Qa,jTi,h,kQh,b +

n2∑
e=1

Qa,eTi,e,kQj,b

)
∂Qa,b

∂Wi,j,k
= − 1
√
nT

(
Qa,j

[
T(2)⊤Q

]
[i,k],b

+ Qj,b

[
T(2)⊤Q

]
[i,k],a

)
.

Likewise,

∂Qa,b

∂Zc,d
= −

n2∑
e=1

n1∑
f=1

n3∑
g=1

n2∑
h=1

Qa,e

(
∂Tf,e,g

∂Zc,d
Tf,h,g + Tf,e,g

∂Tf,h,g

∂Zc,d

)
Qh,b

= − βT√
nM

(
n3∑
g=1

n2∑
h=1

Qa,dzgTc,h,gQh,b +

n2∑
e=1

n3∑
g=1

Qa,eTc,e,gzgQd,b

)
∂Qa,b

∂Zc,d
= − βT√

nM

(
Qa,d

[
QT(2) (In1 ⊠ z)

]
b,c

+ Qd,b

[
QT(2) (In1 ⊠ z)

]
a,c

)
.

Combining Stein’s lemma (Lemma 1) and Proposition 3, we can prove each expression of Proposi-
tion 2.

Proof of equation 7

E
[
W(2)T(2)⊤Q

]
i,j

=

n1n3∑
k=1

n2∑
l=1

E
[
W(2)

i,kT(2)
l,k Ql,j

]

=

n1n3∑
k=1

n2∑
l=1

E

[
∂T(2)

l,k

∂W(2)
i,k

Ql,j + T(2)
l,k

∂Ql,j

∂W(2)
i,k

]

=
n1n3√
nT

E [Q]i,j −
1
√
nT

n1n3∑
k=1

n2∑
l=1

E
[

T(2)
l,k

(
Ql,i

[
T(2)⊤Q

]
k,j

+ Qi,j

[
T(2)⊤Q

]
k,l

)]
=

n1n3√
nT

E [Q]i,j −
1
√
nT

E
[
QT(2)T(2)⊤Q+QTr

(
T(2)T(2)⊤Q

)]
i,j

=
n1n3√
nT

E [Q]i,j −
1
√
nT

E
[
(n2 + 1)Q+ s

(
QTrQ+Q2

)]
i,j

where the last equality comes from T(2)T(2)⊤Q = In2 + sQ.
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Proof of equation 8

E
[
M⊤ (In1

⊠ z)
⊤
T(2)⊤Q

]
i,j

= βTE
[
M⊤MQ

]
i,j

+
1
√
nT

n1n3∑
k=1

n2∑
l=1

E
[[
M⊤ (In1

⊠ z)
⊤
]
i,k

W(2)
l,k Ql,j

]

= βTE
[
M⊤MQ

]
i,j

+
1
√
nT

n1n3∑
k=1

n2∑
l=1

E

[[
M⊤ (In1

⊠ z)
⊤
]
i,k

∂Ql,j

∂W(2)
l,k

]

= βTE
[
M⊤MQ

]
i,j
− 1

nT

n1n3∑
k=1

n2∑
l=1

E
[[
M⊤ (In1 ⊠ z)

⊤
]
i,k

Ql,l

[
T(2)⊤Q

]
k,j

]

− 1

nT

n1n3∑
k=1

n2∑
l=1

E
[[

M⊤ (In1
⊠ z)

⊤
]
i,k

Ql,j

[
T(2)⊤Q

]
k,l

]
= βTE

[
M⊤MQ

]
i,j
− 1

nT
E
[
M⊤ (In1

⊠ z)
⊤
T(2)⊤ (QTrQ+Q2

)]
i,j

.

Proof of equation 9

E
[
Z⊤MQ

]
i,j

=

n1∑
k=1

n2∑
l=1

E
[
Zk,iMk,lQl,j

]
=

n1√
nM

E [Q]i,j +

n1∑
k=1

n2∑
l=1

E
[

Mk,l

∂Ql,j

∂Zk,i

]
=

n1√
nM

E [Q]i,j

− βT√
nM

n1∑
k=1

n2∑
l=1

E
[

Mk,l

(
Ql,i

[
QT(2) (In1 ⊠ z)

]
j,k

+ Qi,j

[
QT(2) (In1 ⊠ z)

]
l,k

)]
=

n1√
nM

E [Q]i,j −
βT√
nM

E
[
QM⊤ (In1

⊠ z)
⊤
T(2)⊤Q+QTr

(
M⊤ (In1

⊠ z)
⊤
T(2)⊤Q

)]
i,j

and, since βTM
⊤ (In1

⊠ z)
⊤
= T(2)− 1√

nT
W(2), with the relation T(2)T(2)⊤Q = sQ+ In2

we
have,

E
[
Z⊤MQ

]
i,j

=
n1√
nM

E [Q]i,j −
1
√
nM

E
[
sQ2 +Q+ sQTrQ+ n2Q

]
i,j

+
1

√
nMnT

E
[
QW(2)T(2)⊤Q+QTr

(
W(2)T(2)⊤Q

)]
i,j

=
n1√
nM

E [Q]i,j −
1
√
nM

E
[
(n2 + 1)Q+ s

(
QTrQ+Q2

)]
i,j

+
1

√
nMnT

n2∑
u=1

n1n3∑
v=1

n2∑
w=1

E

[
∂Qi,u

∂W(2)
u,v

T(2)
w,vQw,j + Qi,u

∂T(2)
w,v

∂W(2)
u,v

Qw,j + Qi,uT(2)
w,v

∂Qw,j

∂W(2)
u,v

]

