Under review as a conference paper at ICLR 2026

A INCREMENTAL VERSION OF LIBRARIAN

We support sharing library components across clusters through the below incremental version of our
algorithm. It processes clusters sequentially, rather than in parallel, and its output can depend on the
ordering imposed upon the clusters.

Lo=O

o} = U

c€CLUSTER({pn })

(ALe, {ph 1)) = arg UL UAL{p}) Ve e CLUSTER({p,})

min
(AL, {p;})ESAMPLE (c; L+—1)

Ly =Ly 1 UALy, L* = L|CLUSTER ({pn})|

B ALGORITHM

Algorithm 1 Refactoring Specialized Programs into a Joint Library

Require: Set of independent, specialized programs P;pitiar = {p1, P2, -+, Pn}
Require: Sample Budget K
Ensure: Joint library £y, and set of refactored programs Pp;ya

1: C + Cluster(Pipitial)

2: ACfinal — @, Pfinal «— 0

3: for all cluster c € C do > Each cluster independently
4 T¢ < GrouplntoTuples(c) > Get tuples for each cluster
5 for all tuples 7 € T> do
6: {fretrieved} + RetrieveRelevantFromLibrary(L, 7)
7: S0
8: fori =1to K do > Sample k times
9: ({fnew,i}v {PQ}}) <= SAMPLE (fretrieved7 T)
10: 8 SO Frewi} (21}
11: end for
12: (frests {Phest) < RerankAndSelectBest(S, £ (+)) > Rerank using objective
13: ‘Cfinal U {fbest}
14 Pfinal U {pgest}
15: end for
16: end for

17: return Lfinat, Prinal

C EXPERIMENTAL SETUP

Grouping Programs into Collections To facilitate parallel application of LIBRARIAN and manage
the dataset scale, we assume that semantically distant files will have minimal overlap in their optimal
library functions. Therefore, our overall approach partitions the dataset into disjoint collections
through clustering.

For CodeContests, these collections are constructed from an initial corpus of ~9k problems with
Python solutions: We first filter these files, removing those whose selected canonical solution is under
10 lines (minimal refactoring potential). For the remaining 4596 solutions we use a language model
to generate textual descriptions of canonical solutions—emphasizing reusable components—which
are embedded using OpenAl’s text-embedding-ada-002.

Agglomerative Clustering (Ward Jr [1963) is subsequently applied to these embeddings to partition
the files into a predefined number of initial clusters, in our case 120. To create uniformly sized
experimental units, we subsample each such cluster to form collections of 30 files. This collection

12

Under review as a conference paper at ICLR 2026

size was empirically chosen because it balanced between the runtime of LIBRARIAN without limiting
compression. We select 10 collections that we then use to evaluate our methods.

For Transformers, since the number of models is on the lower end, we manually chose a set of popular
LLM / VLM models and passed them to the agent in collections of 5 code sources.

REGAL Baselines. To evaluate the ability of our libraries to support reuse on new problems, we
turn to the program synthesis tasks used in REGAL, where learned libraries are added to help the
program synthesizer. We evaluate on the two domains published by the authors, Logo and Date.
Because our clustering is inspired by REGAL but adds additional complexity, for fair comparison,
we keep their setup the same and only augment the training using sample + MDL rerank procedure
described in Section

Code Contests. To evaluate LIBRARIAN on refactoring Code Contests we select 6 collections of
30 files (problems). In each collection we group the problems into tuples of size 3. We set the sample
budget to be K = 8, since our ablations show that with larger /' we discover better libraries 2] We
use the MDL objective for rankings. The model used for sampling is OpenAI’s 04-mini (OpenAl,
2024])). To obtain MDL scores we use Qwen 2.5 7B Instruct (Qwen et al.| 2025) as a balance between
quality, speed, and cost.

Code Agents on Transformers and Diffusers Repositories. To fairly evaluate performance on the
task by state-of-the-art systems, we use coding agents that advertise long-context ability to reason
about, write, and refactor code repositories. Specifically, we use Claude Code (C1) (Anthropic, [2025)
which uses the Opus 4.1.

We test whether code agents can refactor collections of code sources autonomously, without hu-
man intervention. Refactoring repositories with code agents involves planning and iterative (re-
)implementation and testing. Code agents are prompted to perform each of these steps, with feedback
from the unit tests. Agents must run and repair unit tests autonomously. We run coding agents
multiple times per task, logging their progress in checklists stored in text files.

13

Under review as a conference paper at ICLR 2026

The instruction provided to human evaluators is as follows:

W —

W

-

1. Materials Provided
You will be given a set of files for each example case:

* *xx‘original_programs.py ‘x*: This file contains a set of 3 distinct Python programs, each presented with its
corresponding problem description/query. This represents the "before” state.
* *xx‘v1.py ‘xx: This file presents the first refactoring approach. It includes:
* The 3 refactored versions of the original programs.

* A "library"” section (e.g., ‘codebank.py‘ or inline) containing helper functions. These helper functions
might be retrieved from an existing common library or newly created during this refactoring.
* Either the retrieved or the new helper function sections may be _empty_, in case no programs existed in

the codebank at the time or if no need helper functions were created by the LLM.
* *x‘v2.py‘*x: This file presents the second, alternative refactoring approach. Similar to ‘refactoring_v1.py
‘¢, it includes:
* The 3 refactored versions of the original programs (using a different strategy than v1).
* A "library” section with its own set of helper functions.

