
A Proofs456

A.1 Proof for Proposition 1457

For each k, we denote the stationary point of gradient descent as x∗
k = limn→∞ xn

k . Using the458

first-order optimality condition at the stationary point, we know that459
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We then have that460
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Let xj ∈ argminxi∈D ∥x∗
k − xi∥2 and ∆i(σk) = σ−2

k (∥x∗
k − xi∥2 − ∥x∗

k − xj∥2).461

Lemma 4. When there is a unique minimizer xj , limk→∞ x∗
k = xj .462

Proof. Since xj is the unique closest data point to x∗
k, ∆i > 0 for i ̸= j and ∆j = 0. With the463

monotonically decreasing σk → 0, we know that464

lim
k→∞

∆i(σk) =

�
0 if i = j

∞ otherwise.
(15)

Therefore,465

lim
k→∞

exp
�
− 1

2∆i(σk)
�
=

�
1 if i = j

0 otherwise.
(16)

We then obtain466

lim
k→∞

exp
h
− 1

2σ2
k
(∥x∗

k − xi∥2 − ∥x∗
k − xj∥2)

i

P
n exp

h
− 1

2σ2
k
(∥x∗

k − xn∥2 − ∥x∗
k − xj∥2)

i = lim
k→∞

exp
�
− 1

2∆i(σk)
�

P
n̸=j exp

�
− 1

2∆n(σk)
�
+ 1

=

�
1 if i = j

0 otherwise.

(17)

Therefore, by combining (14) and (17), we have that467

lim
k→∞

x∗
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Lemma 5. When there are multiple minimizers xj1 , . . . , xjm ∈ argminxi∈D ∥x∗
k − xi∥2,469
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Proof. In contrast to (17) for the unique xj , we have that471
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Therefore, x∗
k converges to the geometric center of all the minimizers:472
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473

Lemma 6. For a local minimizer x∗
k, xj is unique; for a local maximizer or saddle point x∗

k, xj is474

not unique.475

Proof. We first prove that xj is unique if x∗
k is a local minimizer by contradiction. If there are476

multiple minimizers xj1 , . . . , xjm ∈ argminxi∈D ∥x∗
k − xi∥2, we have that477
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We observe that x∗
k is a local maximizer of minx dσk

(x;D)2, which raises contradiction.478

Similarly, we prove that xj is not unique if x∗
k is a local maximizer or saddle point by contradiction.479

Assume xj is the unique minimizer of minxi∈D ∥x∗
k − xi∥2, we have480
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Hence, x∗
k can not be a local maximizer or saddle point of minx dσk

(x;D)2, which raises contradic-481

tion.482

Since gradient descent converges to a local minimizer almost surely with random initialization [69]483

and appropriate step sizes, there is a unique xj for x∗
k and (18) holds. We also note that a similar484

conclusion can be reached by using Γ-convergence of the softmin to min as σk → 0 [70].485
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A.2 Proof for Proposition 2486

Let Le be the local Lipschitz constant of the error e(x) := f(x)− fθ(x) over some domain Z ⊆ X ,487

and define xc := argminxi∈D 1
2∥x− xi∥22, i.e., the closest data-point. Then, we have the following:488
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where C2 := σ2 logN − C, and C is the constant defined in (4). In the second line, we use the489

fact that as xc is a feasible solution to the minimization in the first line, it is an upper bound on the490

optimal value. In the sixth line, we have used the fact that for any vector v = [v1, . . . , vn]
⊤ ∈ Rn,491

min{v1, . . . , vn} ≤ − 1
t log

Pn
i=1 exp(−tvi) +

log n
t for some scaling t. In the final line, we have492

applied the definition of dσ(x;D) from (4).493

A.3 Proof for Proposition 3494

The perturbed data distribution can be written as a sum of Gaussians, since495
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Then we consider the negative log of the perturbed data distribution multiplied by σ2,496
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where we define C(N,n,Σ) := σ2(logN + n/2 log(2πσ)).497

