
Published as a conference paper at ICLR 2025

CAN IN-CONTEXT LEARNING REALLY
GENERALIZE TO OUT-OF-DISTRIBUTION TASKS?

Qixun Wang1 Yifei Wang2 Xianghua Ying1,3∗ Yisen Wang1,3∗
1 State Key Lab of General Artificial Intelligence,

School of Intelligence Science and Technology, Peking University
2 MIT CSAIL
3 Institute for Artificial Intelligence, Peking University

ABSTRACT

In this work, we investigate the mechanism of in-context learning (ICL) on out-of-
distribution (OOD) tasks that were not encountered during training. To this end,
we conduct synthetic experiments using a GPT-2 model to learn OOD mathemat-
ical functions through ICL. Our findings reveal that Transformers may struggle
to learn OOD tasks via ICL. Specifically, ICL operates by selecting a function
within the pretraining hypothesis space and optimizing it via gradient descent us-
ing in-context examples, rather than learning truly novel functions. Addition-
ally, we examine ICL’s well-documented ability to infer unseen abstract labels
in context. We demonstrate that this ability only holds in scenarios without dis-
tributional shifts, suggesting that it does not constitute genuine new-task learn-
ing. Furthermore, we analyze ICL’s OOD performance when pretrained on mul-
tiple tasks. Both empirical and theoretical results reveal a low-test-error pref-
erence, where ICL tends to select the pretraining function that minimizes test
error rather than adapting to entirely new tasks. We validate this phenomenon
through numerical experiments. Our theoretical insights, combined with em-
pirical findings, provide a deeper understanding of ICL’s limitations and its un-
derlying mechanism when tackling OOD tasks. Code is available at https:
//github.com/NOVAglow646/ICL-OOD.

1 INTRODUCTION

Pretrained large language models (LLMs) can perform in-context learning (ICL) (Brown, 2020),
where providing a few examples of input-output pairs and a query example improves the model’s
ability to generate the desired output, compared to zero-shot predictions. Understanding ICL’s abil-
ity to learn out-of-distribution (OOD) input-output relationships, which are unseen during training,
has recently gained significant attention.

Recent studies have demonstrated that ICL can tackle seemingly new tasks. For instance, Garg
et al. (2022); Raventós et al. (2023); Zhang et al. (2023a); Akyürek et al. (2023) found that ICL can
learn new linear regression weights after pretraining on a large set of weight vectors. Moreover, Pan
(2023); Kossen et al. (2024); Vacareanu et al. (2024) revealed that real-world LLMs like Llama-2
(Touvron et al., 2023) and GPT-4 (Achiam et al., 2023) are capable of solving artificially constructed
tasks likely unseen in their pretraining data, such as a classification task with abstract labels.

However, another line of research (Yadlowsky et al., 2023; Ahuja & Lopez-Paz, 2023) has raised
a contrasting view, showing that ICL struggles to generalize to OOD tasks where there are distri-
butional shifts in either the input distribution P (X) or the input-label mapping P (Y |X). These
findings raise several important questions:

Can ICL really learn new input-output mappings from the context?
What underlying mechanism of ICL determines its performance on OOD tasks?

∗Corresponding Authors.

1

https://github.com/NOVAglow646/ICL-OOD
https://github.com/NOVAglow646/ICL-OOD

Published as a conference paper at ICLR 2025

This work aims to consolidate previous findings by addressing these questions. First, we empirically
show that when pretrained on a specific function class, the OOD performance of ICL approaches
that of a model from the same function class optimized via gradient descent. This suggests that
ICL tends to implement the function class encountered during pretraining. Additionally, we inves-
tigate the widely observed phenomenon where ICL can classify abstract unseen labels. We find
that the ability to solve such a task is a form of retrieval capability, which disappears when faced
with OOD classification rules, indicating that success in these tasks does not necessarily reflect an
inherent ability to learn new tasks. Finally, we explore scenarios in which the model is pretrained on
multiple tasks, empirically uncovering the algorithm selection mechanism for OOD tasks. We also
theoretically reveal the algorithm-selection mechanism for ICL. Our main contributions are:

1. We empirically show that ICL tends to implement the pretraining function based on the
downstream task context, highlighting its limitation in solving OOD tasks (Section 3.1).

2. We further investigate ICL’s ability to classify unseen abstract labels. We find that such
tasks can be solved by retrieving similar examples from the context. This retrieval ability
can arise from training on tasks with more diverse abstract labels (Section 4.1) and only
emerges when the test function is in distribution (Section 4.2). We further validate our
findings by showing that pretrained Llama-3-8B (Dubey et al., 2024) and Llama-2-7B fail
to learn OOD functions through ICL in a synthetic vector classification task (Section 4.3).

3. We explore the ICL’s behavior when trained on multiple tasks, and observe that the algo-
rithm selection mechanism broadly occurs in OOD scenarios. We theoretically prove the
low-test-error preference of ICL prediction, i.e., the ICL prediction prefers to implement
the pretraining function with low test error (Section 5.1). We also validate our theory with
numerical experiments (5.2).

2 EXISTING THEORETICAL PREDICTIONS OF ICL

Previous literature has provided some theoretical insights into the behavior of ICL. Here we briefly
review some of the representative findings. 1) ICL makes Bayesian predictions. Xie et al. (2022);
Wies et al. (2024); Zhang et al. (2023b) theoretically demonstrated that ICL behaves like a Bayesian-
optimal predictor, i.e., it will infer a task concept based on the given test context, and then predict
using the inferred task and the input prompt. However, these Bayesian frameworks do not depict
the concrete process of how the task concept is inferred, especially for OOD scenarios. 2) ICL
implements gradient descent (GD). Von Oswald et al. (2023); Zheng et al. (2024) construct spe-
cific Transformer weights on which the ICL prediction is equivalent to a linear regression predictor
or alignment objective (Wang et al., 2024a) optimized by gradient descent. 3) ICL implements
algorithm selection. Bai et al. (2023); Wang et al. (2024b) demonstrate the existence of Transform-
ers that can realize algorithm selection between linear classification and regression by constructing
specific Transformer weights. 4) ICL performs retrieval. Li et al. (2024) proves that a trained non-
linear Transformer will concentrate its attention of the query on the in-context examples possessing
similar features to that of the query.

These theoretical findings may seem disparate, as they describe different aspects of ICL under vary-
ing assumptions and settings. Furthermore, many of them rely on oversimplified model architectures
or deliberately constructed model weights to reach their conclusions, limiting their practical appli-
cability. In the following sections, we aim to provide a unified perspective on ICL by conducting
experiments with deep nonlinear Transformers on both synthetic and real-world OOD tasks.

3 EXPLORING THE PERFORMANCE OF ICL ON OOD TASKS

3.1 GPT-2 IMPLEMENTS THE FUNCTIONS CLASS SEEN DURING ICL PRETRAINING

Evaluating GPT-2 on unseen mathematical function classes. To investigate the ICL performance
on new tasks that are unseen during training, following Garg et al. (2022), we train a GPT-2 (Radford
et al., 2019) from scratch on some simple functions and evaluate it on functions different from the
training ones. Denote the Transformer model parameterized by θ as Mθ. The pretraining objective is
minθ

1
T

∑T
i=1 Ef∼F [∥Mθ(Si⊕xi+1)−f(xi+1)∥22], where Si = [x1⊕y1⊕x2⊕y2⊕...⊕xi⊕yi] ∈

2

Published as a conference paper at ICLR 2025

Rd×2i is the context, ⊕ denotes concatenation. xi ∈ Rd are sampled from a standard Gaussian
distribution N (0, 1) with dimension d = 20. Let yi = f(xi) ∈ R represent the labels, with F
denoting the hypothesis class to which f belongs. We train a GPT-2 model on one of the three
function classes F : linear regression (LR), quadratic regression (QR), and a 2-layer ReLU neural
network (ReLU NN, detailed descriptions in Appendix C.1). We then evaluate its ICL performance
on all three function classes. For comparison, we also train models of the corresponding F with
gradient descent (GD) using the test in-context examples (details in Appendix C.1).

Observations. We plot the test error on the three tasks in Figure 1 and observe that: 1) when
evaluated on the same task F as pretraining, ICL can reach near-zero test error, which is consistent
with the findings in Garg et al. (2022). 2) when evaluated on a new task, ICL performs similarly to
the corresponding model of the pretraining function class optimized by GD given enough in-context
examples. This indicates that the ICL prediction implements the training function classes. 3) The
models trained on linear and quadratic regression exhibit a double descent error curve (Nakkiran,
2019), characterized by a high error when given exact d examples and evaluated on a new task. This
further demonstrates that ICL implements in-distribution (ID) predictions, as the double descent
curve is a distinctive phenomenon unique to linear regression models.

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: linear regression

(a) Evaluated on LR

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: quadratic regression

(b) Evaluated on QR

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: relu NN regression
ICL linear regression
1-layer linear regression, GD
ICL quadratic regression
1-layer quadratic regression, GD
ICL relu NN regression
2-layer NN, GD

(c) Evaluated on ReLU NN

Figure 1: The ICL test error of Transformers trained on different function classes (solid lines) and
the performance of models from the corresponding pretraining functions classes trained by GD using
the test in-context examples (dashed lines). Y-axis: test square error. X-axis: context length. We
observe that as the test context length increases, the ICL performance pretrained on a particular
function class closely approaches that of the model from this function class trained by GD.