+
1

√
nMnT

n2∑
u=1

n1n3∑
v=1

n2∑
w=1

E

[
∂Qi,j

∂W(2)
u,v

T(2)
w,vQw,u + Qi,j

∂T(2)
w,v

∂W(2)
u,v

Qw,u + Qi,jT(2)
w,v

∂Qw,u

∂W(2)
u,v

]
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where we have used Stein’s lemma (Lemma 1) again. Hence,

E
[
Z⊤MQ

]
i,j

=
n1√
nM

E [Q]i,j −
1
√
nM

E
[
(n2 + 1)Q+ s

(
QTrQ+Q2

)]
i,j

+
n1n3

nT
√
nM

E
[
Q2 +QTrQ

]
i,j

− 1

nT
√
nM

n2∑
u=1

n1n3∑
v=1

n2∑
w=1

E
[(

Qi,u

[
T(2)⊤Q

]
v,u

+ Qu,u

[
T(2)⊤Q

]
v,i

)
T(2)
w,vQw,j

]

− 1

nT
√
nM

n2∑
u=1

n1n3∑
v=1

n2∑
w=1

E
[

Qi,uT(2)
w,v

(
Qw,u

[
T(2)⊤Q

]
v,j

+ Qu,j

[
T(2)⊤Q

]
v,w

)]

− 1

nT
√
nM

n2∑
u=1

n1n3∑
v=1

n2∑
w=1

E
[(

Qi,u

[
T(2)⊤Q

]
v,j

+ Qu,j

[
T(2)⊤Q

]
v,i

)
T(2)
w,vQw,u

]

− 1

nT
√
nM

n2∑
u=1

n1n3∑
v=1

n2∑
w=1

E
[

Qi,jT(2)
w,v

(
Qw,u

[
T(2)⊤Q

]
v,u

+ Qu,u

[
T(2)⊤Q

]
v,w

)]

which bunches up into

E
[
Z⊤MQ

]
i,j

=
n1√
nM

E [Q]i,j −
1
√
nM

E
[
(n2 + 1)Q+

(
s− n1n3

nT

)(
QTrQ+Q2

)]
i,j

− 1

nT
√
nM

E
[
Q2T(2)T(2)⊤Q+QT(2)T(2)⊤QTrQ

]
i,j

− 1

nT
√
nM

E
[
Q2T(2)T(2)⊤Q+Q2 Tr

(
T(2)T(2)⊤Q

)]
i,j

− 1

nT
√
nM

E
[
Q2T(2)T(2)⊤Q+QT(2)T(2)⊤Q2

]
i,j

− 1

nT
√
nM

E
[
QTr

(
QT(2)T(2)⊤Q

)
+QTrQTr

(
T(2)T(2)⊤Q

)]
i,j

and, using again the relation T(2)T(2)⊤Q = sQ+ In2
, we get,

E
[
Z⊤MQ

]
=

n1√
nM

E [Q]− 1
√
nM

E
[
(n2 + 1)Q+

(
s− n1n3

nT

)(
QTrQ+Q2

)]
− 1

nT
√
nM

E
[
sQ3 +Q2 + sQ2 TrQ+QTrQ+ sQ3 +Q2 + sQ2 TrQ+ n2Q

2
]

− 1

nT
√
nM

E
[
sQ3 +Q2 + sQ3 +Q2 + sQTrQ2 +QTrQ+ sQTr2 Q+ n2QTrQ

]
=

n1√
nM

E [Q]− 1
√
nM

E
[
(n2 + 1)Q+

(
s− n1n3

nT

)(
QTrQ+Q2

)]
− 1

nT
√
nM

E
[
s
(
4Q3 + 2Q2 TrQ+QTrQ2 +QTr2 Q

)]
− 1

nT
√
nM

E
[
(n2 + 4)Q2 + (n2 + 2)QTrQ

]
.
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Proof of equation 10

E
[
yx⊤ZQ

]
i,j

=

n1∑
k=1

n2∑
l=1

E
[[
yx⊤]

i,k
Zk,lQl,j

]
=

n1∑
k=1

n2∑
l=1

E
[[
yx⊤]

i,k

∂Ql,j

∂Zk,l

]

= − βT√
nM

n1∑
k=1

n2∑
l=1

E
[[
yx⊤]

i,k

(
Ql,l

[
QT(2) (In1 ⊠ z)

]
j,k

+ Ql,j

[
QT(2) (In1 ⊠ z)

]
l,k

)]
= − βT√

nM
E
[
y (x⊠ z)

⊤
T(2)⊤ (QTrQ+Q2

)]
i,j

.

Proof of equation 11

βTE
[
yx⊤MQ

]
= βTE

[
y (x⊠ z)

⊤
(In1

⊠ z)MQ
]

= E

[
y (x⊠ z)

⊤
(
T(2) − 1

√
nT

W(2)

)⊤

Q

]
and,

E
[
y (x⊠ z)

⊤
W(2)⊤Q

]
i,j

=

n1n3∑
k=1

n2∑
l=1

E
[[
y (x⊠ z)

⊤
]
i,k

W(2)
l,k Ql,j

]

=

n1n3∑
k=1

n2∑
l=1

E

[[
y (x⊠ z)

⊤
]
i,k

∂Ql,j

∂W(2)
l,k

]

= − 1
√
nT

n1n3∑
k=1

n2∑
l=1

E
[[
y (x⊠ z)

⊤
]
i,k

(
Ql,l

[
T(2)⊤Q

]
k,j

+ Ql,j

[
T(2)⊤Q

]
k,l

)]
= − 1
√
nT

E
[
y (x⊠ z)

⊤
T(2)⊤ (QTrQ+Q2

)]
i,j

.