B Details of the Planning algorithm498

B.1 Computation of Gradients499

Recall that the gradient of log pσ(xi, ui) cost w.r.t. the input variable uj can be written as500

∇uj
log p(xi, ui) = ∇xi

log p(xi, ui)Duj
xi +∇ui

log p(xi, ui)Duj
ui (26)

where D denotes the Jacobian. Writing the dependence on each variable more explicitly, we have501

∇uj
log p(xi(uj), ui(uj)) = ∇xi

log p(xi(uj), ui(uj))Duj
xi(uj) (27)

+∇ui
log p(xi(uj), ui(uj))Duj

ui(uj) (28)

where we note that Dujui = 1 if i = j and 0 otherwise. As long as i > j, we also note that xi502

has a dependence on uj . Instead of computing this gradient explicitly, we first rollout the trajectory503

to compute xi(uj), ui(uj), and compute the score function. Then we ask: which quantity do we504

need such that it gives us the above expression when differentiated w.r.t. uj? We use the following505

quantity,506

cij = sx(xi, ui)xi(uj) + su(xi, ui)ui(uj) (29)
where the score terms have been detached from the computation graph. Note that cij is a scalar and507

allows us to use reverse-mode automatic differentiation tools such as pytorch [71].508

B.2 Noise-Annealing During Optimization509

Additionally, we anneal the noise level during iterations of Adam. Given a sequence σk with K being510

the total number of annealing steps, we run Adam for max itermax/K iterations, then run it with the511

next noise level.512

B.3 Connection to Diffuser513

We first lift the dynamics constraint into a quadratic penalty and write the penalty as log p(xt+1|xt, ut).514

This equivalence is seen by considering a case where we fix xt, ut and perturb xt+1 with a Gaussian515

noise of scale σ. If (xt, ut, xt+1) is in the dataset, it obeys xt+1 = f(xt, ut) under real-world516

dynamics f . This allows us to write517

pσ(xt+1|xt, ut) = N (xt+1|f(xt, ut),σ
2I)

log pσ(xt+1|xt, ut) = −1

2
∥xt+1 − f(xt, ut)∥2 + C

(30)
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where C is some constant that does not effect the objective. Then, we rewrite our objective using the518

factoring p(xt, ut) = p(ut|x)p(xt). This allows us to rewrite the objective of Equation (11) as519

TX
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TX
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=V (x1:T , u1:T ) + β log p(x1:T , u1:T ) +

TX

t=1

log p(x),

(31)

where the first two terms are the objectives in Diffuser [25].520

B.4 First-Order Policy Search521

We note that our original method for gradient computation can easily be extended to the setting of522

feedback first-order policy search, where we define the uncertainty-penalized value function as523

max
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#
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(32)

where ρ is some distribution of initial conditions. We rewrite the objective with an explicit dependence524

on α, and use a Monte-Carlo estimator for the gradient of the stochastic objective,525

∇αEx1∼ρ

"
TX

t=1

rt(xt(α), ut(α)) + βσ2
TX

t=1

log pσ(xt(α), ut(α);D)

#

=Ex1∼ρ∇α

"
TX

t=1

rt(xt(α), ut(α)) + βσ2
TX

t=1

log pσ(xt(α), ut(α);D)

#

≈ 1

N

NX

i=1

∇α

"
TX

t=1

rt(xt(α), ut(α)) + βσ2
TX

t=1

log pσ(xt(α), ut(α);D) s.t. x1 = xi ∼ ρ

#
,

(33)
where the last equation denotes that fixing the initial condition to xi sampled from ρ, and N is the526

number of samples in the Monte-Carlo process. Since rt and fθ are differentiable, we can obtain the527

gradient528

∇α

TX

t=0

rt(xt(α), ut(α)) (34)

after rolling out the closed-loop system starting from xi and using automatic differentiation w.r.t.529

policy parameters α. To compute the gradient w.r.t. the score function, we similarly use the chain530

rule,531

and differentiate it w.r.t α, which lets us compute532
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where the last term is obtained by differentiating533