3.2 REAL-WORLD LLMS TEND TO MAKE IN-DISTRIBUTION PREDICTIONS DURING ICL

In this section, we will demonstrate how the tendency of ICL to perform ID predictions manifests
in real-world LLMs. We designed a task involving label prediction with reversed letters (e.g., in
sentimental classification, “positive”→“evitisop”). We found that in this task, a pretrained Llama-
3-8B (Dubey et al., 2024) prefers to output the inversion of the query word rather than predict the
reversed correct label, as shown in Figure 2. Although both reversal tasks are rare, directly outputting
the reversed version of a word is more common than first reasoning and then outputting the reversed
prediction. This result suggests that LLMs, when performing ICL, are more inclined to implement
ID tasks. For more details, refer to Appendix C.2. Inspired by Raventós et al. (2023), We also
explore whether increasing the diversity of training tasks, while keeping them ID, can activate the
OOD generalization ability. The results in Appendix B.4 also suggest a negative conclusion.

21 22 23 24 25 26 27

context length

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

to
p-

5
ac

cu
ra

cy

rvs-query
rvs-target-label

(a) Antonym

21 22 23 24 25 26 27

context length

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

to
p-

5
ac

cu
ra

cy

rvs-query
rvs-target-label

(b) Country-capital

21 22 23 24 25 26 27

context length

0.04

0.06

0.08

0.10

0.12

to
p-

5
ac

cu
ra

cy

rvs-query
rvs-target-label

(c) English-French

21 22 23 24 25 26 27

context length

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

to
p-

5
ac

cu
ra

cy

rvs-query
rvs-target-label

(d) English-German

Figure 2: The top-1 accuracy of predicting the reversed query word (blue) and predicting the re-
versed target label word (orange). The accuracy of predicting the reversed query word is higher than
outputting the reversed target, indicating ICL makes ID predictions.

3

Published as a conference paper at ICLR 2025

Summary of the Empirical Results & Connections with the Existing Theories (I)

Given an OOD context, ICL finds a near-optimal solution within its pretraining task space.
Particularly, when learning OOD mathematical functions, ICL behaves as a predictor of its
pretraining function class optimized by GD using the in-context examples. This validates
and extends existing results by Zhang et al. (2023a) which theoretically shows that linear
attention models trained on linear regression data still implement linear regression given
arbitrary downstream context (see Appendix D).

4 LEARNING ABSTRACT LABELS MAY NOT BE A REAL OOD CAPABILITY

4.1 CLASSIFYING ABSTRACT LABELS IS A PREDICT-THEN-RETRIEVE PROCESS THAT CAN
EMERGE FROM TRAINING

Recent works (Pan, 2023; Kossen et al., 2024) have shown that LLMs can successfully perform
classification tasks in which the labels are “abstract symbols” with no semantic meaning (e.g., in
sentimental classification, “positive” and “negative” are replaced with “foo” and “bar”, respectively).
These tasks are likely not encountered during pretraining. Pan (2023) refer to this ability of ICL to
perform such classification as “task learning” (TL). In this section, we explore whether this really
reflects a new-task-learning capability of ICL, or if it is something else.

Training GPT-2 to perform a retrieval task through ICL. The classification of abstract labels can
be approached by retrieving an example with semantics similar to the query and then outputting the
label of that example. Therefore, the retrieval ability is a crucial prerequisite for performing abstract-
label classification. We design a retrieval task to investigate whether ICL’s retrieval capability can
emerge from training. Specifically, we generate a predefined word embedding E ∈ RN×d and
randomly sample xi ∈ Rd from the first 5 rows of E. Suppose vector xi is the Ixi -th row of E,
i.e., xi = EIxi

. To generate the labels yi ∈ Rd, we first map the index Ixi to Iyi ∈ [N] using
the mapping rule Iyi = Ixi + s, where s ∈ N is randomly sampled. Next, we set yi = EIyi

.
All in-context examples in a sequence share the same mapping rule defined by s. To succeed in
this task, the model must retrieve the same token as the query example from the context and output
its subsequent token. All models are trained with 200,000×64 sequences, where 200,000 is the
number of training steps and 64 is the batch size. We train three models with three different ranges
of s: s ∼ U(50, 150), s ∼ U(50, 250), and s ∼ U(50, 450) and evaluate on s ∼ U(50, 150),
s ∼ U(10, 20), and s ∼ U(500, 600), where U denotes the uniform distribution.

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: Iyi [100, 155)

(a) Eval s ∼ U(50, 150)

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: Iyi [10, 25)

(b) Eval s ∼ U(10, 20)

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: Iyi [500, 605)
Iyi [50, 155)
Iyi [50, 255)
Iyi [50, 455)

(c) Eval s ∼ U(500, 600)

Figure 3: The ICL test error of Transformers trained on the retrieval task with different numbers
of label tokens. “Eval” denotes “evaluated on”. The ability to retrieve OOD labels emerges from
increasing the number of training mappings (larger range of s).

Observations. In Figure 3, all three models perform well when labels are ID (a). When the labels
are OOD, the ICL performance improves with the number of label vectors (random mappings) en-
countered during training (b, c). This demonstrates that the ability to retrieve arbitrary labels from
the context can emerge from training on diverse retrieval tasks. These findings may also offer new
insights into how real-world LLMs develop in-context retrieval capabilities: when autoregressive
pretraining includes numerous instances requiring the model to retrieve tokens from previous con-
texts, such abilities can emerge. We further validate this finding by observing the emergence of
induction heads in Appendix B.1.

4

Published as a conference paper at ICLR 2025

Training GPT-2 to perform a predict-then-retrieve task through ICL. To further explore the
emergence of the ability to classify abstract labels, we design a predict-then-retrieve task that em-
ulates the natural language classification with abstract labels. In this task, yi = EIxi

, where
Ixi = floor(0.4 ∗ (w⊤xi)) + s, with E being the predefined word embedding and s ∈ N+ shared
in a ICL sequence. Here, xi, w ∼ N (0, 1) ∈ Rd. In this task, estimating w and calculating w⊤xi

simulates predicting the original label (“positive” and “negative”) by in-context learning the natural
language task, while retrieving yi from xi such that floor(0.4∗(w⊤xi)) = floor(0.4∗(w⊤xquery))
resembles identifying the abstract labels (“foo” and “bar”)1, where xquery is the query example.
Again, we train three models on different ranges of mappings: s ∼ U(100, 200), s ∼ U(100, 1000),
and s ∼ U(100, 2000), and evaluate on s ∼ U(100, 200), s ∼ U(500, 600), and s ∼ U(3000, 3100).
Observations. In Figure 4, the ability to predict and retrieve unseen labels also improves as the
number of labels encountered during training increases. This suggests that as long as the LLM has
been exposed to sufficiently many similar tasks during training, it can effectively classify arbitrary
OOD labels retrievable from context through ICL.

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d

er
ro

r

Eval task: s [100,200)

(a) Eval s ∼ U(100, 200)

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d

er
ro

r

Eval task: s [500,600)

(b) Eval s ∼ U(500, 600)

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

1.2

sq
ua

re
d

er
ro

r

Eval task: s [3000,3100)
s (100, 200)
s (100, 1000)
s (100, 2000)

(c) Eval s ∼ U(3000, 3100)

Figure 4: The ICL test error of Transformers trained and tested on the linear regression + retrieval
task with different numbers of label tokens. “Eval” denotes “evaluated on”. The performance on
unseen labels increases with the number of labels seen during training. Note that in this experiment,
the underlying test function class is still ID.

4.2 ABSTRACT LABEL CLASSIFICATION CAN ONLY BE ACHIEVED ON ID TASKS

A predict-then-retrieve task with OOD testing functions. Given the above observations, one
might question whether, once the target labels appear in the context, ICL can generalize beyond the
training function class by retrieving the target label from the context. To investigate this, we con-
duct the same predict-then-retrieval task as in Figure 4 but replace the test functions with quadratic
regression while preserving linear regression as the pretraining task.

Observations. The results in Figure 5 show that the generalization does not improve with training on
more ID functions, even when the target label vectors appear in the context. Combining observations
from Figure 4, we conclude that ICL can only solve classification with unseen labels over ID test
function classes. This finding highlights a limitation in improving an LLM’s performance through
in-context examples. While providing examples with shared labels may seem helpful, this approach
may fail if the underlying prediction rule is too OOD for the LLM to learn.

Summary of the Empirical Results & Connections with the Existing Theories (II)

To handle classification with abstract labels, the model infers an input-label mapping to
implicitly establish a similarity metric. It then retrieves in-context examples similar to the
query to deduce the OOD labels using this metric. However, this process succeeds only
when the underlying function class is ID, thus it does not represent a true OOD general-
ization capability. This observation aligns with Bayesian frameworks for ICL—the implicit
similarity metric here corresponds to the task concept inferred by the model. We leave an
intuitive Bayesian interpretation of the findings in Section 4.1 and 4.2 to Appendix A.4.

1In our experimental setup, given a sufficiently long context (≈ 50), the label of the query is highly likely to
appear in the context, as the number of the possible classes is far less than the number of in-context examples.

5

Published as a conference paper at ICLR 2025

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: s (100, 200)

(a) Eval s ∼ U(100, 200)

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: s (500, 600)

(b) s ∼ U(500, 600)

0 20 40 60 80 100
in-context examples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sq
ua

re
d

er
ro

r

Eval task: s (3000, 3100)
s (100, 200)
s (100, 1000)
s (100, 2000)

(c) Eval s ∼ U(3000, 3100)

Figure 5: The ICL test error of Transformers evaluated on a quadratic regression + retrieval task.
Different colors denote models trained on the linear regression + retrieval task with different num-
bers of label tokens. “Eval” denotes “evaluation”. The model trained on s ∼ U(100, 2000) doesn’t
generalize better than the other two models.

4.3 REAL-WORLD LLMS MAY NOT NECESSARILY IN-CONTEXT LEARN NEW TASKS

Evaluating Llama-3 on an OOD synthetic vector classification task. Now we assess whether
real-world LLMs can tackle OOD tasks through ICL. We design a synthetic vector classification task
for a pretrained Llama-3-8B. Specifically, we randomly sample xi ∈ Rd from the word embedding
of Llama-3-8B (denoted as Ellama) and generate random linear mappings W ∈ Rd×C as task
functions (where C = 10). The label vectors are created by mapping xi to one of the ten label
vectors in Ellama using W . Experimental details are in Appendix C.4. To complete this task, the
model must learn W in context, which is unlikely to have been seen during the pretraining of Llama.

