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Abstract

We present two sample-e�cient di�erentially private mean estimators for 3-dimensional (sub)Gaussian

distributions with unknown covariance. Informally, given = & 3/U2
samples from such a distribution with

mean ` and covariance Σ, our estimators output ˜̀ such that ‖ ˜̀ − `‖Σ ≤ U , where ‖ · ‖Σ is the Mahalanobis
distance. All previous estimators with the same guarantee either require strong a priori bounds on the

covariance matrix or require Ω(33/2) samples.

Each of our estimators is based on a simple, general approach to designing di�erentially private mecha-

nisms, but with novel technical steps to make the estimator private and sample-e�cient. Our �rst estimator

samples a point with approximately maximum Tukey depth using the exponential mechanism, but restricted

to the set of points of large Tukey depth. Proving that this mechanism is private requires a novel analysis.

Our second estimator perturbs the empirical mean of the data set with noise calibrated to the empirical

covariance, without releasing the covariance itself. Its sample complexity guarantees hold more generally

for subgaussian distributions, albeit with a slightly worse dependence on the privacy parameter. For both

estimators, careful preprocessing of the data is required to satisfy di�erential privacy.
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1 Introduction
Although the goal of statistics and machine learning is to infer properties of a population, there is a growing

awareness that many statistical estimators and trained models reveal a concerning amount of information

about their data set, which leads to signi�cant concerns about the privacy of the individuals who have

contributed sensitive information to that data set. These privacy violations have been demonstrated repeatedly

via reconstruction attacks [25, 35, 32, 55], membership-inference attacks [44, 65, 10, 38, 66, 77], and instances of

unwanted memorization of training data [17, 18, 40, 7]. In order to realize the bene�ts of analyzing sensitive

data sets, it is crucial to develop statistical estimators and machine learning algorithms that make accurate

inferences about the population but also protect the privacy of the individuals who contribute data.

In this work we study statistical estimators that satisfy a condition called di�erential privacy [34], which

has become the standard criterion for individual privacy in statistics and machine learning. Informally, a

di�erentially private algorithm guarantees that no attacker, regardless of their background knowledge or

resources, can infer much more about any individual than they could have learned had that individual never

contributed to the data set [54]. A long body of work shows that di�erential privacy is compatible with a

wide range of tasks in statistics and machine learning, and it is now seeing deployment at companies like

Google [39, 6, 75], Apple [3], Facebook [70] and LinkedIn [64], as well as statistical agencies like the U.S.

Census Bureau [1, 43].

Background: Di�erentially Private Mean Estimation. We revisit di�erentially private estimators for one

of the most fundamental tasks in all of statistics and machine learning—given G1, . . . , G= ∈ R3 sampled i.i.d.

from a distribution with mean ` ∈ R3 and covariance Σ ∈ R3×3 , estimate the mean `. Mean estimation is not

only an essential summary statistic in its own right, but also a building block for more sophisticated tasks like

regression and stochastic optimization.

Without privacy constraints, the natural solution is to output the empirical mean `G = 1

=

∑
8 G8 . The natural

way to state the sample-complexity guarantee of the empirical mean is

= &
3

U2
=⇒ ‖`G − `‖Σ ≤ U ,

where & hides a universal multiplicative constant, and the accuracy guarantee holds with large constant

probability (say, 0.99). Importantly, ‖`G − `‖Σ = ‖Σ−1/2 (`G − `)‖2 is the error in Mahalanobis distance scaled

to the covariance Σ. Bounding the error in Mahalanobis distance implies that in every direction E , the squared

error is proportional to the variance E) ΣE in that direction. The Mahalanobis distance is the natural way to

measure the error for mean estimation, since it tightly captures the uncertainty about the true mean and is

preserved under a�ne transformations.

Unfortunately, in high dimensions, releasing the empirical mean leads to concrete privacy breaches [38, 50].

A natural question is thus: can we design a di�erentially private mean estimator that performs nearly as well

as the empirical mean?

Without making additional assumptions, the answer turns out to be no—every di�erentially private

estimator incurs a large overhead in sample complexity compared to the empirical mean [51]. However, it is

known that if we further assume that the distribution satis�es some additional concentration properties, we

can do much better [67, 53, 50, 51]. In this work, we focus on one class of well-concentrated distributions, those

that are Gaussian (or, in some of our results, subgaussian). Although assuming Gaussian data is restrictive,

it is a natural starting point for understanding the complexity of estimation when the distribution is not

pathological. Moreover, even in the Gaussian case, one cannot obtain error comparable to that of the empirical

mean unless = & 3 [10, 38, 50], so we will also focus on the case where the sample size is at least as large as

the dimension.

For Gaussian data, if the analyst has prior information about the covariance matrix in the form of a matrix

� and bound ^ ≥ 1 such that � � Σ � ^�,
1

then there is a folklore private estimator A(G), based on a line of

work initiated by Karwa and Vadhan [53, 50, 5, 2], that �nds an approximate range for the data, truncates the

1
Given two covariance matrices �, � ∈ R3×3 , the notation � � � indicates that in every direction E ∈ R3 the variance E) �E is at

least as large as E)�E. More generally, � � � i� � −� is positive semide�nite.
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points to within that range, and runs the Gaussian mechanism on the resulting empirical mean. This estimator

achieves

= &
3

U2
+ 3
√
^

UY
=⇒ ‖A(G) − `‖Σ ≤ U, (1)

where Y is the privacy parameter controlling the level of privacy (see De�nition 2.2), with stronger privacy

as Y → 0.
2

Here & hides a universal multiplicative constant and polylogarithmic factors of 3, 1

X
, 1

Y
and

1

U
; the

accuracy guarantee holds with large constant probability. We can interpret this result as showing that the

additional cost of privacy is small provided that the user has a strong a priori bound on the covariance so that

^ is small (e.g. ^ is a constant), and also that the privacy guarantee is not too strong (e.g. Y ≥ U). In particular,

setting ^ = 1 corresponds to the known-covariance setting, where the guarantee in (1) is known to be minimax

optimal up to polylogarithmic factors [38, 50] among all di�erentially private estimators.

However, the sample complexity in (1) grows asymptotically with

√
^, a large price to pay for the user’s

uncertainty. Intuitively, this degradation arises because the algorithm perturbs the empirical mean `G with

noise from a spherical Gaussian distribution, whose magnitude must be proportional to the largest variance

in any direction, so the noise is unnecessarily large in the directions with small variance. In contrast, when

the user is very uncertain about the covariance, there are estimators with a weaker dependence on ^ but a

superlinear dependence on the dimension. In particular, there is an estimator [50, Theorem 4.3] with an error

guarantee of the form

= &
3

U2
+ 3

UY
+ 3

3/2
log

1/2 ^

Y
=⇒ ‖A(G) − `‖Σ ≤ U. (2)

Here & hides a universal multiplicative constant and logarithmic factors of3, 1

Y
, 1

U
, log^ , and d , where ‖`‖2 ≤ d ;

the accuracy guarantee holds with large constant probability. Without any prior information about the

covariance, the best known approach is to estimate the mean by learning the entire distribution—both mean

and covariance—which is the more di�cult task considered in [2, Theorem 4.6]. Doing so incurs an even

worse dependence on the dimension:

= &
32

U2
+ 3

2

UY
=⇒ ‖A(G) − `‖Σ ≤ U. (3)

Here & hides a universal multiplicative constant and logarithmic factors of
1

X
and

1

U
; the accuracy guarantee

holds with large constant probability.

The Covariance-Estimation Bottleneck. The bottleneck in the algorithms above is privately obtaining a

good spectral approximation to the covariance, i.e. a matrix � such that � � Σ � 2�. With such an estimate,

one can apply the known-covariance approach in (1). Without privacy constraints, the empirical covariance

will have this spectral-approximation property when the sample size is = & 3 . However, all known private

covariance estimators require = = Ω(33/2) samples, and there is evidence that this is an inherent limitation, as

Ω(33/2) samples are necessary for solving this task for a worst-case data distribution [37].

Our Work: Sample-E�cient Private Mean Estimation. We circumvent this apparent di�culty of covari-

ance estimation by designing an algorithm that adapts the noise it adds to the distribution’s covariance without

actually providing an explicit covariance estimate, nearly matching the optimal sample complexity (1) for the

known-covariance setting.

Theorem 1.1 (Informal). For U ≤ 1, there is an (Y, X)-di�erentially private estimator A(·) such that if G =

(G1, . . . , G=) are sampled from N(`, Σ) for unknown ` and Σ of full rank,

= &
3

U2
+ 3

UY
+ log(1/X)

Y
=⇒ ‖A(G) − `‖Σ ≤ U.

The above guarantee holds with high probability over the sample G and the randomness of A. Here & hides a
universal multiplicative constant and a logarithmic factor of 1

U
.

2
To simplify the discussion, we focus only on the Y parameter, although our results and many of those we discuss require relaxations

of di�erential privacy such as approximate [33] or concentrated [31, 8] di�erential privacy, which have di�erent parameterizations.
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For the formal statement, see Theorem 3.2. Our estimator is based on privately sampling a point of large

Tukey depth. Tukey depth generalizes the notion of quantiles to multiple dimensions; it is known to be a

good robust estimator of the Gaussian mean. The natural way to sample such a point privately is to use the

exponential mechanism (as in the concurrent work of [58]), but sampling from a distribution over the entire

domain R3 will not have �nite sample complexity. Our innovation is to sample from a data-dependent domain

consisting only of points of large Tukey depth, which necessitates careful preprocessing and privacy analysis.

We emphasize that the sample complexity of this estimator is optimal up to polylogarithmic factors.

However, the estimator is not computationally e�cient. An interesting open problem is to design an estimator

matching the guarantee of Theorem 1.1 with running time polynomial in the dimension.

Beyond Gaussian Distributions. A natural question is how much the assumption of Gaussian data can be

relaxed without blowing up the sample complexity. Our second result is an alternative estimator, based on a

completely di�erent technique, that will give a similar guarantee for any distribution with subgaussian tails.
For our purposes, we say that % with mean ` and covariance Σ is subgaussian if, for every direction D ∈ R3 ,

the tails of the distribution decay as fast as a univariate normal distribution with mean D) ` and variance

�D) ΣD for some constant � . That is, for every _,

E[4_D) (%−`) ] ≤ 4�_2 (D) ΣD)/2.

More generally, our estimator works for any distribution such that the empirical covariance matrix converges

rapidly to the population covariance matrix and typical samples are close to the mean in Mahalanobis

distance (see (5)).

Theorem 1.2 (Informal). For U ≤ 1, there is an (Y, X)-di�erentially private estimator A(·) such that if G =

(G1, . . . , G=) are sampled from any subgaussian distribution with unknown mean ` and unknown covariance Σ of
full rank,

= &
3

U2
+ 3 log(1/X)

UY2
=⇒ ‖A(G) − `‖Σ ≤ U.

The above guarantee holds with high probability over the sample G and the randomness of A. Here & hides a
universal multiplicative constant and polylogarithmic factors of 3, 1

X
, 1

Y
, and 1

U
.

For the relevant formal statement, see Theorem 4.3 and its extension to subgaussian data in Theorem B.6.

This estimator is based on another simple approach—we perturb the empirical mean `G with noise scaled to

ΣG , where ΣG is the exact (not private) empirical covariance. We show that this approach satis�es di�erential

privacy if the data set satis�es certain concentration properties, which we enforce using a careful preprocessing

step.

Both of our estimators generalize beyond Gaussian distributions in di�erent directions, not fully captured

by our theorems. Although the Tukey depth estimator will only return an approximation to the mean when

the distribution is symmetric and will not generalize to arbitrary subgaussian distributions, it returns an

approximate median for distributions satisfying some natural regularity conditions. In contrast, the empirically

rescaled estimator generalizes to distributions that are well-concentrated, in the sense that typical samples

from the distribution are close to the mean in Mahalanobis distance with respect to the empirical covariance,

which captures much more than just subgaussian distributions. Exploring the extent to which each estimator

can be generalized is an interesting direction for future work.

1.1 Techniques

Tukey-depth Mechanism. Our �rst algorithm adapts a well-known approach to estimating the location of

a distribution with di�erential privacy. Brie�y, we sample from the distribution de�ned by the exponential

mechanism [61] based on the Tukey depth, but restricted to a data-dependent set of possible outputs—those

points with Tukey depth at least
1

4
. To ensure di�erential privacy, we add a private check that the data set is

“safe,” which we perform before running the main mechanism.
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In more detail, our starting point is the exponential mechanism [61]. In this context, the exponential

mechanism samples a point ~ ∈ R3 from the distribution with probability density roughly proportional to

exp(−Y@(G ;~)), where @(G ;~) is a score function that indicates how good a match ~ is for the data set at hand.

To instantiate the mechanism, one must choose (i) a score function that rewards values ~ that are close to

mean ` in the unknown Mahalanobis metric, and (ii) a set of candidate values ~ from which to sample. For (i),

we choose @(G ;~) = =)G (~) where )G is the Tukey depth of a point, de�ned as

)G (~) =
1

=
· min

E∈R3

���{G8 ∈ G : 〈G8 , E〉 ≥ 〈~, E〉
}��� . (4)

For normally distributed data, the Tukey depth ranges from 0 (outside the convex hull of the data points) to

about 1/2 (near the mean `). The point of maximal Tukey depth, called the Tukey median, is well-known as a

robust estimator of the mean of a Gaussian distribution. In general, the expectation of Tukey depth over the

draw of the data can be cleanly described in terms of the Gaussian cumulative distribution function. See the

supplementary material for further technical details.

Using the exponential mechanism with Tukey depth as the score function is a well-established idea. In one

dimension, it is now the standard algorithm for approximating the median (e.g. [67]), and its high-dimensional

variant was studied in previous [52] and concurrent [58] work.
3

However, on its own, it is not su�cient for

our needs. The challenge is in specifying the set of potential outputs ~ from which we sample (step (ii) above).

In order to reliably output a value ~ such that ‖~ − `‖Σ is small, we must sample from a set of outputs with

Σ-norm that is not too large. For that, however, it would seem that one needs a rough approximation to Σ,

which is exactly what we want to avoid.

We circumvent the barrier by sampling from a data-de�ned set without releasing a description of that set.
Speci�cally, consider the algorithm which samples from the exponential mechanism restricted to points with

Tukey depth at least 1/4. A standard concentration argument shows that this set is roughly the ellipsoid

{~ : ‖~ − `‖Σ ≤ 2} for a modest constant 2 . Running the exponential mechanism on this set returns a good

approximation to the mean (with Σ-norm > (1)) when = = l (3/Y).
This gives us an accurate algorithm, dubbedM. The remaining challenge is thatM is not, on its own,

di�erentially private. Speci�cally, there are data sets G for which the volume of the set of Tukey-depth-1/4
points changes drastically when a small number of records in G are changed. To address this, we identify a set

of safe data sets G—these are data sets such thatM behaves similarly on all data sets G ′ that are neighbors of

G . We show that normally distributed data sets are typically safe and, furthermore, require many insertions or

deletions of records to be made unsafe. This allows us to apply the propose-test-release (PTR) framework of [30]

to obtain an algorithm that is accurate for nicely distributed data and di�erentially private in the worst case.

Our modi�cation of the exponential mechanism is quite general. It is similar in �avor to the GAP-MAX

variant [13, 76, 19, 20, 21] as well as the top-:-of-: ′ approach of [29]. However, we do not know how to obtain

our results using those variants since they are speci�c to the discrete setting and appear to require knowledge

of the volume of the level sets of the score function. Such knowledge is not obviously available in our setting.

Empirically Rescaled Gaussian Mechanism. The well-known Gaussian mechanism perturbs the empirical

mean `G with noise drawn fromN(0, f2I), for a scale parameter f that is chosen based on a priori information

about the data. In particular, f2
must scale linearly with ‖Σ‖2

2
, the maximum variance in any direction. Since

the noise is spherical, the error will be too large in directions with small variance, and so this mechanism

cannot in general achieve a good estimate in Mahalanobis distance.

Our approach relies on the following simple idea: If the data set G is drawn i.i.d. from N(`, Σ), and

the number of samples is a bit larger than the dimension 3 , then the empirical covariance ΣG is a good

approximation to the true covariance in spectral norm. When this holds, perturbing `G with noise drawn

3
We became aware of Liu et al.’s work [58] while we were working on this project. Our empirically rescaled Gaussian algorithm is

entirely independent of their work, but the presentation and parts of the analysis of our Tukey-based algorithm were in�uenced by their

approach.

Liu et al. consider, among other algorithms, a version of the Tukey depth algorithm where one samples from a �xed box whose

dimensions are determined by a priori bounds on the covariance matrix. We analyze a more complex procedure, where the set from

which one samples is data-dependent. Liu et al. aim to solve a di�erent problem from the one we address here, but the two analyses

overlap (notably in volume computations and concentration arguments that relate empirical Tukey depth to the underlying distribution).
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from N(0,�2ΣG ) for � � 1√
3

will be a good estimate of the mean in Mahalanobis distance. Thus, we want to

understand when perturbing `G in this way can be made di�erentially private.

Adding noise from N(0,�2ΣG ) will not be private for worst-case data sets. To see this, consider a pair of

adjacent data sets, one of which lies in a proper subspace of dimension 3 − 1 and the other of which has full

rank. For one of these data sets, our mean estimate will always lie in the proper subspace, while for the other

it will lie outside of this subspace with probability 1, making the two cases easy to distinguish.