TX

t=1

sx(xt, ut;σ)xt + su(xt, ut;σ)ut (36)

after detaching sx and su from the computation graph.534
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B.5 Imitation Learning535

We give more intuition for why maximizing the state-action likelihood leads to imitation learning.536

If the empirical data comes from an expert demonstrator, maximizing data likelihood leads to537

minimization of cross entropy between the state-action pairs encountered during planning and the538

state-action occupation measure of the demonstration policy, which is estimated with the perturbed539

empirical distribution pσ(xt, ut),540

X

t

log pσ(xt, ut) =
X

t

log pσ(ut|xt) +
X

t

log pσ(x). (37)

Note that the log pσ(ut|xt) is identical to the Behavior Cloning (BC) objective, while log pσ(xt)541

drives future states of the plan closer to states in the dataset. We note that Adversarial Inverse542

Reinforcement Learning (AIRL) [34] minimizes a similar objective as ours [12].543

C Experiment Details544

C.1 Cartpole with Learned Dynamics545

Environment. We use the cart-pole dynamics model in [58, chapter 3.2], with the cost function546

being547

ct(xt, ut) =

�||xt − xg||2Q if t = T

0 else.
(38)

Q = diag(1, 1, 0.1, 0.1). We choose the planning horizon T = 60.548

Training. We randomly collected a dataset of size N = 1, 000, 000 within the red box region in the549

state space. The dynamics model is an MLP with 3 hidden layers of width (64, 64, 32). For ensemble550

approach we use 6 different dynamics models, all with the same network structures.551

We train a score function estimator, represented by an MLP with 4 hidden layers of width 1024. The552

network is trained form 400 epochs with a batch size of 2048.553

Parameters During motion planning, for Adam optimizer we use a learning rate of 0.01. For CEM554

approach we use a population size of 10, with standard variance σ = 0.05, and we take the top 4555

seeds to update the mean in the next iteration.556

Data Distance Estimator. To train a data distance estimator, we introduce a function approximator557

dη : Rn ×R+ → R parametrized by η to predict the noise-dependent Softmin distance. The training558

objective is given by559

min
η

1

2
Ex∈Ω,σ∈[0,σmax]

�
1

σ2

����d(x,σ)− Softminxi∈D
1

2
∥x− xi∥2σ−2I

����
�

(39)

where Ω is a large enough domain that covers the data distribution D. For small datasets, it is possible560

to loop through all xi in the dataset to compute this loss at every iteration. However, this training can561

get prohibitive as all of the training set needs to be considered to compute the loss, preventing batch562

training out of the training set.563

C.2 D4RL Dataset564

Environment. We directly use the D4RL dataset [43] Mujoco tasks [60] with 3 different envi-565

ronments of halfcheetah, walker2d, and hopper. We additionally use differnet sources of data with566

random, medium, and medium-expert.567

Training. The dynamics and the score functions are both parametrized with MLP with 4 hidden568

layers of width 1024. The noise-conditioned score function is implemented by treating each level569
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of noise σk as an integer token, that gets embedded into a 1024 vector and gets multiplied with the570

output of each layer. This acts similar to a masking of the weights depending on the level of noise.571

The D4RL environment does not provide us with a differentiable reward function, so we additionally572

train an estimator for the reward. We empirically saw that for score function estimation, wide shallow573

networks performed better. We train both instances for 1000 iterations with Adam, with a learning574

rate of 1e− 3 and batch size of 2048.575

We additionally set a noise schedule to be a cosine schedule that anneals from σ = 0.2 to σ = 0.01576

for 10 steps in the normalized space of x, u.577

Parameters We used a range of βs between 1e−3 and 1e−1 depending on the environment, where578

in some cases it helped to be more reliant on reward, and in others it’s desirable to rely on imitation.579

We use a MPC with T = 5 and optimize it for 50 iterations with an aggressive learning rate of 1e−1.580

C.3 Pixel Single Integrator581

Environment. In this environment, we have a 2D single integrator f(xt, ut) = xt + ut, xt ∈582