For comparison, we also evaluate the ICL performance of Llama-3-8B on a retrieval version of this
task. Concretely, we first randomly sample different vectors from Ellama as xi and compute yi in
the same way as the above classification task to get S = [x1,y1, ...,xC ,yC] (C = 10). Then we
repeat S for 20 times to construct the input sequence S′ = [S ⊕ S ⊕ ... ⊕ S], where ⊕ denotes
concatenation operation. The goal is to predict the next token given a prefix of S′. To succeed in
this task, the model has to retrieve the same token as the query token from the context and output its
subsequent token yi.

0 200 400 600 800 1000
in context examples

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

ICL for retrieval
ICL for OOD classification
random guess for OOD classification

Figure 6: The ICL accuracy of Llama-
3-8B on the synthetic tasks.

Observations. The results of these two tasks are pre-
sented in Figure 6. We observe that the ICL performance
on the synthetic classification task is close to random
guessing (10% accuracy), while performance on the re-
trieval task is significantly better (similar results also hold
for Llama-2-7B in Appendix B.3). This suggests that pre-
trained real-world LLMs may also struggle to learn new
input-output mappings from context; instead, ICL ap-
pears to be more adept at retrieval tasks. To show that the
failure in the synthetic vector classification task is mainly
due to its OOD nature instead of some other factors that
make it difficult to learn, we train a GPT-2 to perform the
same task in Appendix B.2 and find that the task can be
well addressed after training.

5 THE ALGORITHM SELECTION MECHANISM EXISTS BROADLY WHEN
EVALUATED ON OOD TASKS

Real-world LLMs are pretrained on a huge corpus that could contain massive tasks. Bai et al.
(2023); Yadlowsky et al. (2023) have empirically found that the ICL performance of Transformers
trained on multiple tasks approaches the optimal pretraining function when evaluated on one of
the training tasks. In this section, we will show that this algorithm-selection phenomenon of ICL
broadly persists when evaluated on OOD tasks, regardless of the test distribution, and provide a
comprehensive theoretical characterization of the algorithm-selection mechanism.

6

Published as a conference paper at ICLR 2025

The Model pretrained on a single task vs. the model pretrained on multiple tasks. In Figure
7, we compare the performance of GPT-2 models trained on a single task—linear regression (LR),
quadratic regression (QR), 2-layer ReLU neural network (ReLU NN) regression—against the model
trained on all three tasks when encountering four kinds of OOD tasks. We also plot the error of a
2-layer ReLU NN trained by GD (dashed blue line).

0 20 40 60 80 100
in-context examples

10 2

10 1

100

sq
ua

re
d

er
ro

r

Eval task: sqrt regression

(a) Evaluated on SRR

0 20 40 60 80 100
in-context examples

0

2

4

6

8

10

sq
ua

re
d

er
ro

r

Eval task: cubic regression

(b) Evaluated on CR

0 20 40 60 80 100
in-context examples

0

2

4

6

8

10

sq
ua

re
d

er
ro

r

Eval task: linear quadratic regression

(c) Evaluated on LQR

0 20 40 60 80 100
in-context examples

10 2

10 1

100

sq
ua

re
d

er
ro

r

Eval task: sigmoid NN regression
LR+QR+ReLU NN
2-layer NN, GD
LR
QR
ReLU NN

(d) Evaluated on Sigmoid NN

Figure 7: The ICL performance of models trained on the individual task: linear regression (LR),
quadratic regression (QR), 2-layer ReLU network (ReLU NN) regression, and the model trained on
the mixture of the three tasks (LR+QR+ReLU NN). The evaluation functions are (a) square root
regression (SRR), (b) cubic regression (CR), (c) linear+quadratic regression (LQR), and (d) 2-layer
Sigmoid network (Sigmoid NN). The details of these evaluation tasks are in Appendix C.1). The
performance of the model trained on the mixed tasks is close to that of the model trained on the
single task that performs the best on the evaluation task.

Observations. 1) The ICL performance of the model trained on mixed tasks (LR+QR+ReLU NN)
is close to the performance of the model trained on a single task with the lowest test error on the
evaluation task. This suggests that ICL can automatically select the best pretraining functions ac-
cording to the downstream context. 2) The ICL performance of training on the ReLU NN function
class aligns well with the ReLU NN model trained by GD, demonstrating that our findings in Section
3.1 still hold when the Transformer is trained on a mixture of multiple tasks.

5.1 THEORETICALLY REVEALING THE MECHANISM OF ALGORITHM SELECTION

In this section, we will provide theoretical insights into the underlying mechanism of the algorithm
selection of ICL. We find there simultaneously exist two parallel mechanisms: the Low-test-error
preference and the Similar-input-distribution preference.

A mixed Gaussian pretraining dataset of multiple tasks. We adopt the theoretical framework by
Lin & Lee (2024). Consider a noisy linear regression pretraining dataset with the inputs and task
weights following the mixed Gaussian distribution:
Assumption 5.1. (Mixed Gaussian pretraining data) “A pretraining task” corresponds to a com-
ponent of the mixed Gaussian distribution containing a mean of the input mean µm and a task
weight mean wm. The input means µ and task weights w are sampled from a mixed Gaussian
distribution: P (µ,w) =

∑M
m=1 πmN (µ|µm, σ2

µI) · N
(
w|wm, σ2

wI
)
, where

∑M
m=1 πm = 1,

0 < πm < 1 and ∥µm∥ = ∥wm∥ = 1,∀m. The process of sampling a training sequence
ST = [x1 ⊕ y1 ⊕ ... ⊕ xT ⊕ yT] xi and yi is as follows: 1) Sample the input mean µ and the
task weight w according to P (µ,w). 2) Sample xi from P (x|µ) = N (x|µ, σ2

xI). 3) Sample

yi from P (y|x,w) = N
(
y|⟨x,w⟩, σ2

y

)
. Define δµ =

σ2
µ

σ2
x

and δw =
σ2
w

σ2
y

. Denote this pretraining
distribution as Ptr.

According to the Corollary 2 of Lin & Lee (2024) (see Lemma E.1 in Appendix E), the closed-
form prediction of the model trained on the pretraining data of Assumption 5.1, given the testing
context and the query xT+1, remains a Gaussian mixture of the reweighted pretraining task weights:
F∗ :=

〈
xT+1,

∑M
m=1 π̃mw̃m

〉
, where π̃m and w̃m are the posterior variables of πm and wm

given the downstream context. Hence, to analyze how ICL selects pretraining priors, the key lies in
uncovering how π̃m evolves after seeing the test context. First, we introduce Lemma 5.2 from Lin
& Lee (2024) that characterizes the ratio of the reweighted weight of two pretraining tasks:
Lemma 5.2. (Appendix H.1 of Lin & Lee (2024)) Consider any two different pretraining component
α and β, given a test context ST ⊕ xT+1 and the well-pretrained model M∗, the ratio between the

7

Published as a conference paper at ICLR 2025

weights of the two task priors π̃α/π̃β in M∗’s ICL prediction can be decomposed into two terms:
π̃α/π̃β = πα

πβ
exp (Ψµ(α, β) + Ψw(α, β)), where

Ψµ(α, β) =

(
T+1∑
i=1

∥µβ − xi∥2 −
T+1∑
i=1

∥µα − xi∥2
)
/
(
2σ2

x (1 + (T + 1)δµ)
)
. (1)

((ICL favors the pretraining function with similar input distribution to the test data) Further, assum-
ing the test in-context examples xi ∼ N (µ∗, τ2xI), if ∥µβ − µ∗∥2 − ∥µα − µ∗∥2 ≥ 0 holds, then
as the context length T → ∞, the first term Ψµ(α, β) → (∥µβ − µ∗∥2 − ∥µα − µ∗∥2)/2σ2

µ ≥ 0.

However, Lin & Lee (2024) did not analyze how the second term Ψw(α, β) would evolve given any
downstream task, which we will demonstrate to play an important role in the algorithm selection
mechanism. In the following theorem, we prove that Ψw(α, β) converges to a non-negative value
when the pretraining function class α performs better on the downstream context than β.
Theorem 5.3. (ICL favors the pretraining function with low error on the context, proof is in Ap-
pendix E.3) Given the context ST , if the empirical risk of implementing a function of the pretraining
task α is less than that of β, i.e., 1

T

∑T
i=1 ∥wβxi − yi∥2 − ∥wαxi − yi∥2 ≥ 0, then, under some

mild Assumptions E.2 on the distribution of ST , we have Ψw(α, β) ≥ 0.

Combining Lemma 5.2, if the downstream inputs xi, xi ∼ N (µ∗, τ2xI) and ∥µβ − µ∗∥2 − ∥µα −
µ∗∥2 ≥ 0 hold, then as T → ∞, we have π̃α/π̃β ≥ πα/πβ .

Summary of the algorithm-selection mechanism. Lemma 5.2 and Theorem 5.3 together elucidate
the algorithm-selection mechanism of ICL. According to Lemma E.1, the ICL prediction of the
model pretrained on the mixed Gaussian data will be a reweighted combination of the pretraining
task vectors wi. Whether the ratio between the weights of two pretraining tasks, π̃α/π̃β , given
a downstream context, exceeds the original ratio πα/πβ depends on two factors: 1) whether the
pretraining input distribution of α is closer to the downstream input distribution than that of β; 2)
whether the task function of α induces lower test error in downstream context than that of β. When
both conditions are met, we have π̃α/π̃β ≥ πα/πβ , indicating that ICL prefers α over β in its
predictions. We leave the discussions of the advantage of our theory result in Appendix A.5 and
offer an intuitive Bayesian interpretation of the algorithm selection in Appendix A.4.