Our main observation is that such pathological examples should not arise when the data sets are sampled

from a distribution, such as a Gaussian, that satis�es strong concentration properties. For example, if G and G ′

are adjacent data sets of i.i.d. samples from the same Gaussian, then `G and `G ′ will be similar, as will ΣG and

ΣG ′ . To take advantage of these nice distributions, we de�ne a family of “good data sets” that captures certain

properties of typical samples from a Gaussian. Roughly, a data set G is good if ΣG is invertible and, for every G8 ,

‖G8 − `G ‖ΣG .
√
3 log=. (5)

Our main technical contribution is to show that if G and G ′ di�er on a small number of samples, and both data

sets are good, then their empirical means and empirical covariances are close. Thus, `G + N(0,�2ΣG ) and

`G ′ + N(0,�2ΣG ′) will be indistinguishable in the sense required for (Y, X)-di�erential privacy.

However, we need to de�ne our estimator on data sets that are not good in such a way that the estimator

will be di�erentially private in the worst case. To do so, we privately test whether the input data set lies close

to the good set and, if needed, we project the data into the family of good data sets. This preprocessing step

will have no e�ect when the data is Gaussian, and any pair (Gaussian or not) of adjacent data sets G and G ′

will be mapped to a pair of good data sets G̃ and G̃ ′ that di�er on a small number of examples.

This projection step is stated abstractly in Algorithm 2 as �nding the minimizer over an in�nite family of

data sets. In Algorithm 7, we present a concrete, exponential-time algorithm that searches over a discrete grid

of candidate datasets. We leave the task of identifying more e�cient algorithms as an interesting problem for

future work.

1.2 Additional Related Work

Di�erentially Private Mean and Covariance Estimation. The line of work most relevant to ours was

initiated by Karwa and Vadhan [53], who established optimal private mean and variance estimators of univariate

Gaussians with sample complexity $̃ (1/U2 + 1/UY), without requiring a priori bounds on the parameters.

Previously, Smith [67] gave estimators for asymptotically normal statistics (which include the mean of a

Gaussian) with optimal convergence rates for a certain range of privacy parameters. In the multivariate

setting, a series of works [50, 13, 2] gives algorithms for Gaussian mean estimation with known covariance

that have a near-optimal sample complexity of $̃ (3/U2 +3/UY). We note that [2] obtain the best bound among

these works, but the guarantees of the estimator from [50] extend naturally to subgaussian distributions as

well. [15] also studied mean and covariance estimation of subgaussian distributions, but their setting requires

strong a priori bounds on the parameters. In concurrent work, [47] give a di�erentially private estimator for

our unknown parameter setting which, for the same sample complexity as ours, has an error guarantee of

‖ ˆ̀ − `‖2 ≤ U ‖Σ1/2‖2. This result is strictly weaker than ours. However, their estimator, in contrast to ours,

has the pleasant property of being computationally e�cient.

Beyond (sub)Gaussian distributions, [4, 9, 51] study di�erentially private mean estimation under weaker

moment assumptions in the univariate and multivariate setting. [41, 49] study private mean estimation in the

Gaussian case under the more strict constraint of local di�erential privacy.

When the covariance is unknown, a natural approach would be to estimate it and use one of the mean

estimators above. In addition to the work we discuss in the introduction [50, 2], recent work focuses on

practical private mean and covariance estimation in univariate [28] and multivariate [5] settings, although

these approaches still require explicit private covariance estimation.

Robust Statistical Estimation. Robust statistical estimation [48, 60], which dates to at least 1960 [71] and

remains an active area of research [22, 23, 24, 26, 45], studies the problem of estimating distribution parameters

7



when an U-fraction of the data may be adversarially corrupted. As noted by Dwork and Lei [30], robust

statistics and di�erential privacy have similar goals, and private estimators are often inspired by robust

estimators, but the models are formally incomparable.

More recent work aims to give algorithms which satisfy both constraints simultaneously [58, 42]. Speci�-

cally, independently from our work, Liu et al. [58] propose a simple mechanism for Gaussian mean estimation

with known covariance, given U-corrupted data sets and an a priori bound on the range of the mean ‖`‖∞ ≤ d .

This estimator has sample complexity $̃ (3/U2+3 log d/UY). The algorithm runs the exponential mechanism [61]

in the given range, using the Tukey depth of a point as its score. We observe that the same mechanism gives a

solution for the problem we study—mean estimation in Mahalanobis distance with unknown covariance and

no corruptions—but this solution requires a priori bounds on the mean and covariance, which are not required

by our algorithms.

Lower Bounds. Starting from the univariate case, [53] prove that Ω(log(1/X)/YU) samples are necessary for

Gaussian estimation even when the variance is known. For multivariate mean estimation, the investigation of

sample complexity lower bounds has been driven by membership-inference attacks (sometimes called tracing
or �ngerprinting) [10, 68, 12, 69, 38]. Using this technique, Kamath et al. [50] show a lower bound of Ω(3/UY)
for Gaussian estimation with identity covariance, which clearly extends to our problem as well. The sample

complexity of our estimators matches this lower bound up to logarithmic factors and has no dependence on a

priori bounds on the parameters.

Moreover, we conjecture that any optimal di�erentially private Gaussian mean estimator with unknown

covariance would have to go beyond current techniques, which compute a private estimate of the covariance

matrix as an intermediate step. Recall that the best known sample complexity bound for privately computing a

matrix � such that I � �Σ� � 2I for (sub)Gaussian distributions is $̃ (33/2
log

1/2 ^/Y) [50]. In addition, Dwork

et al. [37] gave a lower bound of Ω(33/2) for estimating the empirical covariance matrix, but only when the

data is sampled from a worst-case distribution. Together, these results serve as evidence that Ω(33/2) samples

are necessary for private covariance estimation even for the case of Gaussian data.

1.3 Organization
We �rst provide background on di�erential privacy (Section 2) and refer the reader to Appendix A for a review

of the relevant linear algebra. In Section 3, we present our Tukey-Depth Mechanism and prove its privacy

and sample complexity guarantees (c.f. Theorem 1.1). In Section 4, we present our Empirically Rescaled

Gaussian Mechanism and prove its guarantees for Gaussian distributions; the extension to subgaussian data

(c.f. Theorem 1.2) is in Appendix B. We present �nite (yet computationally ine�cient) implementations of

both algorithms in Appendix C. Appendix D contains additional proofs which did not appear in the body of

the paper.

2 Preliminaries
We write G ∼ % to denote that G is drawn from distribution % and G ∼ % ⊗= if G consists of = i.i.d. draws from % .

In particular, we consider data sets G = (G1, . . . , G=) ∈ R=×3 which consist of = i.i.d. samples, each drawn from

a 3-dimensional distribution % with mean ` ∈ R3 and covariance Σ ∈ R3×3 . We write [=] = {1, . . . , =}. We

de�ne the Hamming distance between two data sets G,~ of size = by �� (G,~) = |{8 ∈ [=] : G8 ≠ ~8 }|. For data

set G and set ( ⊆ R=×3 , we write �� (G, () = minI∈( �� (G, I). We denote the natural logarithm by log.

Let G, G ′ ∈ X= be two data sets of size =. We say that G, G ′ are neighboring data sets if �� (G, G ′) ≤ 1,

and denote this by G ∼ G ′. Di�erentially private algorithms have indistinguishable output distributions on

neighboring data sets.

De�nition 2.1 ((Y, X)-indistinguishability). Two distributions %,& over domainW are (Y, X)-indistinguishable,

denoted by % ≈Y,X & , if for any measurable subset, ⊆ W,

Pr

F∼%
[F ∈, ] ≤ 4Y Pr

F∼&
[F ∈, ] + X and Pr

F∼&
[F ∈, ] ≤ 4Y Pr

F∼%
[F ∈, ] + X.
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De�nition 2.2 (Di�erential Privacy [34]). A randomized algorithm A : X= → W is (Y, X)-di�erentially
private if for all neighboring datasets G, G ′ we have A(G) ≈Y,X A(G ′).

A crucial property of di�erential privacy is that it composes adaptively. We say that " is an adaptive
composition of "1, . . . , ") if it consists of a sequence of mechanisms "1 (G), "2 (G), . . . , ") (G), executed on

data set G , where each mechanism "C (G) depends on the outputs of "1 (G), . . . , "C−1 (G).
Lemma 2.3 (Composition [34]). If"1, . . . , ") are (Y1, X1), . . . , (Y) , X) )-di�erentially private respectively and
" is their adaptive composition, then" is (Y, X)-di�erentially private for Y =

∑)
C=1

YC and X =
∑)
C=1

XC .

We next describe well-known mechanisms which serve as building blocks for our algorithms.

De�nition 2.4 (Laplace Mechanism [34]). Let 5 : X= → R, data set G ∈ X= , and privacy parameter Y. The

Laplace Mechanism returns

˜5 (G) = 5 (G) + Lap

(
Δ5

Y

)
,

where Δ5 = max

G∼G ′
|5 (G) − 5 (G ′) | is the global sensitivity of 5 .

Lemma 2.5 ([34]). The Laplace Mechanism is (Y, 0)-di�erentially private.

De�nition 2.6 (Gaussian Mechanism, [34]). Let 5 : X= → R3 , data set G ∈ X= , and privacy parameters Y, X .

The Gaussian Mechanism returns

˜5 (G) = 5 (G) + N (0, f2I), where f = Δ5
√

2 log(1.25/X)/Y

and Δ5 = max

G∼G ′
‖ 5 (G) − 5 (G ′)‖2 is the global ℓ2-sensitivity of 5 .

Lemma 2.7 ([34]). The Gaussian Mechanism is (Y, X)-di�erentially private.

3 Tukey Depth Mechanism
We start with a score function @(G ;~) and wish to sample from the exponential mechanism, proportional

to exp(Y · @(G ;~)/2), but restricting the sampling to the set of points with score at least C . Denote this set

YC,G = {~ ∈ Y : @(G ;~) ≥ C} and call the resulting distributionMY,C (G). Unfortunately, sampling directly from

MY,C (G) may not be private. To address this, we try to sample only from data sets that are “safe” with respect

to privacy, i.e., have distributions that are indistinguishable from those of their neighbors.

De�nition 3.1 (Safety). Data set G is (Y, X, C)-safe if, for all G ′ ∼ G , we have MY,C (G) ≈Y,X MY,C (G ′). Let

SAFE(Y,X,C ) ⊆ X= be the set of safe data sets, and let UNSAFE(Y,X,C ) = X= \ SAFE(Y,X,C ) be its complement.

Following the propose-test-release framework of [30], we check if the input is far from UNSAFE(Y,X,C ) . Since

the distance check itself is private and indistinguishability is the de�nition of safety, the proof of privacy

becomes straightforward. Such an abstract de�nition, however, does not yield much insight into what safe data

sets look like. Below, we show that one can establish safety via a simple condition on the volumes of sets of

the formYC±[,G (for certain values of [), which allows us to show that Gaussian data are far from UNSAFE(Y,X,C )
with high probability.

Algorithm 1 Restricted Exponential Mechanism A�
Y,X,C
(G)

Require: Data space X. Output space Y ∪ {FAIL}. Data set G ∈ X= . Score function @ : X= × Y → R, with

global sensitivity 1 in the �rst argument. Privacy parameters Y, X > 0. Minimum score C .

1: ℎ ← �� (G, UNSAFE(Y,X,C ) )
2: if ℎ + I <

log(1/2X)
Y

for I ∼ Lap(1/Y) then return FAIL.

3: return ~̂ ∼ MY,C (G), whereMY,C (G) ∝
{

exp

{
Y@ (G ;~)

2

}
if ~ ∈ YC,G

0 otherwise

9



3.1 Main Algorithm
We estimate the mean by instantiating Algorithm 1 with C = =/4 and score function @(G ;~) = =)G (~), where

)G (~) is the (empirical) Tukey depth, de�ned as

)G (~)
def

= min

E∈R3
1

=

���{G8 ∈ G : 〈G8 , E〉 ≥ 〈~, E〉
}���. (6)

Observe that =)G (~) has sensitivity 1, since for any halfspace the fraction of points it contains can change by

at most
1

=
when we change one data point.

Theorem 3.2 (Privacy and Accuracy of the Tukey-Depth Mechanism). For any Y, X > 0, Algorithm 1 is
(2Y, 4YX)-di�erentially private. There exists an absolute constant � such that, for any 0 < U, V, Y < 1, 0 < X ≤ 1

2
,

mean `, and positive de�nite Σ, if G ∼ N(`, Σ)⊗= and

= ≥ �
(
3 + log(1/V)

U2
+ 3 log(1/U) + log(1/V)

UY
+ log(1/X)

Y

)
, (7)

then with probability at least 1 − 3V , Algorithm 1 with @(G ;~) = =)G (~) returns A�
Y,X,=/4 (G) = ˆ̀ such that

‖ ˆ̀ − `‖Σ ≤ U .

In particular, setting X = 1

=2
and V = 1

=
, it su�ces to take a sample of size

= = $̃

(
3

U2
+ 3

UY

)
.

3.2 Accuracy Analysis
The proof of accuracy proceeds in four stages. Using standard analysis, we �rst relate the empirical Tukey

depth of a point ~ to its Mahalanobis distance ‖~− `‖Σ via the expectation of Tukey depth underN(`, Σ). Since

Tukey depth is de�ned as a minimum over halfspaces, which have Vapnik-Chervonekis dimension 3 + 1, one

can show via uniform convergence that the empirical measure concentrates around its expectation, with some

error that we denote U1. This portion ends with a standard lemma relating the sets Y=?,G , where ? ∈ (0, 1/2),
to ellipsoids de�ned by Mahalanobis distance.

The remaining three steps, which are new to this work, begin with a characterization of the set SAFE
de�ned above, which provides conditions under which a data set is far from UNSAFE. The third stage uses

that characterization and the tools we developed to show that Gaussian data is typically far from UNSAFE,

establishing that Algorithm 1 has a small probability of returning FAIL. Finally, conditioned on Algorithm 1

not returning FAIL, a similar analysis shows that with high probability the restricted samplerMY,C (G) returns

a point with empirical Tukey depth at most U2 far from optimal. Combined with the error U1 from above, this

yields a bound on the Mahalanobis distance to the true mean.

3.2.1 Relating Tukey Depth to Mahalanobis Distance

The �rst steps in our analysis imply that, privacy considerations aside, points with high Tukey depth are good

estimators for the Gaussian mean. These arguments are standard; for a recent application to di�erentially

private estimation see the concurrent work of Liu et al. [58].

The expected Tukey depth, )N(`,Σ) , is a population version of the empirical fraction de�ned above. For

brevity, we de�ne % = N(`, Σ) and write

)N(`,Σ) (~) = )% (~)
def

= min

E
Pr

-∼%
[〈-, E〉 ≥ 〈~, E〉] . (8)

The expected Tukey depth is cleanly characterized in terms of Mahalanobis distance and Φ, the CDF of the

standard univariate Gaussian.
4

We restate and prove the following standard claim as Proposition D.2 in

Appendix D.

4
We also use Φ−1

, the quantile function. Both Φ and Φ−1
are continuous and strictly increasing, and Φ−1

satis�es −Φ−1 (G) = Φ−1 (1−G) .
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Proposition 3.3. For any `,~ ∈ R3 and positive de�nite Σ, )N(`,Σ) (~) = )% (~) = Φ(−‖~ − `‖Σ).

To move between Mahalanobis distance and empirical Tukey depth, we require that the latter is close to

its population analog. We call data sets where this holds “typical.”

De�nition 3.4 (Typicality). Data set G is U1-typical for U1 > 0 if, for all ~ ∈ R3 , |)G (~) −)% (~) | ≤ U1.

We now point out that the typical data set is, in fact, U1-typical. We use the fact that, since the set

of halfspaces has VC dimension 3 + 1, we have uniform convergence between the empirical and expected

fractions of data points in the halfspace [73]. Then (as discussed in [27]) one need only observe that this result

carries over to Tukey depth, since it is de�ned in terms of halfspaces. See [14] for discussion of these and

other convergence results. Our exact statment comes from the recent [58], which analyzes the exponential

mechanism on Tukey depth for the purpose of robust and private mean estimation.

Lemma 3.5 (Convergence of Tukey Depth, [73, 27, 58]). There exists a constant 2 such that for any U1, V > 0 if
= ≥ 2

(
3+log(1/V)

U2

1

)
, then G ∼ N(`, Σ)⊗= is U1-typical with probability at least 1 − V .

We will often manipulate subsets of points that have scores above a certain value, so let

YC,G
def

= {~ ∈ Y : @(G ;~) ≥ C}.

Note that, by construction,YC,G = supp(MY,C (G)). We will need to control the ratio of volumes of these spaces,

and have the following useful lemma for U1-typical data sets.

Lemma 3.6 (Volume Ratio). Let ?, @ ∈ (0, 1/2). If G is U1-typical, then

Vol(Y=?,G )
Vol(Y=@,G )

≤
(
Φ−1 (1 − ? + U1)
Φ−1 (1 − @ − U1)

)3
. (9)

Proof. Let BA denote the set of points ~ such that ‖~ − `‖Σ ≤ A . By de�nition, ~ ∈ Y=?,G ⇒ )G (~) ≥ ? . Thus,

by typicality and Proposition 3.3, Φ(−‖~ − `‖Σ) = )% (~) ≥ ? − U1. Taking inverses, we have

‖~ − `‖Σ ≤ −Φ−1 (? − U1) = Φ−1 (1 − ? + U1). (10)

So Y=?,G ⊆ BΦ−1 (1−?+U1) . Similarly, since ‖~ − `‖Σ ≤ Φ−1 (1 − @ − U1) implies )% (~) ≥ @ + U1, we have that

BΦ−1 (1−@−U1) ⊆ Y=@,G . Using the fact that Vol(BA ) = 23 |Σ|1/2A3 (where 23 depends only on 3), we arrive at the

claimed upper bound. �

3.2.2 A Volume Condition for Safety

We consider sets of the form YC+[,G for moderate positive and negative values of [. Recall that YC+[,G is the set

of all points ~ with score @(G ;~) = =)G (~) ≥ C + [, i.e., having empirical Tukey depth with respect to G at least

(C + [)/=. Therefore, as [ becomes smaller, the set YC+[,G grows. We show that, if the volume of YC+[,G does

not increase too quickly as [ decreases, then G is far from every data set in UNSAFE(Y,X,C ) . In particular, this

implies that G itself is in SAFE(Y,X,C ) . These lemmas do not rely on speci�c features of Gaussian data or Tukey

depth, which enter in only in the last two stages as described above, when we argue about typical data sets.