*%*NOTE*x*: both refactorings had accuracy at least as good as the original programs.
2. Your Task
Your primary task is to:

1. *x*Reviewxx the ‘original_programs.py‘ to understand the initial code and the problems being solved.

2. *xAnalyzexx both ‘refactoring_v1.py‘ and ‘refactoring_v2.py‘. Pay close attention to how the original
programs have been restructured and what functionalities have been extracted into their respective
libraries.

3. *x*Decide which refactoring (Version 1 or Version 2) you believe is "better,"** based on the evaluation
criteria provided below (or your own criterial).

3. Evaluation Criteria: What to Consider for Your Choice

When comparing ‘refactoring_v1.py‘ and ‘refactoring_v2.py‘, please *consider* the following aspects to inform
your choice. The "better” refactoring should ideally excel in these areas:

> Most importantly, make sure that the extracted functions are xxactually reusable and not too specific.** If
the main programs are short, the refactoring is not immediately "better”! Try to think whether the
extracted functions could actually be used in a different program down the line.

* *xReusability of Helper Functions :*x%
* xxGenerality:** Are the new helper functions general-purpose and potentially useful for x*other,
differentx programs and problems beyond the three presented?
* **Reuse:** How much were existing helper functions reused?
* **xSpecificity:xx Are the functions too specialized to the current set of problems, limiting their
broader applicability? _Avoid functions that are essentially just the original program broken out into a
"helper."_
* Composability
* **Maintainability:**
* Readability & Understandability
* Ease of Modification
* Separation of Concerns

4. What NOT to Focus On:

* *xComments:*x Please disregard the presence or absence of comments in the code for this evaluation. These
are superficially generated by LLMs in some occasions and could be added manually after with a single
pass.

* *xMinor Stylistic Differences:** Do not focus on trivial differences in variable naming or formatting,
unless they significantly impact readability or understanding.

5. How to Provide Your Feedback

For each example case, please provide:

1. **Your Preferred Version:** (e.g., "Version 1" or "Version 2")

Listing 1: Human Evaluation Instruction

D ASYMPTOTIC BEHAVIOR RESULTS

Here we include the full graph of asymptotic behavior of all four scoring metrics (MDL, tokens, MI
and CC), reporting the raw library metrics and the metric ratios. We can see that refactored programs
have higher CC than the baseline and that optimizing CC as an objective does not decrese the other
metrics. MDL performs best on total raw library usage as well as on average times a library function
is used in the refactorings. MI ends up optimizing the number of library functions the best, but their
reusability is below the average for the refactorings. Optimizing for tokens produces smaller libraries
with less usage per function compared to optimizing MDL.

14

Under review as a conference paper at ICLR 2026

Minimize MDL Minimize Token Maximize MI Minimize CC

n
o
S

N
S
3

H
@
S

H
)
3

% Change from
Non-refactored

52.0%) [22%

@
S

M8.0%) [21.0%) 31%) _—— MDL Ratio £1SEM

§— Tokon Ratio +15EM S 200%)
i {2 00azazo 165% - g
L TO), Wi R 1S =

(25.6% CC Ratio

r°

[208%

|
@
S

3

- ENEN >

Total Library Functions ~ Total Library Usage
N

~
o w

N
o

Avg Function Reuse
@«

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Sample Budget (K) Sample Budget (K) Sample Budget (K) Sample Budget (K)

Figure 7: Asymptotic behavior of metrics for scoring libraries and refactorings (columns) varying
refactoring budget (horizontal axes).

E HUMAN STUDY DETAILS

We ran a user study with 12 participants where each participant had to judge 10 refactoring pairs.
Each pair was comparing two out of three metrics, MDL, tokens, and MI. We showed the participants
the original programs, as well as both of the refactoring versions (including the programs and the
learned libraries). The participants were able to choose either version or say that the two refactorings
are almost the same.

To quantify pairwise preferences between refactoring metrics, we employed the Bradley-Terry model,
a standard framework for analyzing paired comparison data. We fit the model using maximum
likelihood estimation with mutual information (MI) as the reference category (w1 = 1). To address
potential noise in human judgments, we applied consensus-based filtering with a 75% threshold,
retaining all responses for comparisons with low consensus (indicating genuine ambiguity) while
excluding minority responses on high-consensus comparisons where the majority preference likely
indicates the correct judgment. This conservative approach preserved 94.2% of responses while
strengthening the statistical evidence for metric preferences, with MDL significantly outperforming
MI (p = 0.67, 95% Confidence Interval: [0.56,0.78]). Even without the filtering MDL preference
over MI was statistically significant.

F BEST@K COMPRESSION IS A U-STATISTIC

We wish to estimate the expected compression ratio achieved by our sample + rerank method, which
samples k candidate refactorings, discards any that do not pass the tests, and selects the one with the
lowest score (total log-prob).

Background on U-Statistics. Let 71,..., 72, -
U-statistic of order k is defined as

-1
n
U, = (k) Z W Zi,s. . Zi). (6)

1<ip < <ip<n

F'. For a symmetric function h : Z ks R, the

15

Under review as a conference paper at ICLR 2026

By construction,
E[Un] =]E[h(ZlaaZk)]a (7)

so U, is an unbiased estimator of the population quantity 0 = E[h(Z1,. .., Zy)].