B.2 DETERMINISTIC EQUIVALENT

Since Q−1Q = In2
, we have T(2)T(2)⊤Q − sQ = In2

. Hence, using equation 3 and taking the
expectation,

βTE
[
M⊤ (In1 ⊠ z)

⊤
T(2)⊤Q

]
+

1
√
nT

E
[
W(2)T(2)⊤Q

]
− sE [Q] = In2

and, injecting equation 7, this yields

βTE
[
M⊤ (In1

⊠ z)
⊤
T(2)⊤Q

]
+

n1n3

nT
E [Q]− 1

nT
E
[
(n2 + 1)Q+ s

(
QTrQ+Q2

)]
− sE [Q] = In2

.

Here, we must be careful that, due to the n2 × n1n3 rectangular shape of T(2), the spectrum of
T(2)T(2)⊤ diverges in the limit n1, n2, n3 → +∞. In order to bypass this obstacle, we shall
perform a change of variable (s,Q) ↷ (s̃, Q̃) which will become clearer after rearranging the
terms:

s
n2

nT
E
[
TrQ

n2
Q

]
+

(
s+

n2 − n1n3

nT

)
E [Q] + In2

= βTE
[
M⊤ (In1

⊠ z)
⊤
T(2)⊤Q

]
− 1

nT
E
[
Q+ sQ2

]
.

18



Published as a conference paper at ICLR 2024

Let s̃ =
nT s− (n2 + n1n3)√

n1n2n3
and Q̃(s̃) =

(
nTT

(2)T(2)⊤ − (n2 + n1n3) In2√
n1n2n3

− s̃In2

)−1

. With

this rescaling, note that we have Q(s) = nT√
n1n2n3

Q̃(s̃), and the previous equation becomes(
nT√

n1n2n3
s̃+

nT

n1n3
+

nT

n2

)
n2

nT
E

[
Tr Q̃

n2
Q̃

]
+

(
s̃+

2n2√
n1n2n3

)
E
[
Q̃
]
+ In2

=
βTnT√
n1n2n3

E
[
M⊤ (In1 ⊠ z)

⊤
T(2)⊤Q̃

]
− 1
√
n1n2n3

E
[
Q̃+

(
s̃+

n2 + n1n3√
n1n2n3

)
Q̃2

]
and we no longer have any diverging terms. Keeping only the dominant terms, we can now proceed
to a matrix-equivalent formula7

Tr Q̃

n2
Q̃+ s̃Q̃+ In2 ←→

βTnT√
n1n2n3

M⊤ (In1 ⊠ z)
⊤
T(2)⊤Q̃.

Remark. This previous step is justified by the use of standard concentration arguments such
as Poincaré-Nash inequality (Chen, 1982; Ledoux, 2001) and Borel-Cantelli lemma (Billingsley,
2012), following, e.g., the lines of Couillet & Liao (2022, §2.2.2). This reasoning is applied in what
follows whenever we move from an equality with expectations to an equality with matrix equiva-
lents.

Applying the same rescaling to equation 8 yields

βTnT√
n1n2n3

M⊤ (In1 ⊠ z)
⊤
T(2)⊤Q̃←→ β2

TnT√
n1n2n3

M⊤MQ̃.

Remark. We see, here, that we must chose βT = Θ(n
1/4
T ) in order to place ourselves in the non-

trivial regime where both the noise and the signal are Θ(1). This is different from the estimation of
y with a rank-one approximation of T, where βT could be kept Θ(1) (Seddik et al., 2023a) (but at
the cost of an NP-hard computation (Hillar & Lim, 2013)).

With this in mind, let us denote ρT = lim
β2
TnT√

n1n2n3
and m̃ = lim Tr Q̃

n2
the Stieltjes transform of the

limiting spectral distribution of the centered-and-scaled matrix nT√
n1n2n3

T(2)T(2)⊤ − n2+n1n3√
n1n2n3

In2 .
We have,

m̃(s̃)Q̃+ s̃Q̃+ In2
←→ ρTM

⊤MQ̃.

In order to handle the term M⊤MQ̃, observe that

E
[
M⊤MQ̃

]
= βME

[
yx⊤MQ̃

]
+

1
√
nM

E
[
Z⊤MQ̃

]
and, after rescaling, the only non-vanishing terms in equation 9 yield

1
√
nM

Z⊤MQ̃←→

n1 − n2

nM
− s̃

n2

nM

Tr Q̃

n2
− n2

nM

(
Tr Q̃

n2

)2
 Q̃

Moreover, from equation 10, we have

βMyx⊤MQ̃←→ β2
Myy⊤Q̃− βTβMnTn2

nM
√
n1n2n3

Tr Q̃

n2
y (x⊠ z)

⊤
T(2)⊤Q̃

but, from equation 11, we also know that

yx⊤MQ̃←→ 1

βT
y (x⊠ z)

⊤
T(2)⊤Q̃.

7We say that two (sequences of) matrices A,B ∈ Rn×n are equivalent, and we write A←→ B, if, for all
M ∈ Rn×n and u,v ∈ Rn of unit norms (respectively, operator and Euclidean),

1

n
TrM (A−B)

a.s.−−−−−→
n→+∞

0, u⊤ (A−B)v
a.s.−−−−−→

n→+∞
0, ∥E [A−B]∥ a.s.−−−−−→

n→+∞
0.
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Hence,

1

βT

(
βM +

β2
TβMnTn2

nM
√
n1n2n3

Tr Q̃

n2

)
y (x⊠ z)

⊤
T(2)⊤Q̃←→ β2

Myy⊤Q̃

and

βMyx⊤MQ̃←→ β2
M

1−
β2
T βMnTn2

nM
√
n1n2n3

Tr Q̃
n2

βM +
β2
T βMnTn2

nM
√
n1n2n3

Tr Q̃
n2

yy⊤Q̃.