This analysis, along with the remaining accuracy analysis of Algorithm 1, is new to this work.

Before arguing about volumes directly, we prove a lemma about the weight assigned to sets by the

exponential mechanism. For any set ( ⊆ Y, denote its weight byFG (() =
∫
(

exp

{
Y@ (G ;~)

2

}
d~.

Lemma 3.7. Assume X < 1

2
. IfFG (YC+1,G ) ≥ (1 − X)FG (YC−1,G ), then G ∈ SAFE(Y,X′,C ) for X ′ = 44YX .

Proof. First, observe that the hypothesis implies
FG (YC−1,G )
FG (YC+1,G ) ≤

1

1−X . Since
1

1−X = 1 + X + X2 + · · · = 1 + X
(

1

1−X
)

and X ≤ 1

2
, we have

FG (YC−1,G )
FG (YC+1,G ) ≤ 1 + 2X .
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Fix an event � ⊆ Y and a data set G ′ adjacent to G . We show Pr[MY,C (G) ∈ �] ≤ 4Y Pr[MY,C (G ′) ∈ �] + X ′
and Pr[MY,C (G ′) ∈ �] ≤ 4Y Pr[MY,C (G) ∈ �] + X ′, which, since G ′ is an arbitrary neighbor, establishes that G is

safe. The work in the proof is to use our hypothesis about G to imply statements about G ′, for which we have

no explicit assumptions other than adjacency to G .

Let ( = YC,G ∩ YC,G ′ be the intersection of the supports ofMY,C (G) andMY,C (G ′). We have

Pr[MY,C (G) ∈ �] = Pr[MY,C (G) ∈ � ∩ (] + Pr[MY,C (G) ∈ � \ (]

=
Pr[MY,C (G) ∈ � ∩ (]
Pr[MY,C (G ′) ∈ � ∩ (]

Pr[MY,C (G ′) ∈ � ∩ (] + Pr[MY,C (G) ∈ � \ (]

≤ Pr[MY,C (G) ∈ � ∩ (]
Pr[MY,C (G ′) ∈ � ∩ (]

Pr[MY,C (G ′) ∈ �] + Pr[MY,C (G) ∉ YC,G ′] . (11)

We upper bound the ratio by upper bounding it for any point ~ ∈ ( . The normalizing constants forMY,C (G)
andMY,C (G ′) may di�er, and the score functions at ~ can di�er by at most 1, so we have

Pr[MY,C (G)=~ ]
Pr[MY,C (G ′)=~ ] ≤

4Y/2 · FG′ (YC,G′ )
FG (YC,G ) . Using our assumption on the volumes, we can upper bound the ratio of normalizing constants

as well. The �rst step to do so is straightforward: for any set �,FG ′ (�) ≤ 4Y/2FG (�). The second inequality,

however, is subtle and uses the sensitivity of @(·; ·) in a di�erent way: any point with score @(G ′;~) ≥ C has

score @(G ;~) ≥ C − 1. Thus we have YC,G ′ ⊆ YC−1,G and can write

4Y/2 · FG
′ (YC,G ′)

FG (YC,G )
≤ 4Y · FG (YC,G

′)
FG (YC,G )

≤ 4Y · FG (YC−1,G )
FG (YC+1,G )

≤ 4Y (1 + 2X).

Similarly, we have YC+1,G ⊆ YC,G ′ . This allows us to apply our hypothesis a second time.

Pr[MY,C (G) ∉ YC,G ′] ≤ Pr[MY,C (G) ∉ YC+1,G ] = 1 − FG (YC+1,G )
FG (YC,G )

≤ 1 − FG (YC+1,G )
FG (YC−1,G )

≤ X.

Thus, continuing from Equation (11), we have

Pr[MY,C (G) ∈ �] ≤ 4Y (1 + 2X) Pr[MY,C (G ′) ∈ �] + X
≤ 4Y Pr[MY,C (G ′) ∈ �] + (1 + 24Y)X.

We now upper bound for Pr[MY,C (G ′) ∈ �] in a similar manner. First,

Pr[MY,C (G ′) ∉ YC,G ] ≤ Pr[MY,C (G ′) ∈ YC−1,G \ YC,G ] =
FG ′ (YC−1,G \ YC,G )

FG ′ (YC,G )

≤ 4YFG (YC−1,G \ YC,G )
FG (YC,G )

= 4Y
FG (YC−1,G ) −FG (YC,G )

FG (YC,G )
, (12)

where the �rst inequality holds since supp(MY,C (G ′)) \ YC,G = {~ ∈ Y : @(G ;~) = C − 1 and @(G ′;~) = C} ⊆
{~ ∈ Y : @(G ;~) = C − 1} = YC−1,G \ YC,G . Since

FG (YC−1,G )
FG (YC,G ) ≤

FG (YC−1,G )
FG (YC+1,G ) ≤ 1 + 2X , (12) is at most 24YX . For the

ratio, we have

Pr[MY,C (G ′) = ~]
Pr[MY,C (G) = ~]

≤ 4Y/2 FG (YC,G )
FG ′ (YC,G ′)

≤ 4Y FG (YC,G )
FG (YC,G ′)

≤ 4YFG (YC−1,G )
FG (YC+1,G )

≤ 4Y (1 + 2X).

Thus Pr[MY,C (G ′) ∈ �] ≤ 4Y Pr[MY,C (G) ∈ �] + 44YX . �
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We now use this lemma to establish when a data set is far from the set of unsafe data sets. Note that setting

: = 0 below implies for all I ∈ UNSAFE that we have �� (G, I) > 0, i.e., G ∈ SAFE.

Lemma3.8. For any: ≥ 0, if there exists a6 > 0 such that Vol(YC−:−1,G )
Vol(YC+:+6+1,G ) ·4

−Y6/2 ≤ X , then for all I ∈ UNSAFE(Y,X′,C ) ,
with X ′ = 44YX , we have �� (G, I) > :

Proof. Take some I at distance at most : from G (if : = 0, set I ← G ). We show I ∈ SAFE(Y,X′,C ) . We have, from

Lemma 3.7, that if
FI (YC+1,I )
FI (YC−1,I ) ≥ 1− X , then I is safe. This assumption is equivalent to

FI (YC−1,I\YC+1,I )
FI (YC−1,I ) ≤ X , which

is the form we use.

First we lower bound the denominator:

FI (YC−1,I) ≥ FI (YC+6+1,I) ≥ Vol(YC+6+1,I)4Y (C+6+1)/2 ≥ Vol(YC+6+:+1,G )4Y (C+6+1)/2,

where (crucially) the last inequality switches to the volume under G , and we have used the sensitivity of @. We

use the same idea on the numerator, switching to a volume under G in the �rst inequality:

FI (YC−1,I\YC+1,I) ≤ FI (YC−:−1,G\YC+1,I) ≤ Vol(YC−:−1,G )4Y (C+1)/2.

With an upper bound on the numerator, a lower bound on the denominator, and the fact that
4Y (C+1)/2

4Y (C+6+1)/2
= 4−Y6/2,

we have

FI (YC−1,I\YC+1,I)
FI (YC−1,I)

≤
Vol(YC−:−1,G )

Vol(YC+:+6+1,G )
· 4−Y6/2 ≤ X,

so I ∈ SAFE(Y,X′,C ) . �

3.2.3 Typical Gaussian Data Are Far from Unsafe

With Lemma 3.8, we can show that U1-typical data sets are far from UNSAFE. We ask for an additional
log(1/V)

Y

distance beyond the threshold to ensure that we pass the distance test with high probability.

Lemma 3.9 (Typically Far from UNSAFE). Assume that G is U1-typical for U1 ≤ 1

10
. There exists a constant 2 such

that, for any V, X, Y > 0 with Y ≤ 1 and X ≤ 1

2
, if = ≥ 2

(
3+log(1/VX)

Y

)
then G is log(1/2VX)

Y
-far from UNSAFE(Y,X,=/4) .

Proof. We use Lemma 3.8, which asks for a 6 > 0 such that
Vol(YC−:−1,G )

Vol(YC+:+6+1,G ) · 4
−Y6/2 ≤ X

44Y
to imply that G is :-far

from UNSAFE(Y,X,C ) . We take 6 = =
8

, so C −:−1 = =

(
1

4
− :+1

=

)
and C +6+: +1 = =

(
3

8
+ :+1

=

)
. We apply Lemma 3.6

to bound the ratio of volumes:

Vol(YC−:−1,G )
Vol(YC+:+6+1,G )

≤
©­­«
Φ−1

(
3

4
+ :+1

=
+ U1

)
Φ−1

(
5

8
− :+1

=
− U1

) ª®®¬
3

. (13)

We want both arguments to the quantile functions to be bounded away from 1/2 and 1, for which it su�ces to

use our assumption of U1 ≤ 1

10
and ask that

:+1
=

< 1

100
. This means that we must have = & (1/Y) log(1/VX).

With both quantiles equal to constants, there is a constant 2 ′ such that

Vol(YC−:−1,G )
Vol(YC+:+6+1,G )

· 4−Y6/2 ≤ 42′3−=Y/16, (14)

so we require = ≥ 2
(
3+log(1/X)

Y

)
for some constant G to make (14) at most

X
44Y

, noting that 4Y ≤ 4 . �
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3.2.4 Restricted Exponential Mechanism is Accurate

For our �nal lemma in the accuracy analysis, we show that the restricted samplerMY,C (G), when run on

U1-typical data sets, with high probability returns a point with high empirical Tukey depth.

Lemma 3.10 (Accuracy ofMY,C (G)). Assume that G is U1-typical for U1 < 1

10
. For any V > 0 and U2 ≥ 2U1, we

have, for some constant 2 ,

Pr

~∼M=/4 (G)

[
)G (~) <

1

2

− U2

]
≤

(
2

U2 − 2U1

)3
4−U2=Y/4. (15)

Proof. Let BAD be the set of points with empirical Tukey depth below
1

2
− U2, and GOOD those with score

above
1

2
− U2

2
. Let ~ ∼ M=/4 (G).

Pr[~ ∈ BAD] ≤ Pr[~ ∈ BAD]
Pr[~ ∈ GOOD] ≤

Vol(BAD) exp

{
=Y
2

(
1

2
− U2

)}
Vol(GOOD) exp

{
=Y
2

(
1

2
− U2

2

)} ≤ Vol(Y=/4,G )
Vol(Y= ( 1

2
−U

2

2
),G )
· 4−U2=Y/4 . (16)

By Lemma 3.6, the ratio of volumes is at most

(
Φ−1 (3/4+U1)

Φ−1 ( 1

2
+U2

2
−U1)

)3
. Since U1 ≤ 1

10
, Φ−1 (3/4 + U1) is at most a

constant.

As U2 − 2U1 tends to 0, the demoninator approaches 0 as well. To �nish the proof, then, we show that, for

any I > 0, Φ−1
(

1

2
+ I

)
≥
√

2cI or, equivalently,
1

2
+ I ≥ Φ(

√
2cI). Since 4−G

2/2 ≤ 1, we have

Φ(
√

2cI) ≤ 1

2

+ 1

√
2c

∫ √
2cI

0

1 dG =
1

2

+ I. (17)

�

We are now ready to prove the main theorem.

Proof of Theorem 3.2. Set U1 = 20U for a constant 20 to be determined later, and set U2 = 3U1. By Lemma 3.5,

with probability at least 1 − V , G is U1-typical. If G is U1-typical, by Lemma 3.9 it is at least
log(1/2XV)

Y
-far from

UNSAFE(Y,X,C ) . This implies that Algorithm 1 returns FAIL with probability at most 2V : by the CDF of the

Laplace distribution,

Pr[FAIL] ≤ Pr[G not U1-typical] + Pr

[
log(1/2XV)

Y
+ / ≤ log(1/2X)

Y

]
(18)

≤ V + Pr

[
/ ≤ − log(1/V)

Y

]
= V + V

2

. (19)

If G is U1-typical and we don’t return FAIL, we instead return a sample fromM=/4 (G). Lemma 3.10 tells us

that, for U1-typical G ,

Pr

~∼M=/4 (G)

[
)G (~) <

1

2

− U2

]
≤

(
2

U2 − 2U1

)3
4−U2=Y/4 ≤ 43 log(2/U1)−U2=Y/4, (20)

using U2 = 3U1. Since = is su�ciently large, this is at most V .

So with probability at least 1 − 3V , we have )G (~) ≥ 1

2
− U2. Since G is U1-typical, we have

)% (~) ≥
1

2

− U1 − U2 =
1

2

− 4U1 . (21)

Recall Φ(−‖~ − `‖Σ) = )% (~). By de�nition, Φ(−I) = 1

2
− 1

2
Erf

(
I√
2

)
. It is easy to see that Erf (G) ≥ Erf (1) ·G ≥

0.84G for G ∈ [0, 1] (see e.g. [16, Lemma 3.2]). It follows that

Φ(−I) ≤ 1

2

− 0.84I

2

√
2

.
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Combining the above inequalities, we have that ‖~ − `‖Σ ≤ 8

√
2

0.84
U1 ≤ 14U1. Setting 20 = 1/14 makes this term

at most U .

Privacy follows from a standard calculation, provided in Appendix D as Proposition D.1. �

4 Empirically Rescaled Gaussian Mechanism
In this section, we describe our second estimator. At a high level, the estimator �rst privately checks whether

the data set G is
1

Y
-close in Hamming distance to a good set of “roughly Gaussian” data sets G(_). If so,

it �nds the closest data set to G that belongs in G(_), which we call G̃ . Then it returns a sample ˆ̀ drawn

from N(`G̃ ,�2ΣG̃ ), where `G̃ and ΣG̃ are the empirical mean and covariance of G̃ and � is a scale parameter

appropriately set to ensure privacy.

Speci�cally, we de�ne the empirical mean and covariance in the following (slightly non-standard) way:

De�nition 4.1 (Empirical Mean and Covariance). For data set G ∈ R3=×3
, the empirical mean and covariance

of G are respectively de�ned by

`G =
1

=

=∑
8=1

G8+2= and ΣG =
1

2=

=∑
8=1

(G8 − G8+=) (G8 − G8+=)) .

In comparison with the standard empirical estimators, ours enable a simpler privacy analysis, since

replacing one datapoint in G only a�ects one term in one of the sums. For convenience, we choose the number

of samples to be 3= so that we can pair the �rst two thirds to construct ΣG and use the last third for `G . Note

that before accessing the data set, the algorithm randomly permutes all data points (line 3) – a technicality

which pertains to the fact that ΣG is order-dependent. With these de�nitions at hand, the good set G(_) is

de�ned as follows:

De�nition 4.2 (_-goodness). For any _ > 0, de�ne G(_) ⊆ R3=×3
as

G(_) def

=

{
G ∈ R3=×3

: ΣG is invertible and ∀8 ∈ [3=] ‖G8 − `G ‖2ΣG ≤ _
}
.

We set _ ≈ 3 log=, since for this value (sub)Gaussian data will belong in G(_) with high probability.

Finally, we note that the algorithm immediately aborts if the number of samples is less than
:_ log(1/X)

Y
≈

3 log(1/X)
Y2

, a condition necessary to ensure privacy. The parameter : ≈ log(1/X)
Y

is an upper bound on the

Hamming distance between the projections G̃, ~̃ of any two neighboring data sets G,~ that pass the check in

line 5, and, along with _, plays an important role in the privacy analysis.

Algorithm 2 Empirically Rescaled Gaussian Mechanism A�
Y,X,V
(G)

Require: Data set G = (G1, . . . , G3=)) ∈ R3=×3
. Privacy parameters Y, X > 0. Failure probability V > 0.

1: Initialize: _ ← $

(
3 log

=
V

)
, C ← 1

Y
log

1

V
, : ← 2

Y
log

1

XV
+ 1, �2 ← 32:2

Y2=2
· _

1−2:_/= · log
1.25

X
.

2: if = = >

(
:_
Y

log
1

X

)
then return FAIL.

3: Ḡ ← f (G) ⊲ random permutation f : (R3 )3= → (R3 )3=
4: ℎ ← �� (Ḡ,G(_)) ⊲ distance between Ḡ and _-goodness

5: if ℎ + A > C for A ∼ Lap(1/Y) then return FAIL.
6: G̃ ← arg minI∈G(_) �� (Ḡ, I) ⊲ projection to _-goodness

7: return ˆ̀ ∼ N(`G̃ ,�2ΣG̃ )

We remark that the sample size check in line 2 and the setting of _ are not well-de�ned, as they are stated

with asymptotic notation. Although it is possible to compute the constants for these steps, we exclude them in

favor of a cleaner analysis.