Application to Best@k Compression. Let each valid refactoring be a pair Z = (.5, C)), where S is
the score and C' is the compression ratio. Define the symmetric function

hi(z1, ... 25) = Cjs, j* = arg 1I§nj11§1k S;,)

the compression ratio of the lowest-score refactoring among &k draws. The population target is then

Or = Elhi(Z1, ..., Zk)]. C)

Given n valid samples, our estimator is

-1
0, = (Z) S lZi,. 2. (10)

1<ip < <ip<n
Proposition. 6}, is a U-statistic of order k£ with function Ay, and hence an unbiased estimator of 6.

Proof. (1) Symmetry of the function hy. hy selects the compression associated with the lowest score
among its k arguments. Permuting the inputs does not affect this outcome (ties can be resolved with
a fixed, permutation-invariant rule). Thus hy, is symmetric.

(2) U-statistic form. By definition, a U-statistic of order k with kernel Ay, is

1
n
U, = <k:) Z hi(Ziys .5 Zsy),

1<i1 << <n
which matches 6}, exactly.

Therefore, @k is a U-statistic of order k. By the unbiasedness property of U-statistics,
E[bx] = 0.
O

Thus, our reported best@k compression curves provide unbiased estimates of the expected perfor-
mance of the sample + rerank method.

G CLUSTERING ANALYSIS: CODECONTESTS

We analyze the coherence of the clusters underlying collections in MINICODE-CodeContests.
In particular, we compare clustering based on 04-mini generated file descriptions against task
descriptions. Since task descriptions in competition coding problems are designed to hide the
algorithmic approach needed to solve problem, we expect that clusters based on file descriptions
are more coherent. We use Normalized Tag Instance Entropy and Herfindahl-Hirschman Index to
evaluate clusterings. Figure [§] shows our clustering approach yields more thematically coherent
clusters, evidenced by achieving lower entropy and higher HHI values across the entire tested range
of N. We provide definitions of our measures below.

G.1 COLLECTION COHERENCE MEASURES

We use two measures to evaluate the thematic coherence of collections: Good collections should
group files with a (1) concentrated and (2) identifiable set of shared conceptual tags, which for
CodeContests are provided as ground truth (trees, graphs, etc.).

We provide the full definitions of the collection coherence measures below.

16

Under review as a conference paper at ICLR 2026

- 1.1-

[eR

© 0.875-

2o _— 1.0-

w v T o

: £ 0.850- s

Ex S 09-

o

Z 2 0.825- e

S —&— Problem Query 0.8+

3: 0.800- —&— LLM Descr.
1 1 1 1 1 1 1 1 1 1 1 1 1 1
50 75 100 125 150 175 200 50 75 100 125 150 175 200

Num Clusters (N) Num Clusters (N)

Figure 8: Clustering analysis of 4,596 Code Contest problems, comparing the thematic coherence of
clusters formed using our proposed method versus REGAL-style clustering.

Normalized Tag Instance Entropy: This measures the concentration of tag instances within a
collection C. Let p; be the proportion of the i-th unique tag type among all tag instances in C, and
D¢ be the number of distinct tag types in C'. If Do > 1, the normalized entropy H y is defined as:

D
Zi:cl pilogs p; (11)

Hy =—
N logy De

If Do <1, then Hy = 0. Lower Hy (closer to 0) indicates higher thematic purity, meaning fewer
tag types dominate the bulk of tag mentions.

Herfindahl-Hirschman Index (HHI) for Problem Presence: This measures tag concentration
across distinct problems in a cluster C'. Let s, be the proportion of problems in C' that include tag ¢ (a
problem contributes to s; if ¢ is one of its unique tags). A higher HHI signifies that the problems are
collectively characterized by a smaller, more focused set of tags.

HHI = Z s? (12)
tE€Tags(C)

where Tags(C) represents the set of unique tags present in cluster C'.

H BENCHMARK COMPARISON

We compare our benchmark, MINICODE, to similar benchmarks in Table El We define creativity and
design as the need to explore diverse solutions in order to find the best solution possible. For example,
optimizing for program correctness alone does not require exploring a large solutions space, whereas
optimizing a program for speed would. In the case of compressing large files, we must explore the
large space of shared abstractions afforded by libraries in order to maximize compression.

Table 4: Comparison of Code Benchmarks

Benchmark Creativity/Design Scale
SWE-bench (Jimenez et al.,|2024) Low Repository
Commit-0 (Zhao et al.,[2025) Medium Repository
RefactorBench (Gautam et al., [2025]) Low File
ECCO (Waghjale et al., |[2024) High Function
KernelBench (Ouyang et al.||[2025)) High Function
MINICODE(Ours) High Repository

I FuLL MINICODE CODECONTESTS RESULTS

We present the full agent scores for the CodeContests split in Table[5] The results are given both for
each cluster of code sources, as well as averaged across clusters.