5.2 EMPIRICAL VALIDATION OF THE ALGORITHM-SELECTION MECHANISM OF ICL

Now we validate our theoretical findings regarding ICL’s algorithm-selection mechanism in OOD
tasks by conducting numerical experiments following Lin & Lee (2024). In Figure 8a and 8b,
the training data is a linear regression Gaussian mixture with four components (see Assumption
5.1), while the test function is a two-layer ReLU network (Appendix C.1). Both the training and
the test data are in ICL format. We plot the test error of using each pretraining task function to
predict the downstream function (the first row of Figure 8a and 8b), the weights for each pretraining
function during ICL inference (the second row), and the test error of the pretrained ICL model with
the closed form prediction derived in Lemma E.1 (the third row). We evaluate five different noise
levels (δx = δw ∈ {1/81, 1/9, 1, 9, 81}, greater value means larger noise) and consider two settings
described below that respectively validate the two mechanism in Section 5.1.

Low-test-error preference of ICL. To validate Theorem 5.3, we ensure that the distributional dis-
tances between the inputs of each training task and the test data remain consistent. Specifically, all
xi in both training and test data are sampled from N ([0, 0, 0]⊤, σ2

xI). The task weights for different
pretraining tasks vary, as detailed in the top half of Table 1. In this setup, only the test error of the
pretraining functions influences algorithm selection. From the top two rows of Figure 8a, we can
observe a clear negative correlation between the task weight and the test error of the correspond-
ing pretraining task. This result supports Theorem 5.3, confirming that ICL prefers the pretraining
functions with a low test error. Also, it’s consistent with the observations in Figure 7.

Similar-input-distribution preference of ICL. We also empirically validate Lemma 5.2 in Figure
8b. In this case, the distributional distances between the input of different pretraining tasks and
that of the test context vary: the distances of different tasks are ordered from largest to smallest as
1 > 2 > 3 > 4, while the test errors of different pretraining functions are almost the same (detailed
setup is in the bottom half of Table 1). As shown in the bottom two rows in Figure 8b, the task

8

Published as a conference paper at ICLR 2025

weight π̃i is positively correlated with the similarity between the training and test input distribution.
This is consistent with Lemma 5.2 which demonstrates that ICL prefers to select the pretraining
function whose input distribution is close to the downstream one.

T1 T2 T3 T40

200

400

= w = 1/81

T1 T2 T3 T4

= w = 1/9

T1 T2 T3 T4

= w = 1

T1 T2 T3 T4

= w = 9

T1 T2 T3 T4

= w = 81
Test err of PT task 1
Test err of PT task 2
Test err of PT task 3
Test err of PT task 4

20 21 22 23 24 25 26 270.0

0.5

1.0

20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27

PT task weight 1
PT task weight 2
PT task weight 3
PT task weight 4

20 21 22 23 24 25 26 270

200

400

20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27

(* y*
T + 1)2

Number of In-Context Examples (k)
(a) Numerical verification of the low-test-error preference

T1 T2 T3 T40

5000

10000
= w = 1/81

T1 T2 T3 T4

= w = 1/9

T1 T2 T3 T4

= w = 1

T1 T2 T3 T4

= w = 9

T1 T2 T3 T4

= w = 81
Test err of PT task 1
Test err of PT task 2
Test err of PT task 3
Test err of PT task 4

20 21 22 23 24 25 26 270.0

0.5

1.0

20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27

PT task weight 1
PT task weight 2
PT task weight 3
PT task weight 4

20 21 22 23 24 25 26 270

200

400

20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27 20 21 22 23 24 25 26 27

(* y*
T + 1)2

Number of In-Context Examples (k)
(b) Numerical verification of the similar-input-distribution preference

Figure 8: Empirical validation of the algorithm-selection mechanism of ICL. The first rows: the test
error of the four pretraining functions. The mid rows: the weights of each pretraining function in
the closed-form downstream ICL prediction (given by Lemma E.1). The last rows: the test error of
the pretrained ICL model with the closed form prediction derived in Lemma E.1. Observations. 1)
In the first two rows of Figure 8a, the value of the task weight π̃i is negatively correlated with the
test error of pretraining task i. 2) In the first two rows of Figure 8b the task weights are negatively
correlated with the distance between the training and testing input distribution.

Table 1: Experiment setting of Figure 8a and Figure 8b. “PT” and “DS” are short for “pretraining”
and “downstream”, respectively.

Experiment DS inputs PT task id PT input distribution PT task functions PT-DS input distance

Figure 8a N ([0, 0, 0]⊤, σ2
xI)

1 N ([0, 0, 0]⊤, σ2
xI) N ([5, 5, 5]⊤, σ2

wI) 0
2 N ([0, 0, 0]⊤, σ2

xI) N ([−5, 5, 5]⊤, σ2
wI) 0

3 N ([0, 0, 0]⊤, σ2
xI) N ([−5, 5,−5]⊤, σ2

wI) 0
4 N ([0, 0, 0]⊤, σ2

xI) N ([−5,−5,−5]⊤, σ2
wI) 0

Figure 8b N ([−4,−4,−4]⊤, σ2
xI)

1 N ([5, 5, 5]⊤, σ2
wI) N ([1, 1, 1]⊤, σ2

wI) 15.59
2 N ([−5, 5, 5]⊤, σ2

wI) N ([1, 1, 1]⊤, σ2
wI) 12.77

3 N ([−5, 5,−5]⊤, σ2
wI) N ([1, 1, 1]⊤, σ2

wI) 9.11
4 N ([−5,−5,−5]⊤, σ2

wI) N ([1, 1, 1]⊤, σ2
wI) 1.73

5.3 VERIFYING THE ALGORITHM-SELECTION MECHANISM ON REAL-WORLD LLMS

In this section, we investigate whether real-world LLMs can perform algorithm selection through
ICL. To achieve this, we design an ambiguous sentence classification task, in which each sentence

9

Published as a conference paper at ICLR 2025

can be classified based on one of three aspects: “sentiment”, “type”, or “location”. For each ICL
sequence, we select one of the aspects as the classification criterion and map the label words to
meaningless strings. For instance, if we choose to classify each sentence according to its sentiment,
then “positive”, “neutral”, and “negative” are mapped to “RqF”, “IwZ”, and “SdK”, respectively.
Detailed experimental setups are in Appendix C.5. We compute the top-5 accuracy of different
classification criteria. The results in Figure 9 show that as the context length increases, the LLM
finds the most appropriate criterion, exhibiting the low-test-error preference.

21 22 23 24 25 26 27

context length

0.1

0.2

0.3

0.4

0.5

0.6

to
p-

5
ac

cu
ra

cy

type
location
sentiment

(a) Sentiment

21 22 23 24 25 26 27

context length

0.1

0.2

0.3

0.4

0.5

0.6

to
p-

5
ac

cu
ra

cy

sentiment
location
type

(b) Type

21 22 23 24 25 26 27

context length

0.1

0.2

0.3

0.4

0.5

0.6

to
p-

5
ac

cu
ra

cy

sentiment
type
location

(c) Location

Figure 9: The top-5 accuracy of using (a)“sentiment”, (b)“type”, or (c)“location” as the classification
criterion for in-context examples in a test prompt. The accuracy of using the true underlying criterion
to predict is significantly higher than the other two. This suggests that LLMs can perform algorithm
selection in natural language tasks.

Summary of the Empirical Results & Connections with the Existing Theories (III)

Despite the impressive empirical performance of real-world LLMs in solving seemingly
novel tasks through ICL, we observe that when faced with an OOD task, ICL operates
by identifying the most suitable pretraining meta-distribution based on test error and input
distribution discrepancies, and then attempts to find an optimal solution within that meta-
distribution. Notably, this process occurs consistently, independent of the downstream test
distribution. See Appendix A.4 for the potential connection between such empirical obser-
vations and the Bayesian framework work.

6 CONCLUSION

In this work, we empirically find that Transformers struggle to generalize beyond the pretraining
function classes when given downstream in-context examples of OOD tasks. Instead, ICL tries
to seek a near-optimal solution within the pretraining function classes. We further investigate the
widely observed capability of ICL to perform classification. We reveal that it is a composition
of ID prediction and retrieval rather than an OOD generalization ability. We also examine ICL’s
performance on OOD tasks after pretraining on multiple tasks. Our theoretical and empirical anal-
ysis reveals ICL’s preference for low-test-error functions, i.e., ICL tends to implement pretraining
function classes with low test error in the test context. This finding highlights two key factors that
determine how ICL will implement the prediction function based on the testing context and pre-
training tasks: the distance between the training and testing input distributions, and the ability of a
pretraining function to solve the test task.

ACKNOWLEDGMENT

Yisen Wang was supported by National Key R&D Program of China (2022ZD0160300), Na-
tional Natural Science Foundation of China (92370129, 62376010), and Beijing Nova Program
(20230484344, 20240484642). Xianghua Ying was supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 62371009, and Beijing Natural Science Founda-
tion under Grant No. L247029. Yifei Wang was supported in part by the NSF AI Institute TILOS,
and an Alexander von Humboldt Professorship.

10

Published as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. In NeurIPS, 2023.

Kartik Ahuja and David Lopez-Paz. A closer look at in-context learning under distribution shifts.
arXiv preprint arXiv:2305.16704, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In ICLR, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In NeurIPS, 2023.

Tom B Brown. Language models are few-shot learners. In NeurIPS, 2020.

Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, and Sanjay Shakkottai. In-context
learning with transformers: Softmax attention adapts to function lipschitzness. In NeurIPS, 2024.