Therefore, we have the following matrix equivalent for M⊤MQ̃,

M⊤MQ̃←→ β2
M

1 +
β2
TnTn2

nM
√
n1n2n3

Tr Q̃
n2

yy⊤Q̃

+

 n1

nM
− n2

nM

1 + s̃
Tr Q̃

n2
+

(
Tr Q̃

n2

)2
 Q̃.

Ultimately, we can define Q̄, the deterministic equivalent of Q̃ such that,

m̃(s̃)Q̄+ s̃Q̄+ In2

= ρT

[
β2
M

1 + ρT c2
1−c3

m̃(s̃)
yy⊤ +

(
c1

1− c3
− c2

1− c3

(
1 + s̃m̃(s̃) + m̃2(s̃)

))
In2

]
Q̄

or, equivalently,[
ρT c2
1− c3

m̃2(s̃) +

(
1 + s̃

ρT c2
1− c3

)
m̃(s̃) + s̃+

ρT (c2 − c1)

1− c3

]
Q̄+ In2

=
ρTβ

2
M

1 + ρT c2
1−c3

m̃(s̃)
yy⊤Q̄.

(14)

B.3 LIMITING SPECTRAL DISTRIBUTION

According to the previous deterministic equivalent, the Stieltjes transform of the limiting spectral
distribution of nT√

n1n2n3
T(2)T(2)⊤ − n2+n1n3√

n1n2n3
In2

is solution to

ρT c2
1− c3

m̃3(s̃) +

(
1 + s̃

ρT c2
1− c3

)
m̃2(s̃) +

(
s̃+

ρT (c2 − c1)

1− c3

)
m̃(s̃) + 1 = 0

⇐⇒
(

ρT c2
1− c3

m̃(s̃) + 1

)(
m̃2(s̃) + s̃m̃(s̃) + 1

)
− ρT c1

1− c3
m̃(s̃) = 0. (15)

C PROOF OF THEOREM 2

C.1 ISOLATED EIGENVALUE

The asymptotic position ξ̃ of the isolated eigenvalue (when it exists) is a singular point of Q̄. From
equation 14, it is therefore solution to

ρT c2
1− c3

m̃2(ξ̃) +

(
1 + ξ̃

ρT c2
1− c3

)
m̃(ξ̃) + ξ̃ +

ρT (c2 − c1)

1− c3
=

ρTβ
2
M

1 + ρT c2
1−c3

m̃(ξ̃)

⇐⇒
(
1 +

ρT c2
1− c3

m̃(ξ̃)

)[
ρT c2
1− c3

(
m̃2(ξ̃) + ξ̃m̃(ξ̃) + 1

)
+ m̃(ξ̃) + ξ̃ − ρT c1

1− c3

]
= ρTβ

2
M .
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Yet,
(

ρT c2
1−c3

m̃(s̃) + 1
) (

m̃2(s̃) + s̃m̃(s̃) + 1
)
= ρT c1

1−c3
m̃(s̃) (from equation 15). Thus,

m̃(ξ̃) + ξ̃ − ρT c1
1− c3

+
ρT c2
1− c3

m̃(ξ̃)
(
m̃(ξ̃) + ξ̃

)
= ρTβ

2
M

⇐⇒
(
1 +

ρT c2
1− c3

m̃(ξ̃)

)(
m̃(ξ̃) + ξ̃

)
︸ ︷︷ ︸

=
ρT c1
1−c3

− ρT c2
1−c3

− 1
m̃(ξ̃)

from equation 15 again

− ρT c1
1− c3

= ρTβ
2
M

⇐⇒ m̃(ξ̃) =
−1

ρT c2
1−c3

+ ρTβ2
M

.

Injecting this relation into equation 15 yields

ξ̃ =
ρT
β2
M

(
c1

1− c3
+ β2

M

)(
c2

1− c3
+ β2

M

)
+

1

ρT

(
c2

1−c3
+ β2

M

) . (16)

C.2 EIGENVECTOR ALIGNMENT

The eigendecomposition of Q̃(s̃) is given by
∑n

i=1
uiu

⊤
i

λ̃i−s̃
where (λ̃i,ui)1⩽i⩽n are the eigenvalue-

eigenvector pairs of nTT(2)T(2)⊤−(n2+n1n3)In2√
n1n2n3

. Hence, thanks to Cauchy’s integral formula, we
have ∣∣y⊤ŷ

∣∣2 = − 1

2iπ

∮
γ̃

y⊤Q̃(s̃)y ds̃

where γ̃ is a positively-oriented complex contour circling around the isolated eigenvalue only. The
asymptotic value ζ of

∣∣y⊤ŷ
∣∣2 can then be computed with the deterministic equivalent defined in

equation 14,

ζ = − 1

2iπ

∮
γ̃

y⊤Q̄(s̃)y ds̃.

Using residue calculus, we shall compute,

ζ = lim
s̃→ξ̃

s̃− ξ̃

ρT c2
1−c3

m̃2(s̃) +
(
1 + s̃ ρT c2

1−c3

)
m̃(s̃) + s̃+ ρT (c2−c1)

1−c3
− ρT β2

M

1+
ρT c2
1−c3

m̃(s̃)

.