17

Under review as a conference paper at ICLR 2026

Cluster Agent Tokens CC Pass % MDL MDL %

original 9088 95 80.3 11745.85 100.0

0 sonnet 3.7 18114 176 87.0 15005.18 127.7
sonnet 4 11121 138 80.3 9901.53 84.3
codex-mini 9321 95 80.3 9990.74 85.1

original 12531 255 89.7 13431.86 100.0

1 sonnet 3.7 10470 239 96.7 8933.65 66.5
sonnet 4 11325 298 96.7 8214.42 61.2
codex-mini 12762 255 89.7 11798.73 87.8

original 14087 376 89.0 15012.77 100.0

> sonnet 3.7 17345 429 91.3 13145.02 87.6
sonnet 4 14270 356 93.0 10522.66 70.1
codex-mini 14318 376 89.0 13273.81 88.4
original 14261 246 90.3 13348.82 100.0

3 sonnet 3.7 20749 241 97.7 15859.02 118.8
sonnet 4 13433 197 80.7 11937.04 89.4
codex-mini 14495 246 90.3 11616.41 87.0
original 17693 336 80.7 14665.16 100.0

4 sonnet 3.7 29860 358 100.0 20666.52 141.0
sonnet 4 18684 352 82.0 12801.21 87.3
codex-mini 17923 336 80.7 12902.09 88.0
original 12588 286 92.0 12790.11 100.0

5 sonnet 3.7 10580 128 99.3 8435.12 65.9
sonnet 4 10416 155 99.3 9167.85 71.7
codex-mini 12819 286 92.0 11086.19 86.7
original 11020 131 54.3 13540.41 100.0

6 sonnet 3.7 21747 502 88.0 19446.07 143.6
sonnet 4 11177 143 57.3 10492.00 77.5
codex-mini 11251 131 543 11651.65 86.1

original 12301 180 80.0 12393.73 100.0

7 sonnet 3.7 16390 166 91.0 13371.59 107.9
sonnet 4 11625 150 85.7 9304.25 75.1
codex-mini 12534 180 80.0 10549.04 85.1

original 12946 238 82.0 13366.09 100.0

Ave sonnet 3.7 18157 280 93.9 14357.77 107.4
sonnet 4 12756 224 84.4 10292.62 77.1
codex-mini 13178 238 82.0 11608.58 86.8

Table 5: Comparison of the pass rate and compression metrics of the original files, Claude Sonnet 4
and codex-mini refactorings across CodeContests clusters.

J REFACTORING EXAMPLES OF LIBRARIAN ON CODE CONTESTS

J.1 EXAMPLE 1

In code snippets [3] [2] B} f] one example of 2 refactoring versions. Specifically, the versions are
both passing at least as many test cases as the original and they have the biggest difference in
MDL among all the sample refactorings for that tuple. Sample + rerank filtering selected refac-
toring V2. You can observe that refactoring V1 introduces some problem specific functions like
build_max_beauty_perm(), while refactoring V2 sticks to more generally useful functions.

18

Under review as a conference paper at ICLR 2026

I| # ==== NEW HELPER FUNCTIONS ====

2| def compute_full_mask(i):

3 """Return mask of all 1s of the bit-length of i."""
4 return (1 << i.bit_length()) - 1

6| def build_max_beauty_perm(n):
7 """Build permutation of @..n maximizing sum of i*p[il].
8 ans = [0] * (n + 1)
9 used = set()
for i in range(n, -1, -1):
if i in used:

wnn

1

1

12 continue

13 mask = compute_full_mask(i)

14 j =1 * mask

15 ans[il, ans[j] = j, i

16 used.add (i)

17 used.add(j)

18 beauty = sum(i * ans[i] for i in range(n + 1))
19 return ans, beauty

21| def solve_xor_sum(u, v):

22 o

23 Find shortest array whose xor is u and sum is v.
24 Return list or None if impossible.
25 e

26 if u>vor (v -u) %2

27 return None

28 if u == v:

29 return [] if u == 0 else [u]
30 x = (v -u) // 2

31 # try two elements

32 if ((u + x) * x) ==

33 return [u + x, x]

4 # fallback to three elements

5 return [u, x, x]

7| def build_trie(keys):

8 W
9 Build a binary trie with counts for 30-bit numbers.
40 Each node: [left_index, right_index, count].
41 e

42 tree = [[0, 0, 0]]

43 for x in keys:

44 now = @

45 tree[now][2] += 1

46 for i in range(29, -1, -1):

47 b = (x > i) & 1

48 if tree[now][b] ==

49 tree[now]l[b] = len(tree)

50 tree.append([0, 0, 0])

51 now = treelnowl[b]

52 treelnow][2] += 1

53 return tree

54

55| def trie_pop_min_xor(tree, x):

56 e

57 Pop one key from trie to minimize x“key and return that minimal xor.
58 Decrements counts along the path.

59 e

60 now = 0@

61 res = 0

62 for i in range(29, -1, -1):

63 b = (x > i) & 1

64 nxt = treelnow][b]

65 if nxt and tree[nxt][2] > @

66 now = nxt

67 else:

68 now = treelnowllb * 1]

69 res |= (1 << i)

70 treelnowl][2] -= 1

71 return res

Listing 2: Version 1, New Helpers

19

Under review as a conference paper at ICLR 2026

A2 N RS

i}

© o

##########H PROGRAM: node_16:cc_python_16
from codebank import =*

def main():
import sys
data = sys.stdin.readline()
if not data:
return
n = int(data)
perm, beauty = build_max_beauty_perm(n)
print (beauty)
print (xperm)

if __name__ == "__main__":
main ()

#########4E PROGRAM: node_19:cc_python_19
from codebank import =*

def main():
import sys
data = sys.stdin.readline
n = int(data())
A = list(map(int, data().split()))
P = list(map(int, data().split()))
trie = build_trie(P)
0 = [trie_pop_min_xor(trie, a) for a in A]
print (x0)

if __name__ == "__main__":
main ()