For simplicity, in this section we focus on Gaussian data. For the more general discussion for subgaussian

data sets, see Appendix B.
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Theorem 4.3 (Privacy and Accuracy of the Empirically Rescaled Gaussian Mechanism). For any Y > 0,
0 < X < 1, Algorithm 2 is (3Y, 4Y (1 + 4Y)X)-di�erentially private. There exists an absolute constant � such that,
for any 0 < U, V, Y, X < 1, mean `, and positive de�nite Σ, if G ∼ N(`, Σ)⊗= and

= ≥ �
(
3

U2
log

1

V
+ 3

UY2
log

3
1

XV
· log

3 log(1/XV)
UY

)
, (22)

then with probability at least 1 − 3V , Algorithm 2 returns A�
Y,X,V
(G) = ˆ̀ such that ‖ ˆ̀ − `‖Σ ≤ U .

The proof of Theorem 4.3 follows by a combination of the accuracy and privacy guarantees of the algorithm,

stated in Theorem 4.9 and Corollary 4.14 which we prove in the next two sections.

4.1 Accuracy Analysis
The crux of the proof of the sample complexity guarantee (Theorem 4.9) is the following. Suppose = is large

enough so that the algorithm does not fail in line 2.

• If G ∼ N(`, Σ)⊗3=
and the number of samples is = = $ (3 + log(1/V)), then with probability 1 − V over

the draw of G , the data set G is in the good set G(_) for _ = $̃ (3) (Lemma 4.7). In particular, this holds

for the permuted data set Ḡ as this is also drawn from N(`, Σ)⊗3=
.

• This implies that with high probability over the randomness of the algorithm, Ḡ passes the Hamming

distance check in line 5 and the projection of line 6 leaves it intact so that G̃ = Ḡ .

• It then su�ces to prove that, with high probability, the returned estimator ˆ̀ ∼ N(`Ḡ ,�2ΣḠ ) is a good

approximation of the true mean ` measured by the Mahalanobis distance with respect to the true Σ,

that is, ‖ ˆ̀ − `‖Σ = $̃ (
√
3/= + 3/Y2=) (Lemma 4.8).

For a short review of basic linear algebra facts, see Appendix A. We start by presenting a few known facts

we will use in this subsection. First, we prove the following proposition, which states that if two matrices

Σ1, Σ2 are good spectral approximations of one another, then the Mahalanobis distance of any vector with

respect to Σ1 is close to the one with respect to Σ2 and vice versa.

Proposition 4.4. For positive de�nite matrices Σ1, Σ2, if there exists a constant W ∈ (0, 1) such that

(1 − W)Σ1 � Σ2 � (1 + W)Σ1,

then for any vector E we have
1

√
1 + W

‖E ‖Σ1
≤ ‖E ‖Σ2

≤ 1

√
1 − W

‖E ‖Σ1
.

Proof. We upper bound ‖E ‖Σ2
; the lower bound is analogous. Since the matrices are invertible, we have

Σ−1

1
� (1 − W)Σ−1

2
, i.e. Σ−1

1
− (1 − W)Σ−1

2
is psd. So we have

(1 − W)‖E ‖2Σ2

= (1 − W)‖E ‖2Σ2

− ‖E ‖2Σ1

+ ‖E ‖2Σ1

= E)
(
(1 − W)Σ−1

2
− Σ−1

1

)
E + ‖E ‖2Σ1

= ‖E ‖2Σ1

− E)
(
Σ−1

1
− (1 − W)Σ−1

2

)
E

≤ ‖E ‖2Σ1

,

applying the fact that E)�E ≥ 0 for psd matrices. �

We will also make use of the following standard concentration inequalities for Gaussian random variables.

For a reference, see [22]. The formulation used here is from [50, Fact 3.4].
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Lemma 4.5. Let D8 ∼ N(0, I) be i.i.d. samples for 8 ∈ [=]. De�ne the estimator Σ̂ = 1

=

∑=
8=1
D8D

)
8 . For every V > 0,

with probability at least 1 − V the following conditions both hold:(
1 −$

(√
3 + log(1/V)

=

))
· I � Σ̂ �

(
1 +$

(√
3 + log(1/V)

=

))
· I (23)

∀8 ∈ [=] ‖D8 ‖22 ≤ $ (3 log(=/V)) (24)

The following generalization to non-spherical Gaussians is a straighforward implication.

Lemma 4.6. Suppose D1, . . . , D= satisfy inequalities (23) and (24). Let Σ � 0 and let _1 be the largest eigenvalue
of Σ. Let I8 = Σ1/2D8 for all 8 ∈ [=] and de�ne Σ̂I = 1

=

∑=
8=1
I8I

)
8 . Then the following conditions both hold:(

1 −$
(√

3 + log(1/V)
=

))
· Σ � Σ̂I �

(
1 +$

(√
3 + log(1/V)

=

))
· Σ

∀8 ∈ [=] ‖I8 ‖22 ≤ $ (_13 log(=/V))

We now begin the accuracy analysis.

In the next Lemma 4.7 we prove that if = & 3 then Gaussian data sets fall into the good set G(_) with high

probability. Intuitively, this holds since Gaussian data are already likely to satisfy the condition ‖G8 − `‖Σ ≤ _,

which by design is the same as the condition on the good set, except that the true parameters are replaced by

the empirical ones. The assumption = & 3 ensures that the empirical and true parameters are close.

Lemma 4.7. Let G ∼ N(`, Σ)⊗3= and = = Ω(3 + log(1/V)). There exists a _ = $ (3 log(=/V)) such that, with
probability at least 1 − V we have G ∈ G(_).

Proof. Since Mahalanobis distance is invariant to both changes in mean and full-rank transformations, it

su�ces to prove this claim for G ∼ N(0, I)⊗3=
.

Taking = = Ω(3 + log(1/V)), we have that there exists a constant W ∈ (0, 1) so that $

(√
3+log(1/V)

=

)
is less

than W . By Lemma 4.5 with probability 1 − V ,

(1 − W) · I � ΣG � (1 + W) · I (25)

and

∀8 ∈ [3=] ‖G8 − `‖2 ≤ $ (
√
3 log(=/V)). (26)

These equations and Proposition 4.4 imply that ΣG is invertible and that for all 8 , ‖G8 − `‖ΣG = $ (
√
3 log(=/V)).

Furthermore, Equation (26) implies ‖`G − `‖ΣG ≤ 1

=

∑=
8=1
‖G8+2= − `‖ΣG = $ (

√
3 log(=/V)) by the triangle

inequality. We �nish the proof by applying the triangle inequality one more time: ‖G8 − `G ‖ΣG ≤ ‖G8 − `‖ΣG +
‖` − `G ‖ΣG = $ (

√
3 log(=/V)). �

The next lemma bounds the error ‖ ˆ̀ − `‖Σ for ˆ̀ ∼ N(`G ,�2ΣG ), where G ∼ N(`, Σ)⊗3=
. It follows

directly from Gaussian concentration. The condition on the number of samples serves two purposes. First,

= = Ω(3 + log(1/V)) is required so that the empirical covariance ΣG is a good spectral approximation of the

true covariance Σ, as before. Second, = = Ω(:_) is required so that the parameter �2
is well-de�ned. Recalling

the setting of parameters : = $ (log(1/XV)/Y) and _ = $ (3 log(=/V)), both these conditions are satis�ed as

long as = = $̃ (3/Y).

Lemma 4.8. Suppose G ∼ N(`, Σ)⊗3= and = = Ω(max{(3 + log(1/V)), :_}), where parameters :, _ are set as in
Algorithm 2. Then with probability at least 1 − V , for ˆ̀ ∼ N(`G ,�2ΣG ),

‖ ˆ̀ − `‖Σ = $

(√
3

=
· log

1

V
+ 3

Y2=
log

2
1

XV
·
√

log

=

V

)
.
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Proof. By triangle inequality, we have that

‖ ˆ̀ − `‖Σ ≤ ‖` − `G ‖Σ + ‖`G − ˆ̀‖Σ .

We focus on the �rst term ‖` − `G ‖Σ = ‖ 1

=

∑=
8=1

Σ−1/2 (G8+2= − `)‖2 = ‖ 1

=

∑=
9=1
D8 ‖2, where D8 ∼ N(0, I) for all

8 ∈ [=]. Since
1

=

∑=
9=1
D8 ∼ N(0, 1

=
I), we can write ‖ 1

=

∑=
9=1
D8 ‖2 = 1√

=
‖D ′‖2 for D ′ ∼ N(0, I). By Lemma 4.5, we

have that ‖D ′‖2
2
= $ (3 log(1/V)) with probability at least 1 − V/2. So with probability at least 1 − V/2, it holds

that

‖` − `G ‖Σ = $

(√
3

=
· log

1

V

)
. (27)

We now give an upper bound for the second term. Notice that if we let I8 = (G8−G8+=)/
√

2, then for all 8 ∈ [=]

I8 are i.i.d. samples fromN(0, Σ) and ΣG = 1

=

∑=
8=1
I8I

)
8 . Taking = = Ω(3 + log(1/V)), so that$

(√
3+log(1/V)

=

)
is

a su�ciently small constant W , by Lemma 4.6 with probability 1 − V/4 we have (1 − W) · Σ � ΣG � (1 + W) · Σ.

It follows that, by Proposition 4.4, ‖ ˆ̀ − `G ‖Σ = $ (‖ ˆ̀ − `G ‖ΣG ). So it su�ces to bound ‖ ˆ̀ − `G ‖ΣG =

‖�−1Σ−1/2
G ( ˆ̀ − `G )‖2 ·� .

Since ˆ̀ ∼ N(`G ,�2ΣG ), equivalently, we have that D = �−1Σ−1/2
G ( ˆ̀ − `G ) ∼ N (0, I). By Lemma 4.5, we

have that with probability at least 1 − V/4, ‖D‖2
2
= $ (3 log(1/V)). Therefore, by union bound, with probability

at least 1 − V/2,

‖ ˆ̀ − `G ‖Σ = $

(
�

√
3 log

1

V

)
. (28)

Combining Equation (27) and (28), by union bound, with probability at least 1 − V , it holds that

‖ ˆ̀ − `‖Σ = $

(√
3

=
· log

1

V
+�

√
3 log

1

V

)
= $

(√
3

=
· log

1

V
+ :

Y=

√
_

1 − 2:_/= log

1.25

X

√
3 log

1

V

)
(substituting �)

= $

(√
3

=
· log

1

V
+ :

Y=

√
3_ log

1

X
· log

1

V

)
(since = = Ω(:_))

= $

(√
3

=
· log

1

V
+ :3
Y=

√
log

1

X
· log

1

V
· log

=

V

)
(substituting _)

= $

(√
3

=
· log

1

V
+ 3

Y2=

(
log

1

X
+ log

1

V

)√
log

1

X
· log

1

V
· log

=

V

)
(substituting :)

= $

(√
3

=
· log

1

V
+ 3

Y2=
log

2
1

XV
·
√

log

=

V

)
.

This completes the proof of the lemma. �

We are now ready to state the sample complexity of Algorithm 2, putting together the lemmas above.

Theorem 4.9 (Accuracy of A�
Y,X,V
(G)). There exists an absolute constant � such that, for any 0 < U, V, Y, X < 1,

mean `, and positive de�nite Σ, if G ∼ N(`, Σ)⊗3= and

= ≥ �
(
3

U2
log

1

V
+ 3

UY2
log

3
1

XV
· log

3 log(1/XV)
UY

)
, (29)
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then with probability 1 − 3V , Algorithm 2 returns A�
Y,X,V
(G) = ˆ̀ such that ‖ ˆ̀ − `‖Σ ≤ U .

Proof. First, we argue that for this sample complexity, the algorithm does not return FAIL in line 2. Recall

that the condition is

= = Ω

(
:_

Y
log

1

X

)
. (30)

Substituting the terms : = 2

Y
log

1

XV
+ 1 and _ = $ (3 log(=/V)) in condition (30), we have that

:_

Y
log

1

X
= $

(
3

Y2
log

1

XV
· log

=

V
· log

1

X

)
= $

(
3

Y2
log

3
1

XV
· log=

)
.

For some absolute constant � , we let

= ≥ �
(
3

U2
log

1

V
+ 3

UY2
log

3
1

XV
· log

3 log(1/XV)
UY

)
. (31)

By straightforward calculations and since U ≤ 1, we can see that the sample size of Eq. (31) above su�ces for

= to satisfy condition (30), and so Algorithm 2 does not fail in line 2.

Since Ḡ is a permutation of G , it holds that Ḡ ∼ N(`, Σ)⊗3=
as well. Note that the number of samples in

Eq. (31) satis�es = = Ω(3 + log(1/V)). This implies that the assumptions of Lemma 4.7 are satis�ed and thus it

holds that, with probability 1 − V , Ḡ ∈ G(_).
It follows that the Hamming distance of Ḡ from the good set in line 4 is ℎ = 0. Since A ∼ Lap(1/Y), by

concentration of the Laplace distribution, it holds that |A | ≤ 1

Y
log

1

V
with probability 1 − V . Thus, by union

bound, with probability 1 − 2V , ℎ + A ≤ 1

Y
log

1

V
. It follows that, with probability 1 − 2V , we do not fail in line 5

and we reach line 6, where the projection step leaves the data set unchanged, that is, G̃ = Ḡ , since Ḡ ∈ G(_).
So far, we have proven that with probability 1 − 2V , Algorithm 2 does not fail in any step and returns

ˆ̀ ∼ N(`Ḡ ,�2ΣḠ ) in line 7, where Ḡ ∼ N(`, Σ)⊗3=
. Now, notice that the sample complexity stated in Eq. (31)

satis�es the condition = = Ω(max{(3 + log(1/V)), :_}) as well. Since Ḡ ∼ N(`, Σ)⊗3=
, the assumptions of

Lemma 4.8 are satis�ed and therefore, by union bound, with probability at least 1 − 3V , Algorithm 2 returns ˆ̀

such that

‖ ˆ̀ − `‖Σ = $

(√
3

=
· log

1

V
+ 3

Y2=
log

2
1

XV
·
√

log

=

V

)
. (32)

The proof is complete by observing that for the stated sample complexity and the right choice of constant

� in Eq. (31), the error in Eq. (32) is upper bounded so that ‖ ˆ̀ − `‖Σ ≤ U . �

4.2 Privacy Analysis
We state the privacy guarantee of our algorithm in Corollary 4.14. We consider two neighboring data sets G,~

and that they are “aligned,” i.e. their Hamming distance is minimized and �� (G,~) ≤ 1. We show that due to

the permutation step in line 3, it su�ces to prove the privacy guarantee for this case (Lemma D.6).

The private check in line 5 of the algorithm ensures that for two data sets with Hamming distance 1, the

probabilities of failing under G,~ are indistinguishable. If G,~ are far from the good set, then they both fail with

high probability. On the other hand, if G,~ are close to the good set, then their projections G̃, ~̃ are close to each

other, i.e. �� (G̃, ~̃) ≤ : . In particular, this implies that the estimators ΣG̃ , Σ~̃ are “close” (in a sense established

in Section 4.2.1) since they di�er in at most : terms and each term is bounded (because G̃, ~̃ ∈ G(_)).
Our main result is Theorem 4.13, which states that any two nearby and good data sets G̃, ~̃ have empirical

estimators that induce indistinguishable output distributions N(`G̃ ,�2ΣG̃ ) and N(`~̃,�2Σ~̃). The proof is

broken into two parts:

1. First, we “change the mean” and show that N(`G̃ ,�2ΣG̃ ) ≈Y,X N(`~̃,�2ΣG̃ ), which is equivalent to

N(Σ−1/2
G̃
(`G̃ − `~̃),�2I) ≈Y,X N(0,�2I) (Lemma 4.19). This follows by an application of the Gaussian

mechanism for the right choice of parameter � .
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2. Second, we “change the covariance” and show thatN(`~̃,�2ΣG̃ ) ≈Y1,X N(`~̃,�2Σ~̃), for Y1 = $

(
:_
=−:_ log

1

X

)
,

which is equivalent to N(0, ΣG̃ ) ≈Y1,X N(0, Σ~̃) (Lemma 4.15). Notice that if we want Y1 ≤ Y, then it has

to be the case that = = Ω
(
:_
Y

log
1

X

)
= Ω

(
3
Y2
· polylog

(
3 log(1/VX)

Y

))
, which is the condition in line 2 of

Algorithm 2.

4.2.1 Implications of Goodness

Before directly addressing privacy, we state a few lemmas that follow from the goodness assumption. The

proofs, provided in Appendix D, require only elementary linear algebra.

Lemma 4.10. If G ∈ G(_), then for any indices 8, 9 ∈ [3=] we have

(G8 − G 9 )) Σ−1

G (G8 − G 9 ) ≤ 4_.

In particular, this applies to D)8 Σ
−1

G D8 for all 8 ∈ [=], where D8 = G8 − G8+= .

Lemma 4.11. Suppose G,~ ∈ G(_) and �� (G,~) ≤ : , with 2:_ < =. For any vector E we have

E) Σ−1

~ E ≤
1

1 − 2:_/= · E
) Σ−1

G E .