Joy Crosbie and Ekaterina Shutova. Induction heads as an essential mechanism for pattern matching
in in-context learning. arXiv preprint arXiv:2407.07011, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Ezra Edelman, Nikolaos Tsilivis, Benjamin Edelman, Eran Malach, and Surbhi Goel. The evolution
of statistical induction heads: In-context learning markov chains. In NeurIPS, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In ICLR, 2022.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
not conventional learning. In ICLR, 2024.

Hongkang Li, Meng Wang, Songtao Lu, Xiaodong Cui, and Pin-Yu Chen. How do nonlinear trans-
formers learn and generalize in in-context learning? In ICML, Workshop on Theoretical Founda-
tions of Foundation Models, 2024.

Ziqian Lin and Kangwook Lee. Dual operating modes of in-context learning. In ICML, 2024.

Preetum Nakkiran. More data can hurt for linear regression: Sample-wise double descent. arXiv
preprint arXiv:1912.07242, 2019.

Jane Pan. What in-context learning “learns” in-context: Disentangling task recognition and task
learning. In Findings of ACL, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario AmodeiW, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners. OpenAI blog, 2019.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. In NeurIPS, 2023.

Jie Ren, Qipeng Guo, Hang Yan, Dongrui Liu, Quanshi Zhang, Xipeng Qiu, and Dahua
Lin. Identifying semantic induction heads to understand in-context learning. arXiv preprint
arXiv:2402.13055, 2024.

11

Published as a conference paper at ICLR 2025

Aaditya K Singh, Ted Moskovitz, Felix Hill, Stephanie CY Chan, and Andrew M Saxe. What needs
to go right for an induction head? a mechanistic study of in-context learning circuits and their
formation. arXiv preprint arXiv:2404.07129, 2024a.

Aaditya K Singh, Ted Moskovitz, Felix Hill, Stephanie CY Chan, and Andrew M Saxe. What needs
to go right for an induction head? a mechanistic study of in-context learning circuits and their
formation. In ICML, 2024b.

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
lens through induction heads in transformers. PNAS, 2024.

Eric Todd, Millicent L Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
Function vectors in large language models. In ICLR, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. JMLR, 2023.

Robert Vacareanu, Vlad-Andrei Negru, Vasile Suciu, and Mihai Surdeanu. From words to numbers:
Your large language model is secretly a capable regressor when given in-context examples. In
COLM, 2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In ICML, 2023.

Yifei Wang, Yuyang Wu, Zeming Wei, Stefanie Jegelka, and Yisen Wang. A theoretical understand-
ing of self-correction through in-context alignment. In NeurIPS, 2024a.

Zhijie Wang, Bo Jiang, and Shuai Li. In-context learning on function classes unveiled for transform-
ers. In ICML, 2024b.

Noam Wies, Yoav Levine, and Amnon Shashua. The learnability of in-context learning. In NeurIPS,
2024.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In ICLR, 2022.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
model selection capabilities in transformer models. arXiv preprint arXiv:2311.00871, 2023.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
JMLR, 2023a.

Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-context
learning learn? bayesian model averaging, parameterization, and generalization. arXiv preprint
arXiv:2305.19420, 2023b.

Chenyu Zheng, Wei Huang, Rongzhen Wang, Guoqiang Wu, Jun Zhu, and Chongxuan Li. On mesa-
optimization in autoregressively trained transformers: Emergence and capability. In NeurIPS,
2024.

12

Published as a conference paper at ICLR 2025

A COMPARISON WITH RELATED WORKS AND ADDITIONAL DISCUSSIONS

A.1 THE CAPABILITY OF ICL TO LEARN NEW TASKS

Besides studies indicating that ICL can learn new weights of linear regression (Garg et al., 2022;
Raventós et al., 2023; Zhang et al., 2023a; Akyürek et al., 2023), other research has found that
LLMs can tackle tasks that are unlikely to have been encountered during pretraining. For exam-
ple, Pan (2023) showed that LLMs perform better than random guessing on classification tasks with
meaningless labels. Kossen et al. (2024) demonstrate that ICL can identify authorship based on
writing style in private communication messages not included in the pretraining corpus. Addition-
ally, Vacareanu et al. (2024) found that large-scale LLMs can learn various linear and non-linear
functions from context. We argue that these findings do not contradict our work. While the LLMs
may not have seen exactly the same tasks, there is no guarantee that they haven’t encountered tasks
from a similar distribution in their pretraining corpus. For instance, the LLMs could have been
pretrained on a corpus containing authorship identification tasks or on statistical data encompass-
ing different functions. Our work does not claim that ICL cannot generalize to new task instances
of a seen distribution; rather, it highlights the limitation in generalizing to an unseen input-label
distribution. Additionally, Yadlowsky et al. (2023) finds that ICL struggles to generalize to testing
function classes that are unseen during training (e.g., convex combinations or extreme versions of
the pretraining functions). They didn’t delve into how ICL behaves on OOD data, while we reveal
that it implements the pretraining functions.

A.2 THE ALGORITHM-SELECTION MECHANISM OF ICL

Recent works by Bai et al. (2023); Wang et al. (2024b) have uncovered the algorithm selection phe-
nomenon, demonstrating that Transformers pretrained on both linear regression and classification
tasks perform well when presented with the context of either task during ICL inference. Theo-
retically, they show that a Transformer with specific parameters can achieve algorithm selection.
Yadlowsky et al. (2023) empirically found that ICL selects the optimal pretraining function class
after observing in-context examples from a function class present in the pretraining data mixture.
However, the algorithm selection experiments in these studies are limited to scenarios where the test
functions are among the training functions. In this work, we empirically and theoretically demon-
strate that the algorithm selection phenomenon broadly occurs when given downstream context from
arbitrary function classes. To the best of our knowledge, we are the first to reveal the factors that
determine the selection process.

A.3 THE BAYESIAN-OPTIMAL PERSPECTIVE FOR UNDERSTANDING ICL

Many studies have found that ICL makes Bayes-optimal predictions (Xie et al., 2022; Wies et al.,
2024; Zhang et al., 2023b; Lin & Lee, 2024). However, these works have certain limitations that
may reduce their practical applicability in predicting ICL behavior in general scenarios. 1) Limited
empirical verification. Wies et al. (2024) and Zhang et al. (2023b) lack empirical verification of
their theory on real deep Transformer models; 2) Limited theoretical settings: in-distribution tasks.
Wies et al. (2024) assumes the downstream tasks are components of the pretraining distribution; Xie
et al. (2022) assumes that the latent concept of the test task θ∗ is within the pretraining task set Θ; In
Lin & Lee (2024), the training and testing tasks are all linear regression with weights sampled from
Gaussian distribution. 3) Limited implications of the theoretical results: although Xie et al. (2022);
Zhang et al. (2023b) prove that ICL can infer a task concept θ based on the downstream test context
Stest, they don’t reveal how Stest concretely affects the posterior distribution P (θ|Stest) of the latent
task concept θ inferred by the model that determines the downstream ICL prediction, especially
when the true downstream task θ∗ is OOD. Our work verifies and extends previous findings to a more
general setting by using real deep Transformers and evaluating ICL on OOD tasks that significantly
differ from the training tasks. For the first time, we also reveal how the interaction between the
downstream distribution and the pretraining distribution affects ICL predictions (see Section 5).

In contrast, Raventós et al. (2023) claim that ICL can exhibit non-Bayesian properties. They empir-
ically demonstrate that when given sufficiently diverse pretraining tasks (linear regression vectors),
ICL can outperform the Bayesian estimator on a new test distribution. However, the distributional
shift in their setup might not be substantial enough to show that ICL can truly adapt to a new down-

13

Published as a conference paper at ICLR 2025

stream distribution, which is considered to be “non-Bayesian” by Raventós et al. (2023). In their
setting, both the test and training vectors are sampled from the standard Gaussian distribution, and
the only source of ”distributional shift” comes from the finite size of the training set, which can only
partially reflect the test distribution. Our work refutes their findings by showing that when the test
distribution is significantly shifted, increasing the number of ID tasks may not help ICL generalize
to it.

A.4 THE BAYESIAN INTERPRETATION FOR OUR EMPIRICAL FINDINGS

Although current Bayesian theories for ICL are too vacuous to predict the performance of deep
Transformers on real OOD tasks (see Section A.3), the Bayesian framework shows promise as a
potential lens for interpreting our empirical findings. Here we provide some intuitive interpretations
for the findings in Section 3, 4, and 5 from a Bayesian perspective.

Consider the predicted distribution pθ(yT |x1:T) given by a pretrained model θ. If we assume that
ICL makes Bayesian-like predictions over the test context as Xie et al. (2022); Wies et al. (2024);
Zhang et al. (2023b); Lin & Lee (2024) suggested, then the model will first infer a task concept ϕ
based on the given context x1:T−1 and predict yT using ϕ and x1:T , i.e.,

pθ(y|x1:T) = pθ(y|x1:T , ϕ)pθ(ϕ|x1:T−1) (2)

To explain the results in Section 3 and Section 5, since the true downstream task ϕ∗ is unseen during
pretraining, the inferred posterior distribution pθ(ϕ|x1:T−1) assigns probability mass only to tasks
ϕ within the pretraining distribution that maximize pθ(y|x1:T). This accounts for why ICL can only
make in-distribution predictions, as shown in Figure 1 in Section 3, and why ICL prefers pretraining
priors with low test error and input distributions similar to those in the test context (Section 5).
Once a task ϕ seen during pretraining is identified as best fitting the test context x1:T−1, the model
refines its predictions based on this context (in Figure 1 and Figure 7, the test error decreases as the
number of in-context examples increase). This refinement corresponds to the factor pθ(y|x1:T , ϕ),
explaining how ICL optimizes predictions within its pretraining distribution.