#########H PROGRAM: node_25:cc_python_25
from codebank import =*

def main():

import sys
u, v = map(int, sys.stdin.readline().split())
res = solve_xor_sum(u, Vv)
if res is None:

print(-1)
else:

print(len(res))

if res:

print(*res)

DA W —

if __name__ == "__main__":
main ()
Listing 3: Version 1, Refactored Programs
==== NEW HELPER FUNCTIONS ====

def compute_complement(i):
return i * ((1 << i.bit_length()) - 1)

def trie_add(trie, x, max_bit):
trie[@][2] += 1
now = @
for i in range(max_bit, -1, -1):
bit = (x > i) & 1
if trielnowl[bit] ==
trielnow][bit] = len(trie)
trie.append([0, 0, 0])
now = trie[now][bit]
trie[now][2] += 1

def trie_find_min_xor(trie, x, max_bit):

now = @
ans = 0
for i in range(max_bit, -1, -1):

bit = (x > i) & 1
if trielnowl[bit] and trieltrielnow][bit]1[2] > 0:
now = trielnow][bit]

else:
now = trie[nowl[bit * 1]
ans |= (1 << i)
trielnowl][2] -= 1

return ans

Listing 4: Version 2, New Helpers

20

SRS =2

— S 0 % Q&R

5 1o

59

60

Under review as a conference paper at ICLR 2026

##########H PROGRAM: node_16:cc_python_16
from codebank import =*

def main():
import sys
input = sys.stdin.readline
n = int(input())

ans = [-1] * (n + 1)
for i in range(n, -1, -1):
if ans[i] == -1:

z = compute_complement (i)

ans[i] = z

ans[z] = i
m = sum(i * ans[i] for i in range(n + 1))
print(m)

print (xans)

if __name__ == "__main__":
main ()

#########4E PROGRAM: node_19:cc_python_19
from codebank import x

def main():
import sys
input = sys.stdin.readline
n = int(input())
A = list(map(int, input().split()))
P = list(map(int, input().split()))
max_bit = max(max(A, default=0), max(P, default=0)).bit_length() - 1
trie = [[0, @, 0]]
for x in P:
trie_add(trie, x, max_bit)
res = [trie_find_min_xor(trie, x, max_bit) for x in A]
print (*xres)

if __name__ == "__main__":
main ()

#t#######4E PROGRAM: node_25:cc_python_25
from codebank import x

def main():
u, v = map(int, input().split())
if u>vor ((v -u) & 1):
print(-1)
elif u == @ and v == 0:
print (@)
elif u == v:
print (1)
print(u)
else:
w= (v -u)// 2
if (w & u) == 0:
d=u+w
print (2)
print(d, w)
else:
print(3)
print(u, w, w)
if __name__ == "__main__
main ()

Listing 5: Version 2, Refactored Programs

J.2 EXAMPLE 2

In code snippets [7} [6} Ol [] is another example of 2 refactorings where V1 was better according to
LIBRARIAN. We can observe that V2 creates helper functions that are overly specific to the problem.
You can see that refactoring V2 introduces overly specialized functions like di jkstra_special() or
compute_min_moves_opposite_parity(). In comparison, refactoring V1 generates only general
versions of these functions (e.g. dijkstra()).

21

XJI3 N E Lo

i}

©

Under review as a conference paper at ICLR 2026

==== NEW HELPER FUNCTIONS ====

def

def

def

def

read_ints():
return list(map(int, input().split()))

build_adj_undirected(n, edges):
adj = [[] for _ in range(n)]
for u, v, w in edges:
adjful.append((v, w))
adjlv].append((u, w))
return adj

dijkstra(adj, src):
from heapq import heappush, heappop
INF = 10%%18
n = len(adj)
dist = [INFIxn
parent = [-1]*n
dist[src]l = 0@
heap = [(@, src)]
while heap:
d, u = heappop(heap)
if d > dist[ul:
continue
for v, w in adj[u]:
nd = d + w
if nd < dist[v]:
dist[v] = nd
parent[v] = u
heappush (heap, (nd, v))
return dist, parent

reconstruct_path(parent, dest):
path = []
u = dest
while u != -1:
path.append(u+1)
u = parent[ul
return path[::-1]

multi_source_bfs(neighbors, sources):
from collections import deque

n = len(neighbors)

dist = [-1]*n

dq = deque ()

for u in sources:

if distful] == -1:
dist[ul] = @
dqg.append(u)

while dq:

u = dq.popleft()
for v in neighbors[ul
if dist[v] == -1:
dist[v] = dist[u] + 1
dqg.append(v)
return dist

Listing 6: Version 1, New Helpers

22

XJI3 N E Lo

i}

©

Under review as a conference paper at ICLR 2026

##########H PROGRAM: node_16:cc_python_16
from codebank import =*

def main():
import heapq
n, m = read_ints ()
edges = [(u-1, v-1, w) for u, v, w in (read_ints() for _ in range(m))]
adj = build_adj_undirected(n, edges)
INF = 10%%20
dist = [INFJ]*n
dist[0] = @
last_w = [@]*xn
heap = [(0, 0)]
while heap:
d, u = heapq.heappop(heap)
if d > dist[ul:
continue
record last edges
for v, w in adj[ul:
last_wlv] = w
expand two-edge moves
for v, wl in adj[ul:
tw = last_w[v]
for x, w2 in adj[v]:
nd = d + (tw + w2)*xx2
if nd < dist[x]:
dist[x] = nd
heapq. heappush (heap, (nd, x))
out = [1]
for x in dist:
out.append(str(x if x < INF else -1))

print(” ".join(out))
if __name__ == "__main__":
main ()