Lemma 4.12. Suppose G,~ ∈ G(_) and �� (G,~) ≤ : , with 2:_ < =. Then

‖Σ−1/2
G Σ~Σ

−1/2
G − I‖tr ≤ 2:_

(
1

= − 2:_
+ 1

=

)
‖Σ−1/2

~ ΣGΣ
−1/2
~ − I‖tr ≤ 2:_

(
1

= − 2:_
+ 1

=

)
4.2.2 Proof of Di�erential Privacy

We are now ready to prove the privacy guarantees of Algorithm 2. Unlike the standard empirical estimators,

our de�nition of ΣG is not invariant with respect to reordering the data. As a result, the covariance Σ~ of

an adjacent data set ~ could di�er in an arbitrary number of terms. To simplify our analysis, we establish

indistinguishability for adjacent data sets that are “aligned,” i.e., they have Hamming distance 1. Because of

the data-order permutation step in Algorithm 2, we can extend this to apply more generally to adjacent data

sets (interpreted as multisets) which di�er in a single data point, as required by the standard de�nition of

di�erential privacy (see Proposition D.6 in Appendix D).

The main result, Theorem 4.13, is that any two nearby, good data sets have empirical estimators that

induce indistinguishable output distributions. With this in hand, overall privacy of Algorithm 2 follows from a

standard calculation, included in Appendix D.2.

Theorem 4.13. For any Y, X, _, :, = > 0 such that

= > 2:_ and Y ≥ 10:_

(
1

= − 2:_
+ 1

=

)
log

2

X
,

set

�2 =
32:2

Y2=2
· _

1 − 2:_/= · log

1.25

X
.

For any data sets G,~ ∈ G(_) of size 3= such that �� (G,~) ≤ : , we have N(`G ,�2ΣG ) ≈2Y,(1+4Y )X N(`~,�2Σ~).

Corollary 4.14 (Privacy of A�
Y,X,V
(G)). Algorithm 2 is (3Y, 4Y (1 + 4Y)X)-di�erentially private.
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Theorem 4.13 follows from the triangle inequality for indistinguishability
5

and Lemmas 4.15 and 4.19: the

�rst establishes N(`~,�2Σ~) ≈ N (`~,�2ΣG ) and the second gives us N(`~,�2ΣG ) ≈ N (`G ,�2ΣG ).

Lemma 4.15. Suppose G,~ ∈ G(_) and �� (G,~) ≤ : . For any X ∈ (0, 1), if 2:_ < = and

Y ≥ 10:_

(
1

= − 2:_
+ 1

=

)
log

2

X
,

then N(0, ΣG ) ≈Y,X N(0, Σ~).

Note that this implies indistinguishability for any bijection of these two distributions. In particular, we

have N(`~,�2Σ~) ≈Y,X N(`~,�2ΣG ). For this proof, we use the Hanson-Wright Inequality, stated in the next

lemma (see [56] for this formulation).

Lemma 4.16 (Hanson-Wright Inequality). Let D ∼ N(0, I) and � ∈ R3×3 . Then, with probability 1 − V ,

tr(�) − 2‖� ‖�

√
log

2

V
≤ D)�D ≤ tr(�) + 2‖� ‖�

√
log

2

V
+ 2‖� ‖2 log

2

V
.

Proof of Lemma 4.15. The privacy loss function is

5 (F) =
�����log

Pr, ∼N(0,ΣG ) [, = F]
Pr, ∼N(0,Σ~ ) [, = F]

�����
=

�����log

(
|Σ~ |1/2

|ΣG |1/2
exp

{
−1

2

F) Σ−1

G F +
1

2

F) Σ−1

~ F

})�����
≤ 1

2

���F) (
Σ−1

~ − Σ−1

G

)
F

��� + 1

2

����log

|Σ~ |
|ΣG |

����. (33)

It su�ces to prove that PrF∼N(0,ΣG ) [5 (F) > Y] ≤ X and PrF∼N(0,Σ~ ) [5 (F) > Y] ≤ X .

By Lemma 4.12, setting d = 2:_
(

1

=−2:_
+ 1

=

)
, we have:

‖Σ−1/2
G Σ~Σ

−1/2
G − I‖tr ≤ d

‖Σ−1/2
~ ΣGΣ

−1/2
~ − I‖tr ≤ d

Now we will use the following facts, whose proofs follow by standard properties of the trace and are omitted.

Fact 4.17. Let �, � be two symmetric positive de�nite matrices. Then the following equalities hold.

tr

(
�−1/2��−1/2 − I

)
= tr

(
�1/2�−1�1/2 − I

)
and

‖�−1/2��−1/2 − I‖� = ‖�1/2�−1�1/2 − I‖� .

Fact 4.18. Let |� | denote the determinant of a matrix � . Then tr(I −�−1) ≤ log |� | ≤ tr(� − I).

By Fact 4.17 and since max{| tr(�) |, ‖� ‖� } ≤ ‖� ‖tr for any matrix � , this implies that

max

{���tr(Σ1/2
~ Σ−1

G Σ1/2
~ − I

)���, 


Σ1/2
~ Σ−1

G Σ1/2
~ − I





�

}
≤ d (34)

max

{���tr(Σ1/2
G Σ−1

~ Σ1/2
G − I

)���, 


Σ1/2
G Σ−1

~ Σ1/2
G − I





�

}
≤ d (35)

5
For three distributions %1, %2, %3, the de�nition of (Y, X)-indistinguishability tells us that if %1 ≈Y,X %2 and %2 ≈Y,X %3 then

%1 ≈2Y,(1+4Y )X %3.
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In addition, we observe that by applying Fact 4.18 once for � = Σ−1

G Σ~ and once for � = Σ−1

~ ΣG and using

again the cyclic property of the trace, we can also bound the second term of Eq. (33) as����log

|Σ~ |
|ΣG |

���� ≤ d. (36)

We need a tail bound on

���F) (
Σ−1

~ − Σ−1

G

)
F

��� under both distributions. Take F ∼ N(0, ΣG ) or, alternatively,

D ∼ N(0, I) andF = Σ1/2
G D. Using this, we have���F) (

Σ−1

~ − Σ−1

G

)
F

��� = ���(Σ1/2
G D))

(
Σ−1

~ − Σ−1

G

)
(Σ1/2
G D)

���
=

���D) (
Σ1/2
G Σ−1

~ Σ1/2
G − I

)
D

���
=

��D)�D��, (37)

de�ning � as the “di�erence matrix.”

Using the Hanson-Wright Inequality (Lemma 4.16), with probability at least 1 − X ,

|D)�D | ≤ | tr(�) | + 2‖� ‖�
√

log(2/X) + 2‖� ‖2 log(2/X).
It holds that ‖� ‖� ≥ ‖� ‖2 for any matrix. So, with probability at least 1 − X ,

|D)�D | ≤ 5 log(2/X)max{| tr(�) |, ‖� ‖� } ≤ 5 log(2/X)d (38)

where the latter holds by Eq. (34).

Combining Eq. (37), (38), and (36) in Eq. (33), with probability at least 1 − X underF ∼ N(0, ΣG ),

5 (F) ≤ 5

2

d log

2

X
+ 1

2

d ≤ 5d log

2

X
= 10:_

(
1

= − 2:_
− 1

=

)
log

2

X
≤ Y.

Similarly, we bound the �rst term of Eq. (33) for F ∼ N(0, Σ~) using the same argument, where the

“di�erence matrix” is now � ′ = Σ1/2
~ Σ−1

G Σ1/2
~ − I. �

Our second lemma, about the indistinguishability of Gaussians with the same covariance and di�erent

means, follows from the analysis of the standard Gaussian mechanism and the application of our goodness

assumption.

Lemma 4.19. Suppose G,~ ∈ G(_) and �� (G,~) ≤ : , with 2:_ < =. Set scaling parameter

�2 =
32:2

Y2=2
· _

1 − 2:_/= · log

1.25

X
.

Then N(`~,�2ΣG ) ≈Y,X N(`G ,�2ΣG ).

Proof. We have N(`~,�2ΣG ) ≈Y,X N(`G ,�2ΣG ) i� N(Σ−1/2
G (`~ − `G ),�2I) ≈Y,X N(0,�2I), since translation

and multiplication by an invertible matrix are bijections. By the standard analysis of the Gaussian mechanism

(Lemma 2.7), if we can prove ‖`~ − `G ‖ΣG ≤ Δ` and set � ≥ Δ`Y
−1

√
2 log

1.25

X
, then this is (Y, X)-di�erentially

private.

Let ( = {8 ∈ [=] : G8+2= = ~8+2=}. We have

`G − `~

ΣG =







 1

=

∑
8∈[=]

G8+2= −
1

=

∑
8∈[=]

~8+2=








ΣG

=







 1

=

∑
8∈[=]\(

G8+2= − ~8+2=








ΣG

≤ 1

=

∑
8∈[=]\(

‖G8+2= − ~8+2= ‖ΣG
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Pick any point G 9∗ for 9∗ ∈ ( .

‖G8+2= − ~8+2= ‖ΣG ≤


G8+2= − G 9∗

ΣG + 

~8+2= − G 9∗

ΣG .

By Lemma 4.10, the �rst term is at most 2

√
_. By Lemma 4.11, the second is at most

1√
1−2:_/=



~8+2= − G 9∗

Σ~
,

the Mahalanobis distance under Σ~ . Applying Lemma 4.10 again, since G 9∗ ∈ ~, this is at most
2

√
_√

1−2:_/=
. �
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A Linear Algebra Background
In this section, we present a short introduction to facts from linear algebra, which we use often in our proofs.

For any matrix �, we will denote by _8 (�) and by f8 (�) the 8-th largest eigenvalue and singular value of

�, respectively. We only consider real matrices � ∈ R3×3 .

Proposition A.1 (Properties of eigenvalues and singular values). For any real matrix � ∈ R3×3 ,

f2

8 (�) = _8 (�)�) and
:∑
8=1

|_8 (�) | ≤
:∑
8=1

f8 (�) ∀: ≤ 3.

If � is symmetric, then |_8 (�) | = f8 (�) for all 8 ∈ [3].

De�nition A.2 (Matrix norms). Let � ∈ R3×3 be any square matrix.

• The trace norm (or nuclear norm) of � is ‖�‖tr = tr

(√
�)�

)
=

∑3
8=1
f8 (�).

• The Frobenius norm of � is ‖�‖� =

√∑3
9=1

∑3
8=1
|08, 9 |2 =

√
tr(�)�) =

√∑3
8=1
f2

8
(�).

• The spectral norm of � is ‖�‖2 = sup{‖�G ‖2 : G ∈ R3 s.t. ‖G ‖2 = 1} =
√
_1 (�)�) = f1 (�).

By straightforward comparison of the de�nitions above, ‖�‖2 ≤ ‖�‖� ≤ ‖�‖tr.
We measure the error of our estimator using the Mahalanobis distance.

De�nition A.3 (Mahalanobis distance). For any vector E ∈ R3 and any positive de�nite matrix Σ, the

Mahalanobis distance of E with respect to Σ is de�ned as ‖E ‖Σ = ‖Σ−1/2E ‖2.

Also note that we can write ‖E ‖2Σ = E) Σ−1E .

Proposition A.4. For any vectors D and E , ‖DE) ‖2 ≤ D) E . Furthermore, for any vector E , tr(EE) ) = ‖EE) ‖tr =
‖EE) ‖2 = E) E .
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B Subgaussian Data
In this section, we extend our analysis of Algorithm 2 to show that its guarantees hold even if the data are

subgaussian, instead of the stricter Gaussian assumption used previously.

B.1 Useful Facts and De�nitions
To formalize our setting, let us �rst state useful de�nitions and concentration inequalities for subgaussian

distributions and data sets.

De�nitionB.1 (Subgaussian random variable). A random variable E ∈ Rwith meanE[E] = ` isf2-subgaussian
if E[4_ (E−`) ] ≤ 4_2f2/2

for all _ ∈ R.

In this case, we write E ∼ subG(f2), slightly abusing notation, since subG(f2) represents a family rather

than a single distribution. We also write % ∈ subG(f2) if % is a subgaussian distribution with parameter f2
. In

the 3-dimensional case, we de�ne subgaussian distributions as follows. We write %`,Σ to denote that the mean

and covariance of the distribution are ` and Σ, respectively.

De�nition B.2 (Subgaussian distribution). Let %`,Σ be a distribution over R3 with mean ` and covariance

Σ � 0. For a constant 2 > 0, we say that %`,Σ is subgaussian with parameter 2Σ, if for E ∼ %`,Σ and all unit

vectors D, the distribution of E)D is 2 (D) ΣD)-subgaussian (as in De�nition B.1). That is, for all D ∈ R3 such

that ‖D‖2 = 1,

E
E∼%`,Σ

[4_D) (E−`) ] ≤ 42_2 (D) ΣD)/2
for all _ ∈ R.

We write %`,Σ ∈ subG(2Σ). Intuitively, a distribution is subgaussian if it concentrates at least as well as a

Gaussian along every univariate projection. We note that although De�nition B.2 above is not the “textbook”

de�nition (compare with [74], for example), is has appeared often in the relevant literature (see e.g. [59, 26]).

Concentration inequalitities, analogous to those in Lemma 4.5 for Gaussian data, hold for subgaussian

data:

LemmaB.3 (Extension of Lemma 4.5). LetD8 be i.i.d.3-dimensional samples for 8 ∈ [=] drawn from a distribution
%0,I with mean ` = 0 and covariance Σ = I, such that %0,I ∈ subG(2I) for some constant 2 > 0. De�ne the estimator
Σ̂ = 1

=

∑=
8=1
D8D

)
8 . For every V > 0, the following conditions hold with probability 1 − V :(

1 −$
(√

3 + log(1/V)
=

))
· I � Σ̂ �

(
1 +$

(√
3 + log(1/V)

=

))
· I (39)

∀8 ∈ [=] ‖D8 ‖22 ≤ $ (3 log(=/V)) (40)

Observe that if %0,Σ, with mean ` = 0 and covariance Σ � 0, is a 2Σ-subgaussian distribution for some

2 > 0, then for any G ∼ %0,Σ there exists D = Σ−1/2G with D ∼ %0,I, where %0,I ∈ subG(2I) with mean ` = 0 and

covariance I. Using this observation and the lemma above, we have the following more general concentration

facts for subgaussian distributions.

LemmaB.4 (Extension of Lemma 4.6). Let G8 ∀8 ∈ [=] be i.i.d.3-dimensional samples from %0,Σ, with mean ` = 0

and covariance Σ, such that %0,Σ ∈ subG(2Σ) for some constant 2 > 0. De�ne the estimator Σ̂G = 1

=

∑=
8=1
G8G

)
8 . For

every V > 0, the following conditions hold with probability 1 − V :(
1 −$

(√
3 + log(1/V)

=

))
· Σ � Σ̂G �

(
1 +$

(√
3 + log(1/V)

=

))
· Σ (41)

∀8 ∈ [=] ‖G8 ‖22 ≤ $ (_1 (Σ) · 3 log(=/V)) (42)

We will also use the following standard concentration inequality for the empirical mean of a subgaussian

data set.
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Lemma B.5 (Mean of Subgaussian Vectors). Let D8 be i.i.d. 3-dimensional samples for 8 ∈ [=] drawn from a
distribution %0,I with mean ` = 0 and covariance Σ = I, such that %0,I ∈ subG(2I) for some constant 2 > 0. For
any V > 0, with probability at least 1 − V ,




 1

=

=∑
8=1

D8







2

= $

(√
3 + log(1/V)

=

)
.

B.2 Guarantees of Algorithm 2 for Subgaussian Data
Theorem B.6 (Privacy and Accuracy of the Empirically Rescaled Gaussian Mechanism for Subgaussian Data).
For any Y > 0, 0 < X < 1, Algorithm 2 is (3Y, 4Y (1 + 4Y)X)-di�erentially private. There exists an absolute constant
� such that, for any 0 < U, V, Y, X < 1, mean `, and positive de�nite Σ, if G ∼ % ⊗=

`,Σ , where %`,Σ ∈ subG(2Σ) for
some constant 2 > 0, and

= ≥ �
(
3

U2
log

1

V
+ 3

UY2
log

3
1

XV
· log

3 log(1/XV)
UY

)
, (43)

then with probability at least 1 − 3V , Algorithm 2 returns A�
Y,X,V
(G) = ˆ̀ such that ‖ ˆ̀ − `‖Σ ≤ U .

Proof Sketch. Notice �rst that the privacy guarantees of Algorithm 2 do not depend on the assumption that

the data distribution is Gaussian. Therefore, the privacy analysis of Section 4.2 remains the same. The

accuracy analysis follows the same steps, with two modi�cations: we need to prove that with high probability

subgaussian data fall into the good set G(_) with the same parameter _ (Lemma B.7 below – an extension of

Lemma 4.7) and that with high probability, for the given sample complexity, the error is upper bounded by

U (Lemma B.8 below – an extension of Lemma 4.8). Plugging the new lemmas into the accuracy analysis of

Algorithm 2 completes the proof of the theorem. �

Lemma B.7 (Extension of Lemma 4.7). Suppose that G ∼ % ⊗3=
`,Σ , where %`,Σ is a distribution with mean `,

covariance Σ, such that %`,Σ ∈ subG(2Σ) for some constant 2 > 0. Let = = Ω(3 + log(1/V)). There exists a
_ = $ (3 log(=/V)) such that, with probability at least 1 − V we have G ∈ G(_).

The proof of the lemma is omitted since it follows the same steps as the proof of Lemma 4.7, except that the

use of the concentration properties of Gaussians stated in Lemma 4.6 is replaced by the use of the concentration

properties of subgaussians stated in Lemma B.4.

Lemma B.8 (Extension of Lemma 4.8). Suppose that G ∼ % ⊗3=
`,Σ , where %`,Σ is a distribution with mean ` and

covariance Σ, such that %`,Σ ∈ subG(2Σ) for some constant 2 > 0. Let = = Ω(max{(3 + log(1/V)), :_}), where
parameters :, _ are set as in Algorithm 2. Then with probability at least 1 − V , for ˆ̀ ∼ N(`G ,�2ΣG ),

‖ ˆ̀ − `‖Σ = $

(√
3

=
· log

1

V
+ 3

Y2=
log

2
1

XV
·
√

log

=

V

)
.