The limit can be expressed using L’Hôpital’s rule,

ζ =
1

d
ds̃

[
ρT c2
1−c3

m̃2(s̃) +
(
1 + s̃ ρT c2

1−c3

)
m̃(s̃) + s̃+ ρT (c2−c1)

1−c3
− ρT β2

M

1+
ρT c2
1−c3

m̃(s̃)

]
s̃=ξ̃

=


2

ρT c2
1− c3

m̃(ξ̃) + 1 + ξ̃
ρT c2
1− c3

+
ρTβ

2
M

ρT c2
1−c3(

1 + ρT c2
1−c3

m̃(ξ̃)
)2
 m̃′(ξ̃) +

ρT c2
1− c3

m̃(ξ̃) + 1


−1

We already know that m̃(ξ̃) = −1
ρT c2
1−c3

+ρT β2
M

. Let us then differentiate equation 15,(
3
ρT c2
1− c3

m̃2(s̃) + 2

(
1 + s̃

ρT c2
1− c3

)
m̃(s̃) + s̃+

ρT (c2 − c1)

1− c3

)
m̃′(s̃)

+
ρT c2
1− c3

m̃2(s̃) + m̃(s̃) = 0.

Since
(

ρT c2
1−c3

m̃2(s̃) +
(
1 + s̃ ρT c2

1−c3

)
m̃(s̃) + s̃+ ρT (c2−c1)

1−c3

)
m̃(s̃) + 1 = 0, we have,(

2
ρT c2
1− c3

m̃2(s̃) +

(
1 + s̃

ρT c2
1− c3

)
m̃(s̃)− 1

m̃(s̃)

)
m̃′(s̃) +

ρT c2
1− c3

m̃2(s̃) + m̃(s̃) = 0

⇐⇒
(
2
ρT c2
1− c3

m̃(s̃) + 1 + s̃
ρT c2
1− c3

− 1

m̃2(s̃)

)
m̃′(s̃) +

ρT c2
1− c3

m̃(s̃) + 1 = 0.
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From this last equality, we see that

ζ =


 1

m2(ξ̃)
+

ρTβ
2
M

ρT c2
1−c3(

1 + ρT c2
1−c3

m̃(ξ̃)
)2
 m̃′(ξ̃)


−1

= −ρTβ2
M

m̃3(ξ̃)

m̃′(ξ̃)
.

Moreover,

m̃′(ξ̃) = −
1 + ρT c2

1−c3
m̃(ξ̃)

2 ρT c2
1−c3

m̃(ξ̃) + 1 + ξ̃ ρT c2
1−c3

− 1
m̃2(ξ̃)

=
− ρT β2

M
ρT c2
1−c3

+ρT β2
M

−2
ρT c2
1−c3

ρT c2
1−c3

+ρT β2
M

+ 1 + ξ̃ ρT c2
1−c3

−
(

ρT c2
1−c3

+ ρTβ2
M

)2
=

ρTβ
2
M

ρT c2
1−c3

− ρTβ2
M − ξ̃ ρT c2

1−c3

(
ρT c2
1−c3

+ ρTβ2
M

)
+
(

ρT c2
1−c3

+ ρTβ2
M

)3
m̃′(ξ̃) =

ρTβ
2
M

−ρTβ2
M −

1
ρT β2

M

ρT c2
1−c3

(
ρT c1
1−c3

+ ρTβ2
M

)(
ρT c2
1−c3

+ ρTβ2
M

)2
+
(

ρT c2
1−c3

+ ρTβ2
M

)3 .
Hence,

ζ =
−ρTβ2

M − 1
ρT β2

M

ρT c2
1−c3

(
ρT c1
1−c3

+ ρTβ
2
M

)(
ρT c2
1−c3

+ ρTβ
2
M

)2
+
(

ρT c2
1−c3

+ ρTβ
2
M

)3
(

ρT c2
1−c3

+ ρTβ2
M

)3
= 1− ρTβ

2
M(

ρT c2
1−c3

+ ρTβ2
M

)3 − 1

ρTβ2
M

ρT c2
1− c3

ρT c1
1−c3

+ ρTβ
2
M

ρT c2
1−c3

+ ρTβ2
M

ζ = 1− 1

β2
M

(
c2

1−c3
+ β2

M

)

 β2

M

ρT

(
c2

1−c3
+ β2

M

)
2

+
c2

1− c3

(
c1

1− c3
+ β2

M

) . (17)

D SKETCH OF PROOF OF THEOREM 5

ŷ can be decomposed as αȳ+βȳ⊥ where ȳ⊥ is a unit norm vector orthogonal to ȳ and α2+β2 = 1.
From Theorem 2, we know that α2 → ζ (and thus β2 → 1− ζ) almost surely as n1, n2, n3 → +∞.

From the rotational invariance of the model, ȳ⊥ is uniformly distributed on the unit sphere in the
subspace orthogonal to ȳ. Hence, any finite collection of its entries is asymptotically Gaussian
(Diaconis & Freedman, 1987).

E PROOF OF THEOREM 6

Let Q(s) =
(
T(3)T(3)⊤ − sIn3

)−1
defined for all s ∈ C \ spT(3)T(3)⊤.

E.1 PRELIMINARY RESULTS

Let us derive a few useful results for the upcoming analysis.

Lemma 2.
∂Qa,b

∂W(3)
c,d

= − 1
√
nT

(
Qa,c

[
T(3)⊤Q

]
d,b

+ Qc,b

[
T(3)⊤Q

]
d,a

)
.
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Proof. Since ∂Q = −Q∂
(
T(3)T(3)⊤)Q,

∂Qa,b

∂W(3)
c,d

= −

[
Q
∂T(3)T(3)⊤

∂W(3)
c,d

Q

]
a,b

= −
n3,n1n2,n3∑
e,f,g=1

Qa,e

(
∂T(3)

e,f

∂W(3)
c,d

T(3)
g,f + T(3)

e,f

∂T(3)
g,f

∂W(3)
c,d

)
Qg,b

= − 1
√
nT

n3,n1n2,n3∑
e,f,g=1

Qa,e

(
δe,cδf,dT(3)

g,f + T(3)
e,fδg,cδf,d

)
Qg,b

∂Qa,b

∂W(3)
c,d

= − 1
√
nT

(
Qa,c

[
T(3)⊤Q

]
d,b

+ Qc,b

[
T(3)⊤Q

]
d,a

)
.