In Section 4, the underlying task concept ϕ acts as a similarity metric that allows the model to retrieve
examples from the context that align with the query. Training on more abstract labels improves the
model’s ability to estimate a more accurate ϕ, which explains the results in 3 and Figure 4. When
the test task is ID, even with OOD labels, ICL can succeed by leveraging the learned ϕ to predict the
true label. It accomplishes this by retrieving an example xi from the context that is similar to the
query under the ϕ metric. However, when the underlying task ϕ∗ is OOD, the model fails because
the learned similarity metric no longer applies effectively (Figure 5).

A.5 DISCUSSION OF THE SETUP OF OUR THEORY

Notably, our theoretical result in Section 5.1 applies to any model architecture, while previous the-
oretical works of understanding ICL often adopt Transformers with oversimplified assumptions on
their parameters or structures (Ahn et al., 2023; Zhang et al., 2023a; Huang et al., 2023; Collins
et al., 2024). Additionally, our analysis shows that models pretrained on the ICL tasks can imple-
ment algorithm selection during ICL inference following Lin & Lee (2024). In contrast, prior work
on algorithm selection (Bai et al., 2023) only shows that a specific set of parameters in a simplified
ReLU Transformer can enable algorithm selection. However, the parameter construction is com-
plex and somewhat tricky, and there is no theoretical or experimental guarantee that Transformers
exhibiting algorithm selection will necessarily implement these parameters.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 UNDERSTANDING THE EFFECT OF TRAINING ON MORE DIVERSE RETRIEVAL TASKS
FROM THE ATTENTION SCORES

To further validate that the retrieval ability is evoked after trained on more random mappings, follow-
ing Crosbie & Shutova (2024), we construct another retrieval task and visualize the prefix matching
score of all attention heads of the three pretrained models in Figure 10. The prefix matching score

14

Published as a conference paper at ICLR 2025

is calculated by averaging the attention values from each token ti to the tokens after the same token
as ti in earlier positions in the sequence, which correlates positively with the retrieval performance
(Singh et al., 2024b). In Figure 10, we observe that the model best at the retrieval task in Figure
3 exhibits more heads with high matching scores (also known as “induction heads” (Song et al.,
2024; Singh et al., 2024a; Ren et al., 2024; Crosbie & Shutova, 2024; Edelman et al., 2024)), further
demonstrating it gains the retrieval ability by training on more retrieval sequences.

0 1 2 3 4 5 6 7
heads

0
1

2
3

4
5

6
7

8
9

10
11

la
ye

rs

0.04 0.04 0.042 0.048 0.047 0.043 0.043 0.048

0.048 0.043 0.046 0.045 0.042 0.045 0.042 0.032

0.038 0.038 0.044 0.036 0.044 0.039 0.046 0.038

0.046 0.039 0.028 0.042 0.041 0.039 0.04 0.038

0.013 0.031 0.036 0.046 0.035 0.043 0.041 0.027

0.027 0.031 0.03 0.042 0.052 0.028 0.034 0.029

0.03 0.13 0.028 0.031 0.019 0.028 0.035 0.061

0.09 0.097 0.035 0.051 0.063 0.11 0.14 0.027

0.095 0.028 0.13 0.017 0.022 0.14 0.022 0.13

0.1 0.075 0.026 0.12 0.091 0.074 0.02 0.029

0.11 0.048 0.098 0.1 0.096 0.083 0.08 0.1

0.033 0.036 0.072 0.023 0.022 0.058 0.051 0.039

Matching score

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) PT s ∼ U(50, 150)

0 1 2 3 4 5 6 7
heads

0
1

2
3

4
5

6
7

8
9

10
11

la
ye

rs

0.039 0.038 0.039 0.039 0.041 0.04 0.042 0.037

0.048 0.047 0.042 0.046 0.046 0.048 0.045 0.044

0.046 0.043 0.033 0.048 0.05 0.044 0.042 0.039

0.035 0.045 0.03 0.044 0.046 0.045 0.023 0.044

0.027 0.038 0.041 0.015 0.048 0.043 0.04 0.04

0.052 0.079 0.11 0.037 0.036 0.03 0.047 0.029

0.073 0.035 0.032 0.026 0.031 0.039 0.1 0.034

0.025 0.069 0.026 0.12 0.13 0.091 0.022 0.13

0.055 0.033 0.024 0.1 0.1 0.027 0.12 0.036

0.067 0.11 0.032 0.099 0.039 0.037 0.048 0.062

0.049 0.099 0.024 0.1 0.048 0.094 0.095 0.03

0.034 0.036 0.099 0.08 0.098 0.036 0.082 0.094

Matching score

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(b) PT s ∼ U(50, 250)

0 1 2 3 4 5 6 7
heads

0
1

2
3

4
5

6
7

8
9

10
11

la
ye

rs

0.046 0.038 0.037 0.04 0.037 0.029 0.039 0.022

0.042 0.042 0.037 0.041 0.048 0.041 0.049 0.036

0.044 0.039 0.032 0.039 0.039 0.015 0.041 0.048

0.037 0.041 0.04 0.0079 0.0055 0.048 0.026 0.0048

0.041 0.042 0.023 0.046 0.032 0.039 0.041 0.0058

0.026 0.04 0.025 0.0037 0.048 0.037 0.049 0.044

0.11 0.12 0.041 0.025 0.042 0.036 0.03 0.041

0.11 0.12 0.097 0.1 0.1 0.11 0.11 0.11

0.11 0.031 0.13 0.11 0.13 0.034 0.1 0.13

0.11 0.12 0.095 0.095 0.11 0.1 0.098 0.099

0.1 0.1 0.1 0.11 0.1 0.099 0.035 0.099

0.1 0.1 0.11 0.1 0.1 0.037 0.1 0.1

Matching score

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(c) PT s ∼ U(50, 450)

Figure 10: The matching score of all attention heads of models trained on the retrieval task. “PT”
denotes “pretrained on”. Each subfigure corresponds to a different pretrained model. The model of
(c) exhibits more heads with high matching scores, which is also the most performant model in the
retrieval task in Figure 3.

B.2 THE SYNTHETIC VECTOR CLASSIFICATION IS NOT THAT HARD TO SOLVE IF IT’S IN
DISTRIBUTION

To show the failure in the synthetic vector classification in Section 4.3 is mainly due to its OOD
nature rather than it’s intrinsically too hard to learn, we train a GPT-2 to perform the same task
as in Section 4.3. In this task, the xi and yi are generated in the same way as Section 4.3. The
only modification is that we use a smaller predefined vector embedding E′ ∈ R10000×20 (Ellama ∈
R32000×4096 in the experiment in Section 4.3). The results in Figure 11 show that when W has been
encountered during pretraining, ICL can well address this task.

B.3 EVALUATING THE SYNTHETIC OOD CLASSIFICATION TASK ON LLAMA-2-7B

We also evaluate Llama-2-7B on the same OOD vector classification task and the retrieval task as
in Section 4.3. Figure 12 shows the same observations as in Figure 6 that the LLM can well address
the retrieval task but fails to learn the OOD function W . In this experiment, we set the length of the
repeating sequence to be 10. We can observe that the accuracy of retrieval rapidly increases after
seeing 10 in-context examples. This demonstrates that learning novel functions from the context is
challenging for real-world pretrained LLMs, but the LLMs are good at retrieving.

0 20 40 60 80 100
in-context examples

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Eval task: synthetic word classification
Random guess
ICL

Figure 11: Test error of the GPT-2 trained and evaluated on the same synthetic OOD vector classifi-
cation task as in Section 4.3.

15

Published as a conference paper at ICLR 2025

0 200 400 600 800 1000
context length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy of ICL on the word classification task, 10 classes

(a)

0 10 20 30 40 50
context length

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy of ICL on the context retrieval task, 10 classes

(b)

Figure 12: The ICL accuracy of Llama-2-7B on the synthetic tasks. (a) the synthetic vector classifi-
cation task. (b) the synthetic word retrieval task.

B.4 WILL GENERALIZATION CAPABILITIES EMERGE FROM INCREASING THE NUMBER OF
TRAINING TASKS?

Recent work by Raventós et al. (2023) empirically demonstrates that when both the training and
test tasks are linear regression, and the number of training vectors exceeds a certain ”task diversity
threshold” (approximately 214 ∼ 215), ICL can generalize from a finite training set sampled biasedly
from N (0, 1) to the test distribution Ptest = N (0, 1) (see Appendix A.3 for details). We investigate
whether similar phenomena persist for test tasks with larger distributional shifts. We train models
using varying numbers of linear regression vectors and evaluate them on quadratic and ReLU neural
network regression tasks. In Figure 13, we find that training on a vast number of ID functions does
not yield any improvements, providing further evidence that ICL may struggle to achieve OOD
generalization.

0 20 40 60 80 100
in-context examples

0.00

0.25

0.50

0.75

1.00

1.25

sq
ua

re
d

er
ro

r

Eval task: quadratic regression

(a) quadratic regression

0 20 40 60 80 100
in-context examples

0.00

0.25

0.50

0.75

1.00

1.25

sq
ua

re
d

er
ro

r

Eval task: relu NN regression
1000 PT vectors
10000 PT vectors
100000 PT vectors
1000000 PT vectors

(b) ReLU NN regression

Figure 13: The ICL test error of models trained on different numbers of linear regression vectors.
Even if the number of training vectors (up to 1, 000, 000 ≈ 220) surpasses the threshold (214 ∼ 215)
reported by Raventós et al. (2023), no model exhibits generalization to OOD function classes.

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL DETAILS IN SECTION 3.1 AND SECTION 5

Definitions of the function classes. The function classes in Figure 1 and Figure 7 are:

• Linear regression: yi = w⊤xi, where w, xi ∈ Rd and w, xi ∼ N (0, 1).
• Quadratic regression: yi = w⊤(xi)

2, where w, xi ∈ Rd and w, xi ∼ N (0, 1), (xi)
2

denotes the element-wise square of xi.