Proof Sketch. By the triangle inequality, we have that

‖ ˆ̀ − `‖Σ ≤ ‖` − `G ‖Σ + ‖`G − ˆ̀‖Σ . (44)

The �rst term can be written as ‖`−`G ‖Σ = ‖ 1

=

∑=
8=1

Σ−1/2 (G8+2=−`)‖2 = ‖ 1

=

∑=
9=1
D8 ‖2, whereD8 ∼ %0,I ∀8 ∈ [=]

are subgaussian vectors with mean 0, covariance I, and %0,I ∈ subG(2I). By Lemma B.5, with probability at

least 1 − V/2, it holds that

‖` − `G ‖Σ = $
©­­«
√
3 + log

1

V

=

ª®®¬. (45)

The second term is bounded via the same steps as in the proof of Lemma 4.8, as the distribution of ˆ̀

has not changed (it is still drawn from a Gaussian with mean `G and covariance �2ΣG ). This yields Eq. (28).

Combining the latter with Eq. (45) via a union bound and following the same calculations as in the proof of

Lemma 4.8 will complete the proof. �
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C Finite Implementations of Our Algorithms

C.1 Technical Tools
In this section we will give di�erentially private algorithms for estimating the largest and smallest eigenvalues

of the covariance matrix Σ, denoted _1 and _3 , as well as an enclosing box for the data [−', ']3 . We start by

describing a building block for both of these algorithms: the Stable Histogram of [11].

Algorithm 3 StableHistogramY,X ({I8 }, {�1}), from [11]

Require: Items I1, . . . , I= ∈ U. Bins {�1}1∈Z. Privacy parameters Y, X > 0.

1: for 1 ∈ Z do
2: 21 ← |{8 : I8 ∈ �1}|
3: for 1 with 21 > 0 do
4: 2̃1 ← 21 + Lap(2/Y)
5: g ← 1 + 2 log(1/X)

Y

6: return {(1, 2̃1) : 1 ∈ Z and 2̃1 ≥ g}.

We now state the guarantees of Stable Histogram, in a form which will be useful for our next steps.

Lemma C.1 (Stable Histogram Guarantees). StableHistogramY,X is (Y, X)-di�erentially private. Let I1, . . . , I= be
drawn i.i.d. from distribution % . Suppose that there exists 1 ∈ Z and a constant V ′ < 1

4
, such that Pr[I8 ∉ �1−1 ∪

�1 ∪ �1+1] ≤ V ′ for any �xed 8 ∈ [=]. Let 1∗ = arg max1 2̃1 , where {(1, 2̃1)} = StableHistogramY,X (I1, . . . , I=).
There exists a constant � > 0 such that, for all 0 < Y, V, X < 1, if

= ≥ �
Y

log

1

VX
,

then with probability at least 1 − V , 1∗ ∈ {1 − 1, 1, 1 + 1}.

A proof of the privacy guarantee can be found in [72, Theorem 3.5]. A slightly larger (by logarithmic

factors) sample complexity guarantee than the one stated above can be proven in a straightforward way,

using intermediate results of the proof of [53, Lemma 2.3]. However, we provide a proof of the tighter sample

complexity bound stated here, for completeness.

Proof. Note that the I8 are independent. There are at most 3 “good bins” 1 −1, 1, 1 +1 and Pr[I8 ∈ good bins] ≥
1 − V ′. There must be a heaviest good bin, which we call the “best bin” 11, such that Pr[I8 ∈ �11

] ≥ 1−V′
3

. The

bad bins collectively satisfy Pr[I8 ∈ bad bins] ≤ V ′.
Let random variable -best be the number of items that fall into the best bin and -bad be the number of

items that fall into any of the bad bins. Since both these random variables are sums of independent 0 − 1 trials,

we apply Cherno� bounds [62, Theorems 4.4, 4.5]. We have E[-best] ≥ 1−V′
3
= and E[-bad] ≤ V ′=. Introduce

constants W1, W2 > 0 so that

V ′ + W1 <
1 − V ′

3

− W2 .

Then we can bound

Pr[-bad ≥ =(V ′ + W1)] = Pr[-bad ≥ V ′=(1 + W1/V ′)] ≤ exp

{
−
W2

1
=

3V ′

}
(46)

and

Pr

[
-best ≤ <

(
1 − V ′

3

− W2

)]
= Pr

[
-best ≥

(1 − V ′)=
3

(1 − 3W2/(1 − V ′))
]

(47)

≤ exp

{
−

3W2

2
=

2(1 − V ′)

}
(48)
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Conditioned on the best bin 11 receiving su�ciently many items, we need to ensure that its noisy count is

(i) not suppressed and (ii) higher than that of any bad bin. Introduce a third constant W3 > 0 and de�ne random

variable / ∼ Lap(1/Y).

Pr

[
-best + / ≤ <

(
1 − V ′

3

− W3

)���-best ≥ =
(

1 − V ′
3

− W2

)]
≤ Pr[/ ≤ =(W2 − W3)] (49)

= Pr[/ ≥ =(W3 − W2)] (�ip the signs)

≤ 1

2

exp{−Y=(W3 − W2)}. (50)

To avoid suppression, we require =

(
1−V′

3
− W3

)
> 1 + log(1/X)

Y
. Since V ′ and W3 are constants, this means

= = Ω(log(1/X)/Y). Similarly, for any single bad bin we must control

Pr[/ ≥ =(W3 − W1)] ≤
1

2

exp{−Y=(W3 − W1)}. (51)

We do not mind if the bad bins get suppressed. We will take a union bound over the (no more than) = bad bins.

We want to bound the probability that 1∗ = arg max1 2̃1 belongs in any of the bad bins. Putting the pieces

together, we need to apply the union bound over the following bad events: (i) the best bin fails to receive

enough items, (ii) the bad bins (collectively) receive too many items, (iii) too much (negative) noise is added to

the best bin, and (iv) too much (positive) noise is added to any of the bad bins that received an item.

Pr[1∗ ∉ {1 − 1, 1, 1 + 1}] ≤ 4−
W2

1
=

3V′ + 4−
3W2

2
=

2(1−V′) + 1

2

4−Y= (W3−W2) + =
2

4−Y= (W3−W1) . (52)

With V ′ < 1

4
, we can take W1, W2, and W3 to be constants. And, if we set W3 − W1 > W3 − W2 (i.e. W2 > W1) then

asymptotically we don’t have to pay for the union bound over bad bins and we get Pr[1∗ ∉ {1 − 1, 1, 1 +
1}] = $ (4−2Y=) for some constant 2 . For this to be less than V , we need = = Ω(log(1/V)/Y). We also had

= = Ω(log(1/X)/Y), so we require that = = Ω(log(1/VX)/Y). �

C.1.1 Private Eigenvalue Estimation

We now give an (Y, X)-di�erentially private algorithm, based on the well-known Sample-and-Aggregate frame-

work [63]. We denote by _: (�) the :-th largest eigenvalue of matrix �.

Algorithm 4 Private Eigenvalue Estimation via Sample and Aggregate: EigenY,X,V (G, :)
Require: Data set G = (G1, . . . , G=)) ∈ R=×3 . Index : ∈ [3]. Privacy parameters Y, X > 0. Failure probability

V > 0.

1: Initialize< ← Ω(log(1/XV)/Y).
2: for 8 ∈ [<] do
3: Σ̂← <

=

∑=/<
9=1
(G =

<
(8−1)+9 ) (G =

<
(8−1)+9 )) ⊲ empirical covariance of block 8 ∈ [<]

4:
ˆ_
(8)
:
← _: (Σ̂)

5: I8 ← Round( ˆ_ (8)
:

), rounded down to the nearest 2
@

for @ ∈ Z
6: {(1, 2̃1)} ← StableHistogramY,X ({I8 }, {�1}) for bins �1 = [21, 21+1).
7: 1∗ ← arg max1 2̃1
8: return 2

1∗

Lemma C.2 (Private Estimate of Smallest/Largest Eigenvalue). Algorithm 4 is (Y, X)-di�erentially private.
Suppose G is drawn i.i.d. from a distribution %0,Σ with mean 0, covariance Σ, and that % ∈ subG(2Σ) for constant
2 > 0. There exists a constant � > 0 such that for any 0 < Y, X, V < 1, : ∈ [3], if

= ≥ �3
Y

log

(
1

XV

)
, (53)
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with probability at least 1 − V , Algorithm 4 returns an estimate ˆ_: such that 1

4
_: (Σ) ≤ ˆ_: ≤ 4_: (Σ).

Proof. The privacy guarantee is inherited by the guarantee of the Stable Histogram (Lemma C.1). From

Lemma B.4, if =/< (the number of samples in each block) is Ω(3) then with probability 1 − V ′ for a constant

V ′ < 1

4
, we get

1

2
_: (Σ) ≤ ˆ_

(8)
:
≤ 2_: (Σ) for any �xed 8 ∈ [<]. Let _: (Σ) ∈ �1 , that is, �1 is the bin that the

rounding of the true eigenvalue would fall into. By the previous guarantee, if =/< = Ω(3), we can write for

any �xed 8 ∈ [<],
Pr[I8 ∉ �1−1 ∪ �1 ∪ �1+1] ≤ V ′.

The hypotheses of Lemma C.1 are then satis�ed, and it follows that, there exists a constant � > 0 such that if

< ≥ �
Y

log
1

VX
, then

Pr[1∗ ∉ {1 − 1, 1, 1 + 1}] ≤ V.

Combining the conditions on the number of samples, if

= = Ω(3<) = Ω

(
3

Y
log

1

VX

)
,

then with probability at least 1 − V , Algorithm 4 returns
ˆ_: ∈ �1−1 ∪ �1 ∪ �1+1. Equivalently, with probability

1 − V , it returns
1

4
_: (Σ) ≤ ˆ_: ≤ 4_: (Σ). �

C.1.2 Private Range Estimation

Algorithm 5 Private Range Estimation, from [53]: RangeY,X,V (G, f2)
Require: Data set G = (G1, . . . , G=)) ∈ R=×3 . Privacy parameters Y, X > 0. Failure probability V > 0. Variance

upper bound f2
.

1: for 9 ∈ [3] do
2: I8 ← G8, 9 for all 8 ∈ [=] ⊲ Choose the 9-th coordinate from each sample 8 ∈ [=]
3: {(1, 2̃1)} ← StableHistogram Y

3
, X
3
({I8 }, {�1}) for bins �1 = [3f1, 3f (1 + 1)).

4: 1∗9 ← arg max1 2̃1

5: -
9

<8=
← 3f1∗9 − 11f log

=3
V

6: -
9
<0G ← 3f1∗9 + 11f log

=3
V

7: return {(- 9

<8=
, -

9
<0G )} 9 ∈[3 ]

The algorithm above follows a standard approach for range estimation of univariate Gaussian data sets, applied

3 times—one for each coordinate 8 ∈ [3]. In particular, Karwa and Vadhan [53] prove the guarantees of the

algorithm for Gaussian data sets. Liu et al. [58] also prove its guarantees for subgaussian data sets with

identity covariance and corruptions. Since neither of the two covers our exact case, we provide a modi�cation

of their proofs below.

Lemma C.3 (Private Range Estimate). Algorithm 5 is (Y, X)-di�erentially private. Suppose G is drawn i.i.d. from
a distribution %`,Σ with mean ` and covariance Σ, and that for every coordinate 9 ∈ [3] if I ∼ %`,Σ then I 9 is
f2-subgaussian. There exists a constant � > 0 such that for any 0 < Y, X, V < 1, if

= ≥ �3
Y

log

(
3

XV

)
, (54)

with probability at least 1 − 2V , Algorithm 5 returns an estimate {(- 9

<8=
, -

9
<0G )} 9 ∈[3 ] such that for all 8 ∈ [=],

9 ∈ [3], G8, 9 ∈ [- 9

<8=
, -

9
<0G ].
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Proof. The privacy guarantee is inherited by the Stable Histogram algorithm, via composition (Lemma 2.3).
6

By an equivalent de�nition of f2
-subgaussian random variables, we have that for all 9 ∈ [3],

Pr[|G8, 9 − ` 9 | > C] ≤ 24−C
2/2f2

. (55)

Setting C = 3f , we have that Pr[|G8, 9 − ` 9 | > 3f] ≤ V ′, for V ′ = 0.03 < 1/4. Suppose ` 9 ∈ �1 , for some bin 1.

Then, we have that Pr[I8 ∉ �1−1 ∪ �1 ∪ �1+1] ≤ V ′.
Therefore, the hypothesis of Lemma C.1 is satis�ed and so, if = = Ω( 3

Y
log

3
XV
), with probability 1 − V/3 ,

we return 1∗9 such that 1∗9 ∈ {1 − 1, 1, 1 + 1}. Equivalently, with probability 1− V , for all 9 ∈ [3] simultaneously,

|` 9 − 3f1∗9 | ≤ 9f. (56)

By the bound on subgaussian tails of Eq. (55) and a union bound, with probability 1 − V , for all 8 ∈ [=], 9 ∈ [3],

|G8, 9 − ` 9 | ≤

√
2f2

log

=3

V
≤ 2f log

=3

V
(57)

Combining Eq. 57 and 56, with probability at least 1 − 2V , for all 8 ∈ [=], 9 ∈ [3],

G8, 9 ∈ [3f1∗9 − 11f log

=3

V
, 3f1∗9 + 11f log

=3

V
] .

�

C.2 A Finite Implementation of Algorithm 1
We modify Algorithm 1 (using our private eigenvalue and bounding-box estimates) by running the original

algorithm with the data space R3 replaced by a �nite grid of points QU′ . For simplicity, we work with data sets

of size 2=.

Algorithm 6 Finite Implementation of A�
Y,X,C
(G)

Require: Data set G = (G1, . . . , G2=)) ∈ R2=×3
. Privacy parameters: Y, X > 0. Accuracy parameters: U, V > 0.

Stage 1: Range estimates
1: Construct data set D ∈ R=×3 where D8 = (G8 − G8+=)/

√
2, 8 ∈ [=].

2:
ˆ_1 ← EigenY,X,V (D, 1) ⊲ private estimate of largest eigenvalue

3:
ˆ_3 ← EigenY,X,V (D,3) ⊲ private estimate of smallest eigenvalue

4: f2 ← 4
ˆ_1 ⊲ upper bound on variance in every direction

5: {- 9

min
, -

9
max
} 9 ∈[3 ] ← RangeY,X,V (G, f2)

6: Set

U ′← $
©­­«
U

√
ˆ_3

3

ª®®¬. (58)

7: ' ← U ′ +max9 max{|- 9
max
|, |- 9

min
|}

Stage 2: Discretize
8: QU′ ← U ′-�ne grid over [−', ']3 .

9: For all 8 ∈ [=], let GΔ8 = arg min?∈QU′ ‖? − G8 ‖1.

Stage 3: Run the algorithm
10: Run A�

Y,X,C
(GΔ).

6
Note that by using advanced composition [36], we could have set the privacy parameter of StableHistogram to ≈ Y/

√
3 but since this

is not the sample complexity bottleneck, we did not.
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Privacy. Since the discretization process doesn’t a�ect the privacy analysis of Algorithm 1, the overall privacy

follows from composition and the privacy analyses in C.1.

Computation. Tukey depth can be computed in time $̃ (=3 ) [57]. Since we can run the restricted exponential

mechanism over the grid QU′ , it remains to describe how, given GΔ, we can compute the distance to the set

UNSAFE(Y,X,C ) . First note that, given two data sets ~,~ ′ ⊂ Q=
U′ , we can check whetherMY,C (~) ≈Y,X MY,C (~ ′) by

computing the distributions explicitly. Thus, by iterating over all neighbors of any data set ~, we can check

if ~ ∈ UNSAFE(Y,X,C ) . With this, computing the distance to UNSAFE(Y,X,C ) requires iterating over all data sets

in Q=
U′ , which are at most

(
2'
U′

)3=
= $̃

(
3 ( ‖` ‖∞/

√
_3+
√
^)

U

)3=
, where ^ = _1/_3 is the condition number of the

covariance matrix Σ.

Accuracy. It remains to show that this algorithm provides an accurate estimate of ` when the data is Gaussian.

We will show that the (old) error from uniform convergence and the (new) error from discretization can be

grouped together, and that the U ′ we pick results in negligible error from discretization.

Fix QU′ and let %Δ be the distribution generated by snapping samples from the Gaussian N(`, Σ) to that

grid. Since our uniform convergence argument holds for any distribution, with probability 1 − V over the

choice of G we have, for all ~ within our bounding box, that |)G (~) −)%Δ (~) | ≤ U1, using the same “typicality”

parameter as in the main argument. We now relate )% (~) to )%Δ (~) for all ~ within the bounding box.

Lemma C.4. Let QU′ be an U ′-�ne grid over [−', ']3 . Let % = N(`, Σ) be any Gaussian and let %Δ be the
distribution resulting from drawing from % and then discretizing according to QU′ . Assume ˆ_3 ≤ 1

4
_3 (Σ). For any

point ~ ∈ [−', ']3 and any U3 > 0, if U ′ ≤ 2
√

ˆ_3
3
U3 for some speci�c constant 2 , then

|)% (~) −)%Δ (~) | ≤ U3 .

Proof. Let - ∼ N(`, Σ) and let W be the “discretization random variable,” so - + W ∼ %Δ.