4 PROGRAM: node_17:cc_python_17

from codebank import =x

def main():
n, m = read_ints ()
edges = [(u-1, v-1, w) for u, v, w in (read_ints() for _ in range(m))]

adj = build_adj_undirected(n, edges)
dist, parent = dijkstra(adj, @)
if dist[n-1] >= 10%%18
print(-1)
else:
path = reconstruct_path(parent, n-1)
print (xpath)

if __name__ == "__main__":
main ()

#########4E PROGRAM: node_19:cc_python_19
from codebank import x

def main():
n = int(input())
a = read_ints ()
build reversed graph: for each move i->j, add edge j->i
neighbors = [[] for _ in range(n)]
for i, val in enumerate(a):
for j in (i - val, i + val):
if 0 <= j < n:

neighbors[j].append(i)

BFS from all even and all odd positions separately

even_sources = [i for i, val in enumerate(a) if val % 2 == 0]

odd_sources = [i for i, val in enumerate(a) if val % 2 == 1]

dist_even = multi_source_bfs(neighbors, even_sources)

dist_odd = multi_source_bfs(neighbors, odd_sources)

for odd al[i], answer is dist to nearest even => dist_even; else dist_odd
ans = [dist_even[i] if a[i]l % 2 == 1 else dist_odd[i] for i in range(n)]

print (xans)

if __name__ == "__main__
main ()

Listing 7: Version 1, Refactored Programs

23

Under review as a conference paper at ICLR 2026

N E =

i}

O MO IO I e
S ©

DR =

24

#
==== NEW HELPER FUNCTIONS ====
def read_ints():
return list(map(int, input().split()))

def build_undirected_weighted_graph(n, m):
from collections import defaultdict
adj = defaultdict(list)
for _ in range(m)

u, v, w = read_ints ()

u-=1; v -=1

adj[ul.append((v, w))

adj[v].append((u, w))
return adj

def dijkstra(adj, src, n):
import heapq
INF = 10%%18
dist = [INFIxn
parent = [-1]*n
visited = [FalseJxn
dist[src]l = 0@
heap = [(0, src)]
while heap:
d, u = heapq.heappop (heap)
if visited[ul:
continue
visited[u] = True
for v, w in adj.get(u,):
nd = d+ w
if nd < dist[v]:
dist[v] = nd
parent[v] = u
heapq.heappush (heap, (nd, v))
return dist, parent

def reconstruct_path(parent, dest):
path = [1]
while dest != -1:
path.append(dest+1)
dest = parent[dest]
return path[::-1]

def dijkstra_special(e, n, src):

import heapq

INF = 10%%18

d = [INFl*n

dlsrc]l = 0

heap = [(@, src)]

while heap:
cd, v = heapq.heappop(heap)
if cd > dlv]

continue

td = {3}

for u, w in e.get(v, ()):
tdful = w

for u, wl in td.items():
for x, w2 in e.get(u, ()):
cost = cd + (Wl + w2)*%2
if cost < d[x]:
d[x] = cost
heapq.heappush (heap, (cost, x))
return d

def compute_min_moves_opposite_parity(a):
from collections import deque

n = len(a)

go = [[] for _ in range(n)]
ans = [-1]xn

q = deque ()

for i, val in enumerate(a):
for j in (i - val, i + val):
if @ <= j < n:
if (aljl % 2) != (val % 2):
ans[il = 1
q.append (i)
break
else:
gol[j].append(i)
while q:
u = q.popleft()
for v in golul:
if ans[v] == -1:
ans[v] = ans[ul] + 1
q.append(v)
return ans

Listing 8: Version 2, New Helpers

24

A2 N RS

©

i}

Under review as a conference paper at ICLR 2026

#
##########H PROGRAM: node_16:cc_python_16
from codebank import =*
def main():
n, m = read_ints ()
e = {}
for _ in range(m):
u, v, w = read_ints ()
u-=1; v -=1
e.setdefault(u, [1).append((v, w))
e.setdefault(v, [1).append((u, w))
d = dijkstra_special(e, n, 0)
print (" ".join(str(-1 if x >= 10%**18 else int(x)) for x in d))
if __name__ == "__main__":
main ()

#########4E PROGRAM: node_17:cc_python_17
from codebank import =*

def main():
n, m = read_ints ()
adj = build_undirected_weighted_graph(n, m)
dist, parent = dijkstra(adj, @, n)
if dist[n-1]1 >= 10%*18
print(-1)
else:
path = reconstruct_path(parent, n-1)

print(” ".join(map(str, path)))
if __name__ == "__main__":
main ()

#########H PROGRAM: node_19:cc_python_19
from codebank import =*

def main():

n = int(input())
a = read_ints ()
ans = compute_min_moves_opposite_parity(a)
print (" ".join(map(str, ans)))
if __name__ == "__main__":
main ()

Listing 9: Version 2, Refactored Programs

K OBFUSCATION EXAMPLE

We provide the full source code, both refactored and obfuscated, for the MDL and token comparison
here.