R2, ut ∈ R2 as the underlying ground-truth dynamics; however, instead of raw states xt, we observe583

a 32 × 32 grayscale image yt = h(xt) ∈ R32×32, which are top-down renderings of the robot. In584

these observations, the position of the robot is represented with a dot. Moreover, we assume that we585

do not directly assign the 2D control input ut, but instead propose a 32 × 32 grayscale image ût,586

where the value of the 2D control action ut is extracted from the image via a spatial average:587

ut =
X

(px,py)

gu(px, py)ût(px, py), (40)

where the sum loops over each pixel (px, py) ∈ {1, . . . , 32}2, yt(px, py) refers to the intensity of the588

image at pixel (px, py), and gu : Z × Z → R2 is a grid function mapping from pixel (px, py) to a589

corresponding control action. The control image ût is normalized such that its overall intensity sums590

to 1. Given some goal xg , the reward is set to be the −ct(xt, ut), where the cost ct(xt, ut) is591

ct(xt, ut) =

(
∥xt − xg∥2Qt

+ ∥ut∥2R if t = T

∥xt − xg∥2Q + ∥ut∥2R else,
(41)

To evaluate this cost function for the planned sequence of image observations and control images, the592

states xt are also extracted from the image observations through a similar spatial averaging:593

xt =
X

(px,py)

gim(px, py)yt(px, py), (42)

where gim : Z × Z → R2 is a grid function mapping from pixel (px, py) to a corresponding state.594

In other words, we have running costs for the state and input, and a different terminal cost for the595

state. We set R = 6.5I, Q = 500I, and Qd = 1000I, and plan with a horizon of T = 15.596

Training. We collect a randomly collected dataset of size N = 200, 000, with underlying 2D597

data sampled from xt ∈ [−1, 1]2 and ut ∈ [−0.2, 0.2]2. Both the dynamics and the score function598

estimator are represented as U-Nets [72], with the architecture coming from [73].599

Parameters. We found that β = 0.5 is sufficient for the penalty parameter. Results are obtained600

within 1450 iterations with a learning rate of 0.03. In representing the noise-conditioned score601

function, we use 232 smoothing parameters {σk}232k=1, from σ1 = 50 to σ232 = 0.01.602

Baselines. For gradient-based planning with ensembles, we set β = 0.5 and use an ensemble of603

size 10. For CEM with ensembles, we set β = 0.5, with an ensemble of size 5 (we only used the first604

five networks in the original ensemble of size 10 due to RAM limitations).605
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C.4 Box Pushing with Marker Dynamics606

Environment. We prepare a box-pushing environment where we assume that the box follows607

quasistatic dynamics, which allows us to treat the marker positions directly as state of the box that is608

bijective with its pose. We use 2D coordinates for each markers, and append the pusher position, also609

in 2D, resulting in xt ∈ R12. The pusher is given a relative position command with a relatively large610

step size [68]. In addition, we give the robot knowledge of the pusher dynamics, xpusher
t+1 = xpusher

t +ut.611

The general goal of the task is to push the box and align the edge of the box with the blue tape line.612

We formulate our cost as613

ct(xt, ut) =

�∥xmarker
t − xmarker

g ∥2QT
if t = T

∥ut∥2R else,
(43)

where QT = I and R = 0.1I. In order to get xmarker
g , we place the box where we want the goal to be614

and measure the position of the markers.615

Training. We collect 100 demonstration trajectories resulting in 750 pairs of (xt, ut, xt+1). The616

dynamics and the score functions are learned with a MLP of 4 hidden layers with size 1024, with the617

noise-conditioned score estimator being trained similar to the D4RL dataset with multiplicative token618

embeddings. We train for 500 iterations with a batch size of 32.619

We additionally set a noise schedule to be a cosine schedule that anneals from σ = 0.2 to σ = 0.01620

for 10 steps.621

Parameters. We observed that β = 1e−2 performs well for all the examples, with a learning rate622

of 0.1 and 50 iterations. We found that a horizon of T = 4 was sufficient for our setup.623

21