Pick a vector D such that ‖D‖2 = 1. After projecting onto D, we have a univariate random variable:

-)D ∼ N(`)D,D) ΣD). Since ‖W ‖2 ≤
√
3U′

2
and ‖D‖2 = 1, by Cauchy-Schwarz we have ‖W)D‖2 ≤

√
3U′

2
as well.

The discretization can only a�ect the result when - is close to the hyperplane, we have��
Pr[-)D ≥ ~)D] − Pr[(- + W))D ≥ ~)D]

�� ≤ 2 Pr[-)D ∈ ~)D ±
√
3U ′/2] (59)

≤ 2 · 1

√
2cD) ΣD

·
√
3U ′

2

. (60)

Since ‖D‖2 = 1, we have
1

4

ˆ_3 ≤ _3 (Σ) ≤ D) ΣD. Setting U ′ as in the lemma statement for a constant 2 =
√

2/c
makes this value at most U3.

Since the expected Tukey depth is de�ned as a minimum over all D, we are done. �

We will thus be able to bound the volume ratios with an analog of Lemma 3.6.

Lemma C.5 (Analog of Lemma 3.6). Suppose for all ~ ∈ [−', ']3 that |)G (~) − )%Δ (~) | ≤ U1 and |)%Δ (~) −
)% (~) | ≤ U3. Then, for all ?, @ ∈ [0, 1/2],

Vol(Y=?,G )
Vol(Y=@,G )

≤
(
Φ−1 (1 − ? + U1 + U3

Φ−1 (1 − @ − U1 − U3

)3
.

Proof. Applying the triangle inequality, we have |)G (~) −)% (~) | ≤ U1 + U3 for all ~ ∈ [−', ']3 .

To upper bound Vol(Y=?,G ), observe that)G (~) ≥ ? implies)% (~) ≥ ? − U1 − U3, so by Lemma 3.3 we have

‖~ − `‖Σ ≤ Φ−1 (1 − ? + U1 + U3). To lower bound Vol(Y=@,G ), observe that ‖~ − `‖Σ ≤ Φ−1 (1 − @ − U1 − U3)
implies )% (~) ≥ @ + U1 + U3, and thus )G (~) ≥ @.

Recalling that BA denotes the Mahalanobis ball of radius A , we have

Vol(Y=?,G )
Vol(Y=@,G )

≤
Vol(BΦ−1 (1−?+U1+U3) )
Vol(BΦ−1 (1−@−U1−U3) )

=

(
Φ−1 (1 − ? + U1 + U3

Φ−1 (1 − @ − U1 − U3

)3
.

�

35



The earlier version of this lemma had ±U1 where we have ±(U1 +U3). Therefore, if U1 and U3 are su�ciently

small, the proofs of the following lemmas go through with the exact same arguments.

LemmaC.6 (Analog of Lemma 3.9). Assume that for all~ ∈ [−', ']3 , |)G (~)−)% (~) | ≤ U1+U3 with U1+U3 ≤ 1

10
.

There exists a constant 2 such that, for any V, X, Y > 0 with Y ≤ 1 and X ≤ 1

2
, if = ≥ 2

(
3+log(1/VX)

Y

)
then G is

log(1/2VX)
Y

-far from UNSAFE(Y,X,=/4) .

Lemma C.7 (Analog of Lemma 3.10). Assume that for all ~ ∈ [−', ']3 that |)G (~) −)% (~) | ≤ U1 + U3 with
U1 + U3 ≤ 1

10
. For any V > 0 and U2 ≥ 2(U1 + U3), we have, for some constant 2 ,

Pr

~∼M=/4 (G)

[
)G (~) <

1

2

− U2

]
≤

(
2

U2 − 2(U1 + U3)

)3
4−U2=Y/4. (61)

Furthermore, discretizing with U ′ =
√

ˆ_3U

3
instead of $

(√
ˆ_3U√
3

)
will allow us to take U3 = > (U), so the

discretization error does not a�ect the �nal sample complexity or accuracy. The only change is another

additive 3V probability of failure, since (when the data is Gaussian) our bounding box may fail to contain all

data points or we may have poor eigenvalue estimates.

Theorem C.8 (Analog of Theorem 3.2). There exists an absolute constant � such that, for any 0 < U, V, Y < 1,
0 < X ≤ 1

2
, mean `, and positive de�nite Σ, if G ∼ N(`, Σ)⊗= and

= ≥ �
(
3 + log(1/V)

U2
+ 3 log(1/U) + log(1/V)

UY
+ log(1/X)

Y

)
, (62)

then with probability at least 1 − 6V , Algorithm 6 returns ˆ̀ such that ‖ ˆ̀ − `‖Σ ≤ U .

C.3 A Finite Implementation of Algorithm 2
The �nite implementation requires that we know the target accuracy U as well as an upper bound for the

constant that goes into the subgaussian parameter 2B ; note that this not the case for Gaussian data, as 2B = 1.
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Algorithm 7 Finite Implementation of A�
Y,X,V
(G)

Require: Data set G = (G1, . . . , G3=)) ∈ R3=×3
. Privacy parameters: Y, X > 0. Accuracy parameters: U, V > 0.

Subgaussian constant 2B .

Stage 1: Range estimates
1: Construct data set D ∈ R=×3 where D8 = (G8 − G8+=)/

√
2, 8 ∈ [=].

2:
ˆ_1 ← EigenY,X,V (D, 1) ⊲ private estimate of largest eigenvalue

3:
ˆ_3 ← EigenY,X,V (D,3) ⊲ private estimate of smallest eigenvalue

4: f2 ← 42B ˆ_1 ⊲ upper bound on variance in every direction

5: {- 9

min
, -

9
max
} 9 ∈[3 ] ← RangeY,X,V (G, f2)

6: Set

U ′← $
©­«U ·min


ˆ_3

ˆ_1

· 1

33/2
log(=/V)

,

√
ˆ_3

3

ª®¬. (63)

7: ' ← U ′ +max9 max{|- 9
max
|, |- 9

min
|}

Stage 2: Discretize
8: QU′ ← U ′-�ne grid over [−', ']3 .

9: For all 8 ∈ [=], let GΔ8 = arg min?∈QU′ ‖? − G8 ‖1.

Stage 3: Run the algorithm.
10: Run A�

Y,X,V
(GΔ).

Having constructed this grid, the projection step of Algorithm A�
Y,X,V

searches over all “good” data sets

of size 3= whose data points belong on the grid QU′ , that is, line 6 of A�
Y,X,V

(Algorithm 2) is replaced by

G̃ ← arg minI∈G(_)∩QU′ �� (Ḡ, I).
Privacy. Since the discretization process doesn’t a�ect the privacy analysis of Algorithm 2, the overall privacy

follows from composition and the privacy analysis in C.1.

Computation. The bottleneck in the algorithm above is the projection step, which is searching over all data

sets on the grid QU′ , checking for each whether it is in the good set G(_), and calculating its Hamming distance

to G . For each data set, both these operations have running time polynomial in 3 and =. However, the number

of data sets in the grid is roughly

(
2'
U′

)
33=

=

(
3^ ( ‖` ‖∞+

√
_1)

U

)$ (3=)
, where ^ = _1/_3 is the condition number of

the covariance matrix, making this algorithm computationally ine�cient.

Accuracy. It su�ces to show that the discretized data set is in the good set (Lemma C.11) and that the

discretization adds negligible error (Lemma C.12).

First, observe that discretization (which happens coordinate-wise) has a limited e�ect in ℓ2 norm. For each

8 ∈ [3=], let GΔ8 = G8 + W8 . We snap each coordinate of G8 to the nearest integer multiple of U ′, so ‖W8 ‖∞ ≤ U ′/2,

which implies ‖W8 ‖22 ≤ 3 (U ′/2)2 and thus ‖W8 ‖2 ≤
√
3U′

2
. We now show that the discretized empirical covariance

matrix is a close approximation to the original. We gather the following assumptions which we later show

hold with high probability.

Assumption C.9. Suppose all the following conditions hold:

1. Our estimates
ˆ_1, ˆ_3 have constants 21, 22 such that 21

ˆ_1 ≥ _1 (Σ) and 22_3 (Σ) ≤ ˆ_3 .

2. Our estimate
ˆ_3 has constant 23 such that

ˆ_3 ≤ 23_3 (ΣG ).

3. For all 8 ∈ [3=], we have ‖G8 ‖∞ ≤ '.

4. For all 8 ∈ [3=], we have ‖G8 − `‖2 ≤ 24_1 (Σ)3 log(=/V) for some constant 24.
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Lemma C.10 (Covariance after discretization). Suppose Assumption C.9 holds. Then (1 − 25)ΣG � ΣGΔ �
(1 + 25)ΣG for some constant 25 ∈ (0, 1).

Proof. Write ΣGΔ = ΣG +�. We want to prove

− 25ΣG � � � 25ΣG , (64)

for which it su�ces to prove ‖�‖2 ≤ 25_3 (ΣG ).
LetD8 = G8 −G8+= be the vectors that make up the empirical covariance, and letD ′8 = D8 +68 be the discretized

version. We have 68 = W8 − W8+= and thus ‖68 ‖2 ≤ 2‖W8 ‖2 ≤
√
3U ′. Then

� = ΣGΔ − ΣG =

(
1

2=

=∑
8=1

(D8 + 68 ) (D8 + 68 ))
)
−

(
1

2=

=∑
8=1

D8D
)
8

)
=

(
1

2=

=∑
8=1

D8D
)
8 + 686)8 + 68D)8 + D86)8

)
−

(
1

2=

=∑
8=1

D8D
)
8

)
=

(
1

2=

=∑
8=1

686
)
8 + 68D)8 + D86)8

)
Using the triangle inequality (and implicitly considering the maximum over 8), we apply Fact A.4 to bound the

spectral norm.

‖�‖2 ≤
1

2

(
‖686)8 ‖2 + ‖68D)8 ‖2 + ‖D86)8 ‖2

)
≤ 1

2

(
‖68 ‖22 + 2‖68 ‖2‖D)8 ‖2

)
≤ 3 (U

′)2 + 4243
3/2U ′_1 (Σ) log(=/V)

2

. (by assumption)

Since U ′ ≤ 1, use (U ′)2 ≤ U ′ and simplify the upper bound to

‖�‖2 ≤ 3243
3/2_1 (Σ) log(=/V) · U ′. (65)

By our setting of U ′,

U ′ ≤ 1

3212324

·
ˆ_3

ˆ_1

· U

33/2
log(=/V)

. (66)

By assumption on our estimates for _1 (Σ) and _3 (ΣG ), and replacing the above U ′ in Eq. (65), we have that

‖�‖2 = $ (_3 (ΣG )), so there exists indeed a 25 such that ‖�‖2 ≤ 25_3 (ΣG ). �

Lemma C.11 (Analog of Lemma 4.7 and Lemma B.7). Suppose Assumption C.9 holds. If G ∈ G(_), then
GΔ ∈ G(_′) for some _′ = $ (_).

Proof. Attack the de�nition of goodness directly. For all 8 ,

‖GΔ8 − `GΔ ‖ΣGΔ ≤ 26‖GΔ8 − `GΔ ‖ΣG (by Proposition 4.4 for 26 = 1/
√

1 − 25)

= 26‖GΔ8 − G8 + G8 − `GΔ + `G − `G ‖ΣG
= 26‖(W8 ) + (G8 − `G ) + (`G − `GΔ )‖ΣG
≤ 26‖G8 − `G ‖ΣG + 26‖W8 ‖ΣG + 26‖`G − `GΔ ‖ΣG .

The �rst term is bounded by 26_, by our assumption that G ∈ G(_). The second term we can bound because

the W8 ’s have small ℓ2 norm. The third term is simply an average of the W8 ’s, so it will be bounded in the same

manner. We have

‖W8 ‖ΣG ≤
1√

_3 (ΣG )
· ‖W8 ‖2 ≤

√
23

ˆ_3
·
√
3U ′

2

. (67)
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Together, then, we have for all 8 that

‖GΔ8 − `GΔ ‖ΣGΔ ≤ 26_ +
26

√
233√
ˆ_3

· U ′. (68)

By our setting of U ′, the second term is $ (1), thus _′ = $ (_). �

The following lemma bounds the error of the estimator for input GΔ.

Lemma C.12 (Analog of Lemma 4.8 and Lemma B.8). Suppose Assumption C.9 holds. Suppose that G ∼ % ⊗3=
`,Σ ,

where %`,Σ is a distribution with mean `, covariance Σ, such that %`,Σ ∈ subG(2BΣ) for some constant 2B > 0. Let
= = Ω(max{(3 + log(1/V)), :_}), where parameters :, _ are set as in Algorithm 2. Then with probability at least
1 − V , for ˆ̀ ∼ N(`GΔ ,�2ΣGΔ ),

‖ ˆ̀ − `‖Σ = $

(√
3

=
· log

1

V
+ 3

Y2=
log

2
1

XV
·
√

log

=

V
+ U

)
.

Proof Sketch. Because the error of discretization is negligible, the proof of this lemma is almost identical to that

of Lemma 4.8 (and of its extension to subgaussian data, Lemma B.8). To see this, apply the triangle inequality:

‖ ˆ̀ − `‖Σ ≤ ‖ ˆ̀ − `GΔ ‖Σ + ‖`GΔ − `G ‖Σ + ‖`G − `‖Σ . (69)

By our assumption, Lemma C.11 implies that ∃25 such that (1 − 25)ΣG � ΣGΔ � (1 + 25)ΣG . By Proposition 4.4,

the �rst term is then ‖ ˆ̀ − `GΔ ‖Σ = $ (‖ ˆ̀ − `GΔ ‖ΣGΔ ). The analysis of this term, and that of the third, are

independent of the discretization process. They follow by mean concentration of Gaussian and subgaussian

data sets respectively and are included in the proof of Lemma 4.8 and Lemma B.8. The middle term is bounded

as follows

‖`GΔ − `G ‖Σ ≤ (_3 (Σ))−1/2‖`GΔ − `G ‖2 (70)

≤
√
22

ˆ_3

√
3U ′

2

(71)

= $ (U). (72)

Therefore, this incurs only a constant factor increase in the error bound. �

We now state the accuracy guarantees of our �nite implementation.

TheoremC.13 (Accuracy of Algorithm 7). There exists an absolute constant� such that, for any 0 < U, V, Y, X < 1,
mean `, and positive de�nite Σ, if G ∼ % ⊗=

`,Σ , where %`,Σ ∈ subG(2BΣ) for some constant 2B > 0, and

= ≥ �
(
3

U2
log

1

V
+ 3

UY2
log

3
1

XV
· log

3 log(1/XV)
UY

)
, (73)

then with probability at least 1 − 7V , Algorithm 2 returns A�
Y,X,V
(G) = ˆ̀ such that ‖ ˆ̀ − `‖Σ ≤ U .

The proof of the theorem follows exactly the same steps as its counterparts for Gaussian and subgaussian

distributions in Sections 4 and B respectively, combined with the analogous lemmas above. It remains to argue

that Assumption C.9 holds with probability at least 1 − 4V , and then the theorem would follow by a union

bound.

Note that if G ∼ %`,Σ where %`,Σ has mean `, covariance Σ and is subgaussian with parameter 2BΣ, then

every coordinate is also subgaussian with parameter 2B_1 (Σ). By the guarantees of EigenY,X,V (Lemma C.2),

with probability 1 − 2V , the eigenvalue estimates are good approximations of the true eigenvalues, that is,

_1 (Σ)
4
≤ ˆ_1 ≤ 4_1 (Σ) and

_3 (Σ)
4
≤ ˆ_1 ≤ 4_3 (Σ). By substituting this bound, it follows that in every coordinate G
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is 42B ˆ_1-subgaussian. Applying the guarantees of RangeY,X,V (Lemma C.3) and by union bound and our choice

of ', we have that with probability at least 1− 3V , the size of the 3-dimensional box that encloses our grid is set

so that all points G8 of the original data set as well as all points GΔ8 of the discretized dataset belong in the box,

that is, ‖G8 ‖∞ ≤ ' and ‖GΔ8 ‖∞ ≤ '. Therefore, with probability at least 1 − 3V , item 1 and 3 of Assumption C.9

hold (for 21 = 4 and 22 = 1/4).

Moreover, by Lemma B.4, with probability 1−V , we have that for all 8 ∈ [3=], ‖G8−`‖2 ≤ 24_1 (Σ)3 log(=/V)
for some constant 24 and that if = = Ω(3 + log(1/V)), then _3 (Σ) = Θ(_3 (ΣG )). By the latter and since

ˆ_3 ≤ 4_3 (Σ), we have that for some constant 23,
ˆ_3 ≤ 1

23

_3 (ΣG ). Since for the stated sample complexity =

satis�es this condition, we have that items 2 and 4 of Assumption C.9 hold as well.

D Additional Proofs

D.1 Tukey-Depth Mechanism
The mechanism �ts into the well-known propose-test-release framework of [30]; privacy follows from a

standard calculation. We include it here for completeness.

Proposition D.1. Algorithm 1 is (2Y, 4YX)-di�erentially private.

Proof. Take adjacent G, G ′ and �x some subset � ⊆ Y ∪ {FAIL}. As shorthand, let � = {FAIL} and writeA in

place of A�
Y,X,C

.