Listing 10: Refactored code from modeling_llama.py from the refactored Transformers repository.
from typing import Optional, Union

import torch
from torch import nn

from ...cache_utils import Cache, DynamicCache

from ...generation import GenerationMixin

from ...masking_utils import create_causal_mask

from ...modeling_layers import (
GenericForQuestionAnswering,
GenericForSequenceClassification,
GenericForTokenClassification,

)

from ...modeling_outputs import (
BaseModelOutputWithPast,
CausallLMOutputWithPast,

)

from ...modeling_utils import PreTrainedModel

from ...processing_utils import Unpack

from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from ...utils.generic import check_model_inputs

from .configuration_llama import LlamaConfig

from ..shared_library import (

25

Under review as a conference paper at ICLR 2026

rotate_half,
apply_rotary_pos_emb,
repeat_kv,
eager_attention_forward,
RMSNorm,

BaseMLP,
BaseRotaryEmbedding,
BaseAttention,
BaseDecoderlLayer,

logger =

class L1
pass

class L1
pass

class L1
def

class L1
def

class L1
def

logging.get_logger(__name__)

amaRMSNorm(RMSNorm) :

amaRotaryEmbedding (BaseRotaryEmbedding):

amaMLP (BaseMLP):
__init__(self, config):
super().__init__(config, mlp_bias=config.mlp_bias)

amaAttention(BaseAttention):
__init__(self, config: LlamaConfig, layer_idx: int):
super().__init__(
config=config,
layer_idx=layer_idx,
attention_bias=config.attention_bias,
sliding_window=None

amaDecoderlLayer (BaseDecoderlLayer):
__init__(self, config: LlamaConfig, layer_idx: int):
super().__init__(
config=config,
layer_idx=layer_idx,
norm_class=L1lamaRMSNorm,
mlp_class=L1lamaMLP,
attention_class=LlamaAttention

@auto_docstring

class LlamaPreTrainedModel (PreTrainedModel):
config: LlamaConfig
base_model_prefix =
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = []
_supports_flash_attn = True
_supports_sdpa = True
_supports_flex_attn = True

_can_compile_fullgraph = True
_supports_attention_backend = True
_can_record_outputs = {

: LlamaDecoderLayer,
: LlamaAttention,

@auto_docstring
class LlamaModel(LlamaPreTrainedModel):

def

__init__(self, config: LlamaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size

self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]

)

self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = LlamaRotaryEmbedding(config=config)

26

Under review as a conference paper at ICLR 2026

self.gradient_checkpointing = False
self.post_init()

@check_model_inputs

@auto_docstring

def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
**xkwargs: Unpack[TransformersKwargs],

) —-> BaseModelOutputWithPast:
if (input_ids is None) * (inputs_embeds is not None):

raise ValueError()

if inputs_embeds is None:
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)

if use_cache and past_key_values is None:
past_key_values = DynamicCache(config=self.config)

if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0@
cache_position: torch.Tensor = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device

)

if position_ids is None:
position_ids = cache_position.unsqueeze(0)

causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
position_ids=position_ids,

)

hidden_states = inputs_embeds
position_embeddings = self.rotary_emb(hidden_states, position_ids)

for decoder_layer in self.layers[: self.config.num_hidden_layers]:

hidden_states = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_values=past_key_values,
cache_position=cache_position,
position_embeddings=position_embeddings,
*xkwargs,

)

hidden_states = self.norm(hidden_states)

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,

Qauto_docstring
class LlamaForCausallLM(LlamaPreTrainedModel, GenerationMixin):

_tied_weights_keys = []
_tp_plan = { : }
—pp_plan = { : (L 1Lt DY

def __init__(self, config):
super().__init__(config)
self.model = LlamaModel(config)
self.vocab_size = config.vocab_size
self.1lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

self.post_init()

def set_decoder(self, decoder):
self.model = decoder

27

Under review as a conference paper at ICLR 2026

def get_decoder(self):
return self.model

@can_return_tuple

@auto_docstring

def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
*xkwargs: Unpack[TransformersKwargs],

) —-> CausallLMOutputWithPast:

outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
*xkwargs,

)

hidden_states = outputs.last_hidden_state
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :1)

loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, *xkwargs)

return CausallLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,

hidden_states=outputs.hidden_states,
attentions=outputs.attentions,

class LlamaForSequenceClassification(GenericForSequenceClassification, LlamaPreTrainedModel):

class LlamaForQuestionAnswering(GenericForQuestionAnswering, LlamaPreTrainedModel):
base_model_prefix =

class LlamaForTokenClassification(GenericForTokenClassification, LlamaPreTrainedModel):

_all__=1[

28

Under review as a conference paper at ICLR 2026

Listing 11: Obfuscated code from modeling_llama.py from the refactored Transformers repository.