Proposition 4.

E
[
W(3)T(3)⊤Q

]
=

n1n2√
nT

E [Q]− 1
√
nT

E
[
(n3 + 1)Q+ s

(
Q2 +QTrQ

)]
(18)

E
[
zm⊤T(3)⊤

(
Q+

1

nT

(
QTrQ+Q2

))]
= βTE

[
∥M∥2F zz⊤Q

]
(19)

Proof. We prove these two results with Stein’s lemma (Lemma 1) and Lemma 2.

E
[
W(3)T(3)⊤Q

]
i,j

=

n1n2,n3∑
k,l=1

E
[
W(3)

i,kT(3)
l,k Ql,j

]

=

n1n2,n3∑
k,l=1

E

[
∂T(3)

l,k

∂W(3)
i,k

Ql,j + T(3)
l,k

∂Ql,j

∂W(3)
i,k

]

=

n1n2,n3∑
k,l=1

E
[
δl,iδk,k√

nT
Ql,j

]

− 1
√
nT

n1n2,n3∑
k,l=1

E
[

T(3)
l,k

(
Ql,i

[
T(3)⊤Q

]
k,j

+ Qi,j

[
T(3)⊤Q

]
k,l

)]
=

n1n2√
nT

E [Q]i,j −
1
√
nT

E
[
QT(3)T(3)⊤Q+QTrT(3)T(3)⊤Q

]
i,j

=
n1n2√
nT

E [Q]i,j −
1
√
nT

E
[
(n3 + 1)Q+ s

(
QTrQ+Q2

)]
i,j

where the last equality comes from T(3)T(3)⊤Q = In3 + sQ.

E
[
zm⊤T(3)⊤Q

]
i,j

= βTE
[
∥M∥2F zz⊤Q

]
i,j

+
1
√
nT

n1n2,n3∑
k,l=1

E
[
zimkW(3)

l,k Ql,j

]

= βTE
[
∥M∥2F zz⊤Q

]
i,j

+
1
√
nT

n1n2,n3∑
k,l=1

E

[
zimk

∂Ql,j

∂W(3)
l,k

]

= βTE
[
∥M∥2F zz⊤Q

]
i,j

− 1

nT

n1n2,n3∑
k,l=1

E
[
zimk

(
Ql,l

[
T(3)⊤Q

]
k,j

+ Ql,j

[
T(3)⊤Q

]
k,l

)]
E
[
zm⊤T(3)⊤Q

]
i,j

= βTE
[
∥M∥2F zz⊤Q

]
i,j
− 1

nT
E
[
zm⊤T(3)⊤ (QTrQ+Q2

)]
i,j

.
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E.2 A FIRST MATRIX EQUIVALENT

Since Q−1Q = In3
,

βTzm
⊤T(3)⊤Q+

1
√
nT

W(3)T(3)⊤Q− sQ = In3

and, from equation 18, we have

βTE
[
zm⊤T(3)⊤Q

]
+

n1n2

nT
E [Q]− 1

nT
E
[
(n3 + 1)Q+ s

(
Q2 +QTrQ

)]
− sE [Q] = In3

.

Let us rearrange the terms

s
n3

nT
E
[
TrQ

n3
Q

]
+

(
s+

n3 − n1n2

nT

)
E [Q] + In3 = βTE

[
zm⊤T(3)⊤Q

]
− 1

nT
E
[
Q+ sQ2

]
in order to see that we need to following rescaling to counteract the divergence of the spectrum of
T(3)T(3)⊤,

s̃ =
nT s− (n3 + n1n2)√

n1n2n3
, Q̃(s̃) =

(
nTT

(3)T(3)⊤ − (n3 + n1n2) In3√
n1n2n3

− s̃In3

)−1

.

Hence, our equation becomes,(
nT√

n1n2n3
s̃+

nT

n1n2
+

nT

n3

)
n3

nT
E

[
Tr Q̃

n3
Q̃

]
+

(
s̃+

2n3√
n1n2n3

)
E
[
Q̃
]
+ In3

=
βTnT√
n1n2n3

E
[
zm⊤T(3)⊤Q̃

]
− 1
√
n1n2n3

E
[
Q̃+

(
s̃+

n3 + n1n2√
n1n2n3

)
Q̃2

]
. (20)

Moreover, equation 19 becomes,

E
[
zm⊤T(3)⊤

(
Q̃+

1
√
n1n2n3

(
Q̃Tr Q̃+ Q̃2

))]
= βTE

[
∥M∥2F zz⊤Q̃

]
. (21)

Therefore, denoting m̃(s̃) = lim Tr Q̃(s̃)
n3

the Stieltjes transform of the limiting spectral distribution
of nT√

n1n2n3
T(3)T(3)⊤ − n3+n1n2√

n1n2n3
In3

, the combination of equation 20 and equation 21 yield the
following matrix equivalent,

m̃(s̃)Q̃+ s̃Q̃+ In3
←→ β2

TnT√
n1n2n3

∥M∥2F zz⊤Q̃. (22)

At this point, we are still carrying the random term ∥M∥2F in the RHS. This quantity is expected to
concentrate rapidly around its mean β2

M + n1n2

nM
. However, because M and Q̃ are not independent,

the RHS must be studied carefully.