• 2-layer ReLU network regression: yi = w⊤
1 ReLU(w2xi), where w1 ∈ Rd′

, w2 ∈ Rd′×d,
and xi ∈ Rd. w1, w2, xi ∼ N (0, 1).

• Square root linear regression: yi = w⊤√xi, where w, xi ∈ Rd and w, xi ∼ N (0, 1),
(xi)

2 denotes the element-wise square root of xi.
• Cubic linear regression: yi = w⊤(xi)

3, where w, xi ∈ Rd and w, xi ∼ N (0, 1), (xi)
2

denotes the element-wise cube of xi.

16

Published as a conference paper at ICLR 2025

• Linear+quadratic regression: yi = w⊤
1 (xi)

2 + w⊤
2 xi, where w1, w2, xi ∈ Rd and w1,

w2, xi ∼ N (0, 1).

• 2-layer Sigmoid network: yi = w⊤
1 Sigmoid(w2xi), where w1 ∈ Rd′

, w2 ∈ Rd′×d, and
xi ∈ Rd. w1, w2, xi ∼ N (0, 1).

Baseline models in Figure 1. The models of each pretraining hypothesis class are implemented
by training a neural network that yields functions of that hypothesis class. For example, a linear
regression weight w can be implemented by a single linear layer. The models are optimized using
SGD with learning rate 1e-3 for 1000 steps.

C.2 EXPERIMENTAL DETAILS FOR SECTION 3.2

For the reversed-label experiment, we choose four tasks: Antonym, Capital-country, English-
French, and English-German. The original datasets are adopted from Todd et al. (2024). The top-1
accuracy is computed as follows: compute the top-1 accuracy for each token predicted by the model,
based on the token length of the ground-truth label word. For each context length, we compute the
average accuracy over 128 test examples.

C.3 EXPERIMENTAL DETAILS FOR SECTION 4.1

We now provide additional details regarding the experiments of Figure 10 . Following Crosbie
& Shutova (2024), we generated a dataset consisting of 100 sequences of random tokens, each
containing repeated sub-sequences. The task is to predict the next token that follows the last token
in each sequence. This task can only be completed by retrieving the last token from the context and
predicting its subsequent token.

C.4 EXPERIMENTAL DETAILS FOR SECTION 4.3

We uniformly sample 1000 word vectors xi ∈ Rd from the word embedding E ∈ RN×d of the
pretrained Llama-3-8B, where N = 128256 and d = 4096. Then we sample a task weight W ∈
Rd′×C from standard Gaussian distribution that only takes the first d′ dimensions of xi (denoted
as xi[: d

′]) to compute a probability distribution over C classes: pi = xi[: d
′]⊤W ∈ RC . Next,

we set the label vectors yi = Eargmaxj pi[j]+s ∈ Rd, where s = 10000 is a offset. We set d′ =
30 ≪ d = 4096 to reduce the complexity of the task. Hence, xi are classified into C labels vectors
E[s : s+C]. The predicted token of xi is computed as: argmaxj p̂i[j], j ∈ {s, s+1, ..., s+C−1},
where p̂i is the output of the last linear layer of Llama-3-8B given xi.

C.5 EXPERIMENTAL DETAILS FOR SECTION 5.3

In this section, we present some details about the setups for the ambiguous classification task. The
label mapping rule is presented in Table 2. For each context length, we compute the average accuracy
over 128 test examples.

Table 2: Experiment setting of Figure 8a and Figure 8b. “PT” and “DS” are short for “pretraining”
and “downstream”, respectively.

Classification criterion Original labels Labels presented in the context

sentiment
“positive” “RqF”
“neutral” “IwZ”

“negative” “SdK”

type
“science” “RqF”
“sports” “IwZ”
“arts” “SdK”

location
“Asia” “RqF”

“Europe” “IwZ”
“Africa” “SdK”

17

Published as a conference paper at ICLR 2025

Prompt examples. Here we present some in-context examples of the input prompt of using different
classification criteria.

Using “sentiment” as the classification criterion.

Q: The groundbreaking discovery made by Japanese scientists has revolutionized renewable
energy.
A: RqF gray# Original label: “positive”

Q: A chess championship occurred in Russia, featuring players from around the continent.
A: IwZ gray# Original label: “neutral”

Using “type” as the classification criterion.

Q: A regional basketball league was formed in Kenya to promote the sport locally.
A: IwZ gray# Original label: “sports”

Q: The breathtaking architectural exhibition in Dubai left visitors absolutely awestruck.
A: SdK gray# Original label: “arts”

Using “location” as the classification criterion.

Q: A scientific paper from Finland explores new methodologies in data analysis.
A: IwZ gray# Original label: “Europe”

Q: An astronomy workshop was conducted in Ethiopia for students interested in space.
A: SdK gray# Original label: “Africa”

Accuracy computation. For a given label, the method to calculate top-5 accuracy is as follows:
compute the top-5 accuracy for each token predicted by the model, based on the token length of
the ground-truth label word. For a classification criterion other than the one selected in the current
sequence, to verify whether the model’s prediction distribution across all test samples approaches
the label distribution under that criterion, we select the permutation among all possible mappings
between original labels and meaningless strings that yields the highest model prediction accuracy to
compute the accuracy.

D EXISTING THEORETICAL EVIDENCE SUPPORTING THAT ICL MAKES ID
PREDICTIONS

One recent work (Zhang et al., 2023a) theoretically proved that a one-layer linear self-attention
model (LSA, defined in Appendix D) pretrained on a linear regression task will still implement
the linear predictor given downstream in-context examples of arbitrary new function classes, under
some assumptions on the initialization of the Transformer weight matrices. We restate the Theorem
4.2 of Zhang et al. (2023a) as Lemma D.1 below:

Lemma D.1. (Theorem 4.2 of Zhang et al. (2023a), informal) Let D be a distribution over (x, y) ∈
Rd × R, whose marginal distribution on x is Dx = N (0,Λ). Assume the test prompt is of the form

P = (x1, y1, . . . ,xT , yT ,xquery), where (xi, yi) , (xquery , yquery)
i.i.d.∼ D. The prediction risk on

the test query yquery of an arbitrary task satisfies:

E (ŷquery − yquery)
2
= min

w∈Rd
E (⟨w,xquery ⟩ − yquery)

2︸ ︷︷ ︸
Error of best linear predictor

+const,

where const is a constant depending on the downstream context, and the expectation is over
(xi, yi) , (xquery , yquery)

i.i.d.∼ D.

18

Published as a conference paper at ICLR 2025

Lemma D.1 serves as a shred of theoretical evidence that ICL can just implement the pretraining
function class, while the role of the context examples is to optimize the model within the pretraining
hypothesis space.

Below, we provide the necessary details of the theoretical setting of Zhang et al. (2023a).

The linear self-attention (LSA) model considered in the Theorem 4.2 of Zhang et al. (2023a)
(Lemma D.1) is defined as follows:

fLSA(E; θ) = E +WPV E · E
⊤WKQE

N
, (3)

where E is the input embedding defined as follows:

E = E(P) =

(
x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (4)

WPV is obtained by merging the projection and value matrices into a single matrix, and WKQ is
attained by merging the query and key matrices into a single matrix. N is the context length.

Now we present the assumption on the attention weights of the linear-attention model in Lemma
D.1.
Assumption D.2. (Assumption 3.3 in Zhang et al. (2023a), initialization). Let σ > 0 be a parameter,
and let Θ ∈ Rd×d be any matrix satisfying

∥∥ΘΘ⊤
∥∥
F
= 1 and ΘΛ ̸= 0d×d. We assume

WPV (0) = σ

(
0d×d 0d
0⊤d 1

)
, WKQ(0) = σ

(
ΘΘ⊤ 0d
0⊤d 0

)
The training objective is to minimize the population risk of the linear regression task:

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,··· ,xτ,N ,xτ, query

[
(ŷτ, query − ⟨wτ ,xτ, query ⟩)2

]
, (5)

where wτ ∼ N (0, Id), xτ,i, xτ,query ∼ N (0,Λ), ŷτ, query is the prediction of the LSA model.

E THE LEMMAS, ASSUMPTION, AND PROOF FOR THEOREM 5.3

In this section, we will first present the lemmas and assumption that Theorem 5.3 depends on and
the provide its proof.

E.1 LEMMAS FOR THEOREM 5.3

The lemma below states that the closed-form prediction of the model trained on the pretraining
data under Assumption 5.1, given the testing context, remains a Gaussian mixture of the reweighted
pretraining task weights:
Lemma E.1. (Corollary 2 of Lin & Lee (2024), closed-form ICL prediction of the pretrained model)
Denote the model M∗ that minimizes the risk on the pretraining data of Assumption 5.1, i.e., M∗ ∈
argmin 1

T

∑T−1
i=0 E

Si∼Ptr

[
∥M (Si ⊕ xi+1)− yi+1∥2

]
, then the prediction on any sequence Si ⊕

xi+1 by M∗ is as follows: F∗ := M∗ (Si ⊕ xi+1) =
〈
xi+1,

∑M
m=1 π̃mw̃m

〉
. where π̃m, and w̃m

depending on both the pretraining task and the downstream context example are given in Lemma 1
of Lin & Lee (2024).