We proceed by cases. Suppose �rst thatMY,C (G) 0Y,X MY,C (G ′), so running the restricted sampler may

reveal too much. Then both G, G ′ ∈ UNSAFE, and for both we compute distance ℎ = 0 to unsafety. Thus

Pr[A(G) ∈ �] = Pr[A(G) ∈ � ∩ � ] + Pr[A(G) ∈ � \ � ]
≤ Pr[A(G) ∈ � ∩ � ] + Pr[A(G) ∉ � ]
≤ Pr[A(G ′) ∈ �] + Pr[A(G ′) ∉ � ],

where the last line follows from the facts that both G and G ′ have the same probability of failing and that

� ∩ � ⊆ �. The threshold
log(1/2X)

Y
is set so that the probability a Laplace random variable Lap(1/Y) exceeds it

is Pr[A(G) ∉ � ] = X .

Now supposeMY,C (G) ≈Y,X MY,C (G ′). Since G and G ′ are adjacent, the distances-to-unsafety we compute

under G and G ′ can di�er by at most 1, so the probability of failing can di�er by at most a factor of 4Y . We

break down the probability similarly:

Pr[A(G) ∈ �] = Pr[A(G) ∈ � ∩ � ] + Pr[A(G) ∈ � \ � ]
= Pr[A(G) ∈ � | A(G) ∈ � ] Pr[A(G) ∈ � ]
+ Pr[A(G) ∈ � | A(G) ∉ � ] Pr[A(G) ∉ � ]

≤ 4Y
(
Pr[A(G) ∈ � | A(G) ∈ � ] Pr[A(G ′) ∈ � ]

+ Pr[A(G) ∈ � | A(G) ∉ � ] Pr[A(G ′) ∉ � ]
)
.

Since � either contains FAIL or it doesn’t, we have Pr[A(G) ∈ � | A(G) ∈ � ] = Pr[A(G ′) ∈ � | A(G ′) ∈ � ].
Furthermore, since not failing means we runMY,C (G), we have

Pr[A(G) ∈ �] ≤ 4Y
(
Pr[A(G ′) ∈ � ∩ � ] + Pr[MY,C (G) ∈ �] Pr[A(G ′) ∉ � ]

)
≤ 4Y

(
Pr[A(G ′) ∈ � ∩ � ] +

(
4Y Pr[MY,C (G ′) ∈ �] + X

)
Pr[A(G ′) ∉ � ]

)
,

applying our assumption thatMY,C (G) ≈Y,X MY,C (G ′). To �nish the proof, we simplify:

Pr[A(G) ∈ �] ≤ 4Y Pr[A(G ′) ∈ � ∩ � ] + 4Y4Y Pr[MY,C (G ′) ∈ �] Pr[A(G ′) ∉ � ] + 4YX Pr[A(G ′) ∉ � ]
= 4Y Pr[A(G ′) ∈ � ∩ � ] + 42Y

Pr[A(G ′) ∈ � \ � ] + 4YX Pr[A(G ′) ∉ � ]
≤ 42Y

Pr[A(G ′) ∈ �] + 4YX.
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Since 4Y ≥ 1, these parameters are also an upper bound for the �rst case. The fact that Pr[A(G ′) ∈ �] ≤
42Y

Pr[A(G) ∈ �] + 4YX follows by an identical argument. �

Proposition D.2 (Restatement of Proposition 3.3). For any `,~ ∈ R3 and positive de�nite Σ, )N(`,Σ) (~) =
)% (~) = Φ(−‖~ − `‖Σ).

Proof. If ~ = `, by the symmetry of the Gaussian, )% (~) = 1

2
= Φ(0). So consider ~ ≠ `.

We �rst calculate for a given D, and then take the minimum. If D = 0, then Pr[-)D ≥ ~)D] = 1, so assume

nonzero D. We lower bound Pr[-)D > ~)D], where - ∼ % = N(`, Σ), and begin by rewriting the random

variable to be drawn from N(0, I):

Pr

-∼%
[-)D > ~)D] = Pr

/∼N(0,I)

[
(Σ1/2/ + `))D > ~)D

]
.

We move terms to the right, multiply by Σ−1/2Σ1/2
, and normalize by ‖Σ1/2D‖2:

Pr

/∼N(0,I)

[
(Σ1/2/ + `))D > ~)D

]
= Pr

/∼N(0,I)

[
(Σ1/2/ ))D > (~ − `))D

]
= Pr

/∼N(0,I)

[
/) (Σ1/2D) > (Σ−1/2 (~ − `))) (Σ1/2D)

]
]

= Pr

/∼N(0,I)

[
/) (Σ1/2D)/‖Σ1/2D‖2 > (Σ−1/2 (~ − `))) (Σ1/2D)/‖Σ1/2D‖2

]
.

Let D ′ = Σ1/2D/‖Σ1/2D‖2, and recall that, since D ′ is a unit vector, −/)D ′ ∼ N(0, 1). We have

Pr

/∼N(0,I)

[
/)D ′ > (Σ−1/2 (~ − `)))D ′

]
= Pr

/1∼N(0,1)

[
/1 < −(Σ−1/2 (~ − `)))D ′

]
= Φ(−(Σ−1/2 (~ − `)))D ′).

Since Φ is an increasing function, the above term is minimized when D ′ = Σ−1/2 (~−`)
‖Σ−1/2 (~−`) ‖2

, that is, D is a rescaling

of Σ−1 (~ − `). With this value of D ′, we see that )% (~) = Φ(−‖~ − `‖Σ). Since this is strictly less than
1

2
for

~ ≠ `, our exclusion of D = 0 did not a�ect the outcome. �

D.2 Empirically Rescaled Gaussian Mechanism
D.2.1 Implications of Goodness

Lemma D.3 (Restatement of Lemma 4.10). If G ∈ G(_), for any indices 8, 9 ∈ [3=],

(G8 − G 9 )) Σ−1

G (G8 − G 9 ) ≤ 4_.

In particular, this applies to D)8 Σ
−1

G D8 for all 8 ∈ [=], where D8 = G8 − G8+= .

Proof. Fix 8, 9 ∈ [2=]. Since G ∈ G(_), ‖G8 − `G ‖ΣG ≤
√
_ and ‖G 9 − `G ‖ΣG ≤

√
_. It holds that

(G8 − G 9 )) Σ−1

G (G8 − G 9 ) = ‖G8 − G 9 ‖2ΣG
= ‖(G8 − `G ) − (G 9 − `G )‖2ΣG
≤

(
‖G8 − `G ‖ΣG + ‖G 9 − `G ‖ΣG

)
2

(by triangle inequality)

≤ (2
√
_)2 = 4_

This concludes the proof of the lemma. �

Lemma D.4 (Restatement of Lemma 4.11). Suppose G,~ ∈ G(_) and �� (G,~) ≤ : , with 2:_ < =. For any
vector E we have

E) Σ−1

~ E ≤
1

1 − 2:_/= · E
) Σ−1

G E .
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Proof. De�ne the matching paired indices ( = {8 ∈ [=] : G8 = ~8 and G8+= = ~8+1}. We have |( | ≥ = − : . De�ne

ΣG( = 1

2=

∑
8∈( (G8 − G8+=) (G8 − G8+=)) . Note that we normalize by

1

2=
instead of

1

2 |( | . We will upper bound

E) Σ−1

G(
E . This will �nish the proof, since E) Σ−1

~ E ≤ E) Σ−1

G(
E . To see this fact, note that Σ~ � ΣG( , since Σ~ is ΣG(

plus a positive semide�nite matrix. So Σ−1

~ � Σ−1

G(
[46, Cor 7.7.4.a].

Set D8 = G8 − G8+= and write

ΣG = ΣG( +
1

2=

∑
8∈[=]\(

D8D
)
8 .

Conjugating by Σ−1/2
G on both sides, we have

I = Σ−1/2
G ΣG(Σ

−1/2
G + 1

2=

∑
8∈[=]\(

(
Σ−1/2
G D8

) (
Σ−1/2
G D8

))
(74)

= Σ−1/2
G ΣG(Σ

−1/2
G + 1

2=
� (75)

de�ning matrix � as the sum of the second term. By the triangle inequality,

‖�‖2 ≤ : · max

8∈[=]\(
D)8 Σ

−1

G D8 ≤ 4:_,

where the last inequality holds by the assumption of goodness and Lemma 4.10. By assumption, 2:_ < =, so

‖�‖2 < 2=, which implies that I − 1

2=
� is positive de�nite and thus invertible. This and Eq. (75) imply that ΣG(

is also invertible. Rearranging and taking the inverse gives us

Σ1/2
G Σ−1

G(
Σ1/2
G =

(
I − 1

2=
�

)−1

.

The operator norm of the above matrix is at most
1

1−2:_/= . We can use this to bound E) Σ−1

G(
E :

E) ΣG( E =
(
Σ−1/2
G E

)) (
Σ1/2
G Σ−1

G(
Σ1/2
G

) (
Σ−1/2
G E

)
≤




Σ1/2
G Σ−1

G(
Σ1/2
G





2

·



Σ−1/2

G E




2

2

≤ 1

1 − 2:_/= · E
) Σ−1

G E .

This completes the proof. �

Lemma D.5 (Restatement of Lemma 4.12). Suppose G,~ ∈ G(_) and �� (G,~) ≤ : , with 2:_ < =. Then

‖Σ−1/2
G Σ~Σ

−1/2
G − I‖tr ≤ 2:_

(
1

= − 2:_
+ 1

=

)
‖Σ−1/2

~ ΣGΣ
−1/2
~ − I‖tr ≤ 2:_

(
1

= − 2:_
+ 1

=

)
Proof. De�ne the indices of agreement: ( = {8 ∈ [=] : G8 = ~8 and G8+= = ~8+=}. Since �� (G,~) ≤ : , it holds

that |( | ≥ = − : > =(1 − 1/2_), where the last inequality holds by assumption. Recall D8 = G8 − G8+= and de�ne

E8 = ~8 − ~8+= . We can write, de�ning matrix �,

Σ~ = ΣG +
1

2=

∑
8∈[=]\(

E8E
)
8 −

1

2=

∑
8∈[=]\(

D8D
)
8

def

= ΣG +�.
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Conjugating by Σ−1/2
G and subtracting I from both sides, we get

Σ−1/2
G Σ~Σ

−1/2
G − I = Σ−1/2

G (ΣG +�)Σ−1/2
G − I

= Σ−1/2
G �Σ−1/2

G

=
1

2=

∑
8∈[=]\(

(
Σ−1/2
G E8

) (
Σ−1/2
G E8

))
− 1

2=

∑
8∈[=]\(

(
Σ−1/2
G D8

) (
Σ−1/2
G D8

))
.

Since the trace norm satis�es the triangle inequality, we have

‖Σ−1/2
G Σ~Σ

−1/2
G − I‖tr ≤

1

2=

∑
8∈[=]\(

[



(Σ−1/2
G E8

) (
Σ−1/2
G E8

)) 




tr

+




(Σ−1/2

G D8

) (
Σ−1/2
G D8

)) 




tr

]
.

Each term in these sums is an outer product of the form (Σ−1/2
G E) (Σ−1/2

G E)) . Since for every vector E , ‖EE) ‖tr =
E) E (see Proposition A.4), we can write

‖Σ−1/2
G Σ~Σ

−1/2
G − I‖tr ≤

1

2=

∑
8∈[=]\(

E)8 Σ
−1

G E8 + D)8 Σ−1

G D8 .

By Lemma 4.10, for all 8 ∈ [=] \ ( we have D)8 Σ
−1

G D8 ≤ 4_. By Lemmas 4.10 and 4.11, for all 8 we have

E)8 Σ
−1

G E8 ≤
1

1 − 2:_/=E
)
8 Σ
−1

~ E8 ≤
4_

1 − 2:_/= .

Combining these establishes the �rst inequality. The second holds by a symmetrical argument. �

D.2.2 Privacy analysis

Proposition D.6 (Coupling and Data Order). Suppose we have a mechanismM = A ◦ P, where P randomly
permutes our data and A has the following privacy guarantee: for any two data sets Ḡ and ~̄ with �� (Ḡ, ~̄) ≤ b
and any O ⊆ Range(M) = Range(A),

Pr[A(Ḡ) ∈ O] ≤ 4Y Pr[A(~̄) ∈ O] + X.

Then, for any G and ~ which di�er in at most b points,

Pr[M(G) ∈ O] ≤ 4Y Pr[M(~) ∈ O] + X.

In other words, if A is (Y, X)-di�erentially private under the stricter Hamming distance adjacency, thenM is
(Y, X)-di�erentially private under the symmetric di�erence notion of adjacency.

Proof. Let (< be the set of permutations on<. For any G and ~ which di�er in b points, let f∗ be an “aligning”

permutation, such that �� (G, f∗ (~)) = b . So we can write

Pr[M(G) ∈ O] =
∑
f ∈(<

1

<!

· Pr[A(f (G)) ∈ O]

≤
∑
f ∈(<

1

<!

· (4Y Pr[A(f (f∗ (~))) ∈ O] + X),

since �� (f (G), f (f∗ (~))) = b . Furthermore, note that 5 (f) def

= f (f∗) is a bijection from (< to itself, so we can

rewrite this sum as over a reordering of (< :

Pr[M(G) ∈ O] ≤
∑
f′∈(<

[
1

<!

· (4Y Pr[A(f ′(~))) ∈ O] + X)
]
≤ 4Y Pr[M(~) ∈ O] + X.

This completes the proof of the lemma. �
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Corollary D.7 (Restatement of Corollary 4.14). Algorithm 2 is (3Y, 4Y (1 + 4Y)X)-di�erentially private.

We show that, if G and ~ are far from G(_), then with high probability the algorithm fails. If they are close

to G(_), then by Theorem 4.13 the output distributions are indistinguishable.

Proof. Take adjacent data sets G and ~ and some output event � ∈ R3 ∪ {FAIL}. As shorthand, let � = {FAIL}
and write A in place of A�

Y,X,V
. Recall that, by Lemma D.6, it su�ces to prove privacy for G,~ with Hamming

distance 1.

For the �rst case, assume that maxI∈{G,~ } �� (I,G(_)) ≥ log(1/XV)
Y

+ 1, so we know both �� (~,G(_)) ≥
log(1/XV)

Y
and �� (G,G(_)) ≥ log(1/XV)

Y
. Then, by the CDF of the Laplace distribution and the fact that we set

our threshold to
log(1/V)

Y
, under both G and ~ we have Pr[FAIL] ≥ 1 − X . Thus

Pr[A(G) ∈ �] = Pr[A(G) ∈ � | A(G) ∈ � ] Pr[A(G) ∈ � ] + Pr[A(G) ∈ � | A(G) ∉ � ] Pr[A(G) ∉ � ]
= Pr[A(~) ∈ � | A(~) ∈ � ] Pr[A(G) ∈ � ] + Pr[A(G) ∈ � | A(G) ∉ � ] Pr[A(G) ∉ � ]
≤ Pr[A(~) ∈ � | A(~) ∈ � ] (4Y Pr[A(~) ∈ � ]) + 1 · X,

where in the �rst line we used the fact that � either contains FAIL or it does not, and in the second line we

used (twice) the CDF of the Laplace distribution. Since

Pr[A(~) ∈ � | A(~) ∈ � ] Pr[A(~) ∈ � ] = Pr[A(~) ∈ � ∩ � ] ≤ Pr[A(~) ∈ �],

we have our (Y, X) upper bound for Pr[A(G) ∈ �]. The upper bound for Pr[A(~) ∈ �] follows from an

identical argument. This �nishes the �rst case.

For the second case, assume that maxI∈{G,~ } �� (I,G(_)) ≤ log(1/XV)
Y

, so writing G̃, ~̃ for the projections

into G(_),
�� (G̃, ~̃) ≤ �� (G̃, G) + �� (G,~) + �� (~, ~̃) ≤

2 log(1/XV)
Y

+ 1.

Recall that, if A(G) ≠ FAIL, then the algorithm samples from N(`G̃ ,�2ΣG̃ ), and analogously for A(~). By

Theorem 4.13, for any G̃, ~̃ ∈ G(_) such that �� (G̃, ~̃) ≤ : , if

= > 2:_ and Y ≥ 10:_

(
1

= − 2:_
+ 1

=

)
log

2

X
, (76)

thenN(`G̃ ,�2ΣG̃ ) ≈2Y,(1+4Y )X N(`~̃,�2Σ~̃). We can assume the conditions in (76) are satis�ed, since otherwise

the algorithm immediately aborts. Write DG ∼ N(`G̃ ,�2ΣG̃ ) and D~ ∼ N(`~̃,�2Σ~̃) We have

Pr[A(G) ∈ �] = Pr[A(G) ∈ � | A(G) ∈ � ] Pr[A(G) ∈ � ] + Pr[A(G) ∈ � | A(G) ∉ � ] Pr[A(G) ∉ � ]
≤ 4Y Pr[A(G) ∈ � | A(G) ∈ � ] Pr[A(~) ∈ � ] + 4Y Pr[A(G) ∈ � | A(G) ∉ � ] Pr[A(~) ∉ � ]
= 4Y (Pr[A(~) ∈ � | A(~) ∈ � ] Pr[A(~) ∈ � ] + Pr[DG ∈ �] Pr[A(~) ∉ � ])
≤ 4Y

(
Pr[A(~) ∈ � | A(~) ∈ � ] Pr[A(~) ∈ � ] +

(
42Y

Pr[D~ ∈ �] + (1 + 4Y)X
)

Pr[A(~) ∉ � ]
)

≤ 4Y
(
42Y

Pr[A(~) ∈ � ∩ � ] + 42Y
Pr[A(~) ∈ � \ � ]

)
+ 4Y (1 + 4Y)X

≤ 43Y
Pr[A(~) ∈ �] + 4Y (1 + 4Y)X.

An identical calculation yields the corresponding upper bound for Pr[A(~) ∈ �]. �
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