E.3 ANALYSIS OF THE RHS

Lemma 3.
∂Qa,b

∂Zc,d
= − βT√

nM

(
[Qz]a

[
T(3)⊤Q

]
[c,d],b

+ [Qz]b

[
T(3)⊤Q

]
[c,d],a

)
.

Proof. Since ∂Q = −Q∂
(
T(3)T(3)⊤)Q,

∂Qa,b

∂Zc,d
= −

n3,n1,n2,n3∑
e,f,g,h=1

Qa,e

(
∂Tf,g,e

∂Zc,d
Tf,g,h + Tf,g,e

∂Tf,g,h

∂Zc,d

)
Qh,b

= − βT√
nM

n3∑
e,h=1

Qa,e (zeTc,d,h + Tc,d,ezh)Qh,b

∂Qa,b

∂Zc,d
= − βT√

nM

(
[Qz]a

[
T(3)⊤Q

]
[c,d],b

+ [Qz]b

[
T(3)⊤Q

]
[c,d],a

)
.
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E
[
∥M∥2F Q

]
=

n1,n2∑
u,v=1

E

[(
βMxuyv +

1
√
nM

Zu,v

)2

Q

]

= β2
ME [Q] +

1
√
nM

n1,n2∑
u,v=1

E
[(

Zu,v√
nM

+ 2βMxuyv

)
Zu,vQ

]

E
[
∥M∥2F Q

]
=

(
β2
M +

n1n2

nM

)
E [Q] +

1
√
nM

n1,n2∑
u,v=1

E
[(

Zu,v√
nM

+ 2βMxuyv

)
∂Q

∂Zu,v

]

where we have used Stein’s lemma (Lemma 1) to derive the last equality. Hence, using Lemma 3, it
becomes

E
[(
∥M∥2F −

(
β2
M +

n1n2

nM

))
Q

]
i,j

= − βT

nM

n1,n2∑
u,v=1

E
[(

Zu,v√
nM

+ 2βMxuyv

)(
[Qz]i

[
T(3)⊤Q

]
[u,v],j

+ [Qz]j

[
T(3)⊤Q

]
[u,v],i

)]

= − βT

nM

n1,n2∑
u,v=1

E
[(

2m[u,v] −
Zu,v√
nM

)(
[Qz]i

[
T(3)⊤Q

]
[u,v],j

+ [Qz]j

[
T(3)⊤Q

]
[u,v],i

)]
= − 2

βT

nM
E
[
Qzm⊤T(3)⊤Q+

(
Qzm⊤T(3)⊤Q

)⊤]
i,j

+
βT

nM
√
nM

n1,n2∑
u,v=1

E
[

Zu,v

(
[Qz]i

[
T(3)⊤Q

]
[u,v],j

+ [Qz]j

[
T(3)⊤Q

]
[u,v],i

)]

and, since βTzm
⊤ = T(3) − 1√

nT
W(3) and T(3)T(3)⊤Q = In3 + sQ, we have,

βTzm
⊤T(3)⊤Q = In3

+ sQ− 1
√
nT

W(3)T(3)⊤Q.

Thus, our expression turns into

E
[(
∥M∥2F −

(
β2
M +

n1n2

nM

))
Q

]
i,j

= − 4

nM
E
[
Q+ sQ2

]
i,j

+
2

nM
√
nT

E
[
Q
(
W(3)T(3)⊤ +T(3)W(3)⊤

)
Q
]
i,j

+
βT

nM
√
nM

n1,n2∑
u,v=1

E
[

Zu,v

(
[Qz]i

[
T(3)⊤Q

]
[u,v],j

+ [Qz]j

[
T(3)⊤Q

]
[u,v],i

)]
= − 4

nM
E
[
Q+ sQ2

]
i,j

+
2

nM
√
nT

[
A1 +A⊤

1

]
i,j

+
βT

nM
√
nM

[
A2 +A⊤

2

]
i,j

with

A1 = E
[
QW(3)T(3)⊤Q

]
, [A2]i,j =

n1,n2∑
u,v=1

E
[

Zu,v [Qz]i

[
T(3)⊤Q

]
[u,v],j

]
.
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Let us develop A1 with Stein’s lemma (Lemma 1) on W(3).

[A1]i,j =

n3,n1n2,n3∑
a,b,c=1

E

[
∂Qi,a

∂W(3)
a,b

T(3)
c,bQc,j + Qi,a

∂T(3)
c,b

∂W(3)
a,b

Qc,j + Qi,aT(3)
c,b

∂Qc,j

∂W(3)
a,b

]
=

n1n2√
nT

E
[
Q2
]
i,j

− 1
√
nT

n3,n1n2,n3∑
a,b,c=1

E
[(

Qi,a

[
T(3)⊤Q

]
b,a

+ Qa,a

[
T(3)⊤Q

]
b,i

)
T(3)
c,bQc,j

]

− 1
√
nT

n3,n1n2,n3∑
a,b,c=1

E
[

Qi,aT(3)
c,b

(
Qc,a

[
T(3)⊤Q

]
b,j

+ Qa,j

[
T(3)⊤Q

]
b,c

)]
=

n1n2√
nT

E
[
Q2
]
i,j
− 1
√
nT

E
[(
2Q2 +QTrQ

)
T(3)T(3)⊤Q+Q2 TrT(3)T(3)⊤Q

]
i,j

[A1]i,j =
n1n2√
nT

E
[
Q2
]
i,j
− 1
√
nT

E
[
(n3 + 2)Q2 +QTrQ+ 2sQ

(
Q2 +QTrQ

)]
i,j

since T(3)T(3)⊤Q = In3
+ sQ.