from typing import Optional as O,Union as U

import torch as T

from torch import nn as N

from ...cache_utils import Cache as C,DynamicCache as D

from ...generation import GenerationMixin as G

from ...masking_utils import create_causal_mask as m

from ...modeling_layers import GenericForQuestionAnswering as Q,GenericForSequenceClassification as S,
GenericForTokenClassification as K

from ...modeling_outputs import BaseModelOutputWithPast as B,CausalLMOutputWithPast as L

from ...modeling_utils import PreTrainedModel as P

from ...processing_utils import Unpack as X
from ...utils import TransformersKwargs as W,auto_docstring as a,can_return_tuple as r,logging
from ...utils.generic import check_model_inputs as c

from .configuration_llama import LlamaConfig as F
from ..shared_library import rotate_half,apply_rotary_pos_emb,repeat_kv,eager_attention_forward,RMSNorm as R,
BaseMLP as M,BaseRotaryEmbedding as E,BaseAttention as A,BaseDecoderLayer as Y
1=logging.get_logger(__name__)
class Z(R):pass
class I(E):pass
class J(M):
def __init__(s,g):super().__init__(g,mlp_bias=g.mlp_bias)
class H(A):
def __init__(s,g:F,i:int):super().__init__(config=g,layer_idx=1i,attention_bias=g.attention_bias,sliding_window=
None)
class V(Y):
def __init__(s,g:F,i:int):super().__init__(config=g,layer_idx=i,norm_class=Z,mlp_class=J,attention_class=H)
@a
class o(P):
config:F
base_model_prefix=
supports_gradient_checkpointing=True
_no_split_modules=[]
_skip_keys_device_placement=[]
_supports_flash_attn=True
_supports_sdpa=True
_supports_flex_attn=True
_can_compile_fullgraph=True
_supports_attention_backend=True
_can_record_outputs={ v, ‘H}
@a
class u(o):
def __init__(s,g:F):
super().__init__(g)
padding_idx=g.pad_token_id
.vocab_size=g.vocab_size
embed_tokens=N.Embedding(g.vocab_size,g.hidden_size,s.padding_idx)
layers=N.ModulelList([V(g,i)for i in range(g.num_hidden_layers)])
norm=Z(g.hidden_size,eps=g.rms_norm_eps)
rotary_emb=I(config=g)
gradient_checkpointing=False
post_init()

v nnon

@
o]

@a
def forward(s,input_ids:O[T.LongTensor]=None,attention_mask:O0[T.Tensor]=None,position_ids:0[T.LongTensor]=None,
past_key_values:0[C]=None, inputs_embeds:0[T.FloatTensor]=None, cache_position:0[T.LongTensor]=None,use_cache:
0[bool]=None, x*k:X[W])->B:
if(input_ids is None)*(inputs_embeds is not None):raise ValueError(

if inputs_embeds is None:inputs_embeds:T.Tensor=s.embed_tokens(input_ids)
if use_cache and past_key_values is None:past_key_values=D(config=s.config)
if cache_position is None:
p=past_key_values.get_seq_length()if past_key_values is not None else 0@
cache_position:T.Tensor=T.arange(p,p+inputs_embeds.shape[1],device=inputs_embeds.device)
if position_ids is None:position_ids=cache_position.unsqueeze (@)
f=m(config=s.config, input_embeds=inputs_embeds,attention_mask=attention_mask,cache_position=cache_position,
past_key_values=past_key_values,position_ids=position_ids)
h=inputs_embeds
e=s.rotary_emb(h,position_ids)
for d in s.layers[:s.config.num_hidden_layers]:h=d(h,attention_mask=f,position_ids=position_ids,past_key_values
=past_key_values, cache_position=cache_position,position_embeddings=e, x*xk)
h=s.norm(h)
return B(last_hidden_state=h,past_key_values=past_key_values)
@a
class t(o0,G):
_tied_weights_keys=[]
_tp_plan={ : 3

29

Under review as a conference paper at ICLR 2026

_pp_plan={ (L 1,C D3
def __init__(s,g):
super().__init__(g)
s.model=u(g)
s.vocab_size=g.vocab_size
s.1lm_head=N.Linear(g.hidden_size,g.vocab_size,bias=False)
s.post_init()
def set_decoder(s,d):s.model=d
def get_decoder(s):return s.model
er
@a
def forward(s,input_ids:O[T.LongTensor]=None,attention_mask:O[T.Tensor]=None,position_ids:0[T.LongTensor]=None,
past_key_values:0[C]=None, inputs_embeds:0[T.FloatTensor]=None,labels:0[T.LongTensor]=None,use_cache:0[bool
J=None, cache_position:0[T.LongTensor]=None, logits_to_keep:U[int,T.Tensor]=0,*xk:X[W])->L:
0:B=s.model(input_ids=input_ids,attention_mask=attention_mask,position_ids=position_ids,past_key_values=
past_key_values, inputs_embeds=inputs_embeds,use_cache=use_cache, cache_position=cache_position,xxk)
h=o0.last_hidden_state
i=slice(-logits_to_keep,None)if isinstance(logits_to_keep,int)else logits_to_keep
g=s.1lm_head(h[:,i,:]1)
n=None
if labels is not None:n=s.loss_function(logits=g,labels=1abels,vocab_size=s.config.vocab_size,x*xk)
return L(loss=n,logits=g,past_key_values=o0.past_key_values,hidden_states=o.hidden_states,attentions=o.
attentions)
class b(S,0):...
class x(Q,0):base_model_prefix=
class y(K,o0):...
_all__=[rer,mut, o, ik]

30

	Incremental Version of Librarian
	Algorithm
	Experimental Setup
	Asymptotic Behavior Results
	Human Study Details
	Best@k Compression is a U-Statistic
	Clustering Analysis: CodeContests
	Collection Coherence Measures

	Benchmark Comparison
	Full MiniCode Codecontests Results
	Refactoring examples of Librarian on Code Contests
	Example 1
	Example 2

	Obfuscation example