E.2 THE ASSUMPTION FOR THEOREM 5.3

The assumption below impose some mild requirements on the distribution of the downstream con-
text:
Assumption E.2. (Assumption on the distribution of the downstream context examples.) As-
sume that: the minimum eigenvalue of the covariance matrix of any in-context example xi

satisfies λmin(xix
⊤
i) ≥ 1; (I + TδwI)(I + δw

∑T
i=1 xix

⊤
i)

−1 = I; 1
T

∑T
i=1 2(wα −

wβ)
⊤xiyi

1
T

∑T
j=1

(
x⊤
j xi

yj

yi
− x⊤

i xi

)
≥ 0

19

Published as a conference paper at ICLR 2025

E.3 PROOF FOR THEOREM 5.3

Now we restate Theorem 5.3 as the Theorem E.3 below

Theorem E.3. (ICL prediction favors the pretraining function with low error on the context) Given
the context Sk, if the empirical risk of implementing a function of the pretraining task α is less than
that of β, i.e., 1

T

∑T
t=1 |wβxi − yi|2 − |wαxi − yi|2 ≥ 0, then, under some mild Assumptions E.2,

we have Ψw(α, β) ≥ 0.

Combining Lemma 5.2, if the downstream inputs xi, xi ∼ N (µ∗, τ2xI) and ∥µβ − µ∗∥2 − ∥µα −
µ∗∥2 ≥ 0 hold, then as T → ∞, we have π̃α/π̃β ≥ πα/πβ .

Proof. According to Lemma 1 of Lin & Lee (2024),

r(α, β) =
π̃α

π̃β
=

παC0c
µ
αc

w
α

πβC0c
µ
βc

w
β

=
πα

πβ
exp (Ψµ(α, β) + Ψw(α, β)) . (6)

In the Appendix H.1 of Lin & Lee (2024), they have proved that when the context length T → ∞,
under the first condition in Assumption E.2, limT→∞ Ψµ(α, β) =≥ 0.

Now we prove that when the empirical risk on the in-context example of pretraining task function α
is no more than that of β, the second term Ψw(α, β) ≥ 0.

Ψw(α, β)

= log

exp

(
−

∥wα∥2−∥wα+Tδww∥2
(I+TδwΣw)−1

2σ2
w

)
exp

(
−

∥wβ∥2−∥wβ+Tδww∥2

(I+TδwΣ̄w)−1

2σ2
w

)


=
∥wβ∥2 − ∥wβ + Tδww∥2(I+TδwΣw)

−1

2σ2
w

−
∥wα∥2 − ∥wα + Tδww∥2(I+TδwΣw)

−1

2σ2
w

=

∥wβ∥2 −
∥∥∥wβ + δw

∑T
i=1 xiyi

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

−
∥wα∥2 −

∥∥∥wα + δw
∑T

i=1 xiyi

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

=

∥wβ∥2 −
∥∥∥(wβ −

∑T
i=1 xiyi

T) + (I + TIδw)
∑T

i=1 xiyi

T

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

−
∥wα∥2 −

∥∥∥(wα −
∑T

i=1 xiyi

T) + (I + TIδw)
∑T

i=1 xiyi

T

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

(a)
= ∥wβ −

∑T
i=1 xiyi
T

∥2
I−(I+TδwΣw)

−1 − ∥wα −
∑T

i=1 xiyi
T

∥2
I−(I+TδwΣw)

−1

(b)
= ∥wβ −

∑T
i=1 xiyi
T

∥2
δw

∑T
i=1

xix
⊤
i

1+δw
∑T

i=1
x⊤
i

xi

− ∥wα −
∑T

i=1 xiyi
T

∥2
δw

∑T
i=1

xix
⊤
i

1+δw
∑T

i=1
x⊤
i

xi

(7)
where equation (a) is due to the third condition in Assumption E.2, equation (b) is by applying the
Sherman–Morrison formula. Since δw

1+δw
∑T

i=1

≥ 0, to prove that Ψw(α, β) ≥ 0, we only need to
show that

∥wβ −
∑T

i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
− ∥wα −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
≥ 0. (8)

20

Published as a conference paper at ICLR 2025

Further, we can derive that the term 1
T

∑T
i=1 ∥wβ − xiyi∥2xixT

i
− ∥wα − xiyi∥2xixT

i
below is non-

negative by using the condition 2 in Assumption E.2:

1

T

T∑
i=1

∥wβ − xiyi∥2xixT
i
− ∥wα − xiyi∥2xixT

i

=
1

T

T∑
i=1

(wβ − xiyi)
⊤xix

T
i (wβ − xiyi)− (wα − xiyi)

⊤xix
T
i (wα − xiyi)

=
1

T

T∑
i=1

(wβ +wα − 2xiyi)
⊤xix

T
i (wβ −wα)

≥
(c)

1

T

T∑
i=1

(wβ +wα − 2xiyi)
⊤(wβ −wα)

=
1

T

T∑
i=1

∥w⊤
β xi − yi∥2 − ∥w⊤

αxi − yi∥2 ≥ 0
(d)

(9)

where the inequality (c) holds since according to the condition 2 in Assumption E.2, xix
T
i − I is

positive semi-definite, and the inequality (d) holds since the population downstream risk of α is
lower than β. Therefore, to prove inequality (8), we just need to prove that the l.h.s. of inequality
(8) multiplying 1

T is not less than 1
T

∑T
i=1 ∥wβ − xiyi∥2xixT

i
in Equation (9):

1

T

(
∥wβ −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
− ∥wα −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i

)
≥ 1

T

T∑
i=1

∥wβ−xiyi∥2xixT
i
−∥wα−xiyi∥2xixT

i
.

(10)

First, let’s simplify the l.h.s of inequality (10):

1

T

(
∥wβ −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
− ∥wα −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i

)

=
1

T

T∑
i=1

(wβ −
∑T

j=1 xjyj

T
)⊤xix

⊤
i (wβ −

∑T
j=1 xjyj

T
)− (wα −

∑T
j=1 xjyj

T
)⊤xix

⊤
i (wα −

∑T
j=1 xjyj

T
)

=
1

T

T∑
i=1

∥w⊤
β xi −

1

T

T∑
j=1

x⊤
j xiyj∥2 − ∥w⊤

αxi −
1

T

T∑
j=1

x⊤
j xiyj∥2

=
1

T

T∑
i=1

(w⊤
β xi)

2 − (w⊤
αxi)

2 + 2(wα −wβ)
⊤xi

1

T

T∑
j=1

x⊤
j xiyj .

(11)

Then we simplify the r.h.s. of inequality (10):

1

T

T∑
i=1

∥wβ − xiyi∥2xixT
i
− ∥wα − xiyi∥2xixT

i

=
1

T

T∑
i=1

(w⊤
β xi)

2 − (w⊤
αxi)

2 + 2(wα −wβ)
⊤xix

⊤
i xiyi

(12)

Subtracting Equation (12) from Equation (11), we get

1

T

T∑
i=1

2(wα −wβ)
⊤xi

1

T

T∑
j=1

x⊤
j xiyj − 2(wα −wβ)

⊤xix
⊤
i xiyi

=
1

T

T∑
i=1

2(wα −wβ)
⊤xiyi

1

T

T∑
j=1

(
x⊤
j xi

yj
yi

− x⊤
i xi

)
.

(13)

21

Published as a conference paper at ICLR 2025

applying the condition 4 in Assumption E.2, we get the final conclusion.

F LIMITATIONS

1) Most experimental results are based on a GPT-2 model pretrained on a limited set of mathematical
functions. It is challenging to assess whether modern large-scale language models like GPT-4 and
Claude 3 Opus face similar difficulties in generalizing beyond their pretraining corpus, given the
vast range of tasks and content in their pretraining data. Nevertheless, our findings highlight the
limitations of ICL in solving challenging tasks for smaller models like Llama-2-7B and Llama-
3-8B. 2) The models are trained on ICL data, while real-world LLMs are trained autoregressively.
However, the ICL pretraining objective is also next-token prediction, so there is no clear gap between
these two pretraining objectives.

G REPRODUCIBILITY

In the main text and Appendix C, we’ve stated all setups for reproducing our experimental results.
For the theoretical part, we’ve included the assumptions (Assumption E.2) and proofs in Appendix
E.

22

	Introduction
	Existing Theoretical Predictions of ICL
	Exploring the Performance of ICL on OOD Tasks
	GPT-2 Implements the Functions Class Seen During ICL Pretraining
	Real-world LLMs Tend to Make In-distribution Predictions during ICL

	Learning Abstract Labels May Not Be a Real OOD Capability
	Classifying Abstract Labels is a Predict-then-retrieve Process that can Emerge from Training
	Abstract Label Classification Can Only Be Achieved on ID Tasks
	Real-world LLMs May Not Necessarily In-context Learn New Tasks

	The Algorithm Selection Mechanism Exists Broadly When Evaluated on OOD Tasks
	Theoretically Revealing the Mechanism of Algorithm Selection
	Empirical Validation of the Algorithm-selection Mechanism of ICL
	Verifying the Algorithm-selection Mechanism on Real-world LLMs

	Conclusion
	Comparison with Related Works and Additional Discussions
	The Capability of ICL to Learn New Tasks
	The Algorithm-selection Mechanism of ICL
	The Bayesian-optimal Perspective for Understanding ICL
	The Bayesian Interpretation for Our Empirical Findings
	Discussion of the Setup of Our Theory

	Additional Experimental Results
	Understanding the Effect of Training on More Diverse Retrieval Tasks from the Attention Scores
	The Synthetic vector classification is Not That Hard to Solve If It's in Distribution
	Evaluating the Synthetic OOD Classification Task on Llama-2-7B
	Will Generalization Capabilities Emerge from Increasing the Number of Training Tasks?

	Experimental Details
	Experimental Details in Section 3.1 and Section 5
	Experimental Details for Section 3.2
	Experimental Details for Section 4.1
	Experimental Details for Section 4.3
	Experimental Details for Section 5.3

	Existing Theoretical Evidence Supporting that ICL Makes ID Predictions
	The Lemmas, Assumption, and Proof for Theorem 5.3
	Lemmas for Theorem 5.3
	The Assumption for Theorem 5.3
	Proof for Theorem 5.3

	Limitations
	Reproducibility