Next, we develop A2 with Stein’s lemma (Lemma 1) on Z.

[A2]i,j =

n1,n2∑
u,v=1

n3,n3∑
a,b=1

E

∂Qi,a

∂Zu,v
zaT(3)
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∂T(3)
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
=

βTn1n2√
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E
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Qzz⊤Q

]
i,j

− βT√
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n1,n2∑
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E
[
[Qz]i
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]
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]

− βT√
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E
[
[Qz]a
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]
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b,[u,v]Qb,j

]

− βT√
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E
[

Qi,azaT(3)
b,[u,v] [Qz]b

[
T(3)⊤Q

]
[u,v],j

]

− βT√
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n1,n2∑
u,v=1

n3,n3∑
a,b=1

E
[

Qi,azaT(3)
b,[u,v] [Qz]j

[
T(3)⊤Q

]
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]
=

βTn1n2√
nM

E
[
Qzz⊤Q

]
i,j
− βT√
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E
[(
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z⊤Qz

]
Q
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− βT√
nM

E
[
Qzz⊤

(
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[A2]i,j =
βTn1n2√

nM
E
[
Qzz⊤Q
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i,j
− βT√

nM
E
[
(n3 + 2)Qzz⊤Q+
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z⊤Qz

]
Q
]
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− βT√
nM

sE
[
Qzz⊤ (QTrQ+ 2Q2

)
+
[
z⊤Qz

]
Q2
]
i,j

since, again, T(3)T(3)⊤Q = In3 + sQ.
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Eventually, we have,

E
[
∥M∥2F Q

]
=

(
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n1n2

nM

)
E [Q]− 4

nM
E
[
Q+ sQ2
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+

4n1n2
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E
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=
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2
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TrQ
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[
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]
− 8n3

nMnT
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[
Q2TrQ

n3

]
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T
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M

E
[
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]
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M

sE
[
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.

After rescaling, this becomes,
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]
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1
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Hence, as long as βT = o(n
3/4
T ), we have

β2
TnT√

n1n2n3
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(
nT
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√
n1n2

n3
+
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MnT√
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)
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E.4 DETERMINISTIC EQUIVALENT

Coming back to equation 22, we are now allowed to write,

m̃(s̃)Q̃+ s̃Q̃+ In3
←→ β2

T

(
nT

nM

√
n1n2

n3
+

β2
MnT√
n1n2n3

)
zz⊤Q̃.

Hence, in order to prevent the RHS from either vanishing or exploding, we see that βT must be
Θ(n

−1/4
T ). In this case, Let ϱ = limβ2

T

(
nT

nM

√
n1n2

n3
+

β2
MnT√
n1n2n3

)
.

Then, we can define Q̄, the deterministic equivalent of Q̃ such that,

m̃(s̃)Q̄+ s̃Q̄+ In3
= ϱzz⊤Q̄. (23)

Remark. In fact, with the assumption βM = Θ(1), β2
T

(
nT

nM

√
n1n2

n3
+

β2
MnT√
n1n2n3

)
∼ β2

T
nT

nM

√
n1n2

n3

so we could have kept only this dominant term. However, for finite horizon considerations (as it is
the case in practice), adding the Θ

(
β2
M√
nT

)
term leads to slightly more precise predictions. Indeed,

with the dominant term only, we consider a “worst-case scenario” βM = 0.

E.5 LIMITING SPECTRAL DISTRIBUTION

According to the previous deterministic equivalent, the Stieltjes transform of the limiting spectral
distribution of nT√

n1n2n3
T(3)T(3)⊤ − n3+n1n2√

n1n2n3
In3

is solution to

m̃2(s̃) + s̃m̃(s̃) + 1 = 0, (24)

i.e., it is the standard semi-circle law.

F PROOF OF THEOREM 7

F.1 ISOLATED EIGENVALUE

The asymptotic position ξ̃ of the isolated eigenvalue (when it exists) is a singular point of Q̄. From
equation 23, it is therefore solution to

m̃(ξ̃) + ξ̃ = ϱ.

Following equation 24, ξ̃ = −m̃(ξ̃)− 1
m̃(ξ̃)

, thus, m̃(ξ̃) = − 1
ϱ . Injecting this in equation 24 yields

ξ̃ = ϱ+
1

ϱ
. (25)

F.2 EIGENVECTOR ALIGNMENT

Following Cauchy’s integral formula,∣∣z⊤ẑ
∣∣2 = − 1

2iπ

∮
γ̃

z⊤Q̃(s̃)z ds̃

where γ̃ is a positively-oriented complex contour circling around the isolated eigenvalue only.
Hence, using the previously found deterministic equivalent Q̄, we can compute the asymptotic value
ζ of

∣∣z⊤ẑ
∣∣2,

ζ = − 1

2iπ

∮
γ̃

z⊤Q̄(s̃)z ds̃.

This reduces to residue calculus,

ζ = lim
s̃→ξ̃

(
s̃− ξ̃

)
[m̃(s̃) + s̃− ϱ]

−1
=

1
d
ds̃ [m̃(s̃) + s̃− ϱ]s̃=ξ̃

=
1

m̃′(ξ̃) + 1
.
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Differentiating equation 24, we have,

2m̃′(ξ̃)m(ξ̃) + m̃(ξ̃) + ξ̃m̃′(ξ̃) = 0 ⇐⇒ m̃′(ξ̃) = − m̃(ξ̃)

2m(ξ̃) + ξ̃

⇐⇒ m̃′(ξ̃) =
1

ϱξ̃ − 2

⇐⇒ m̃′(ξ̃) =
1

ϱ2 − 1
.

Hence, we conclude,

ζ = 1− 1

ϱ2
. (26)
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