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A PROOF OF PROPOSITION 1

The adversarial loss of an arbitrary input sample x can be upper-bounded as below
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where λ is the largest eigenvalue of the Hessian H(ℓ(x)).
Taking expectation over the distribution of real data with class label c, denoted as Dc
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With the assumption that ℓ̃(x) is convex, we know that ℓ̃advρ (x) is also convex, because ∀λ ∈ [0, 1],

ℓ̃advρ (λx1 + (1− λ)x2) (5)
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Therefore, by Jensen’s Inequality

ℓ̃advρ ( E
x∼Dc

x) ≤ E
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ℓ̃advρ (x) (11)

Let x′ be a datum distilled from the training data with class label c. It should be close in distribution
to that of the real data. From the MMD loss used by DM (Zhao & Bilen, 2023), we assume
that ∥h(x′) − Ex∼Dch(x)∥ ≤ σ, where h(·) is a feature extractor. If h(·) is invertible, then
Ladv
ρ (·) = ℓ̃advρ (h−1(·)) is a function defined on the feature space. We assume that Ladv

ρ (·) is
L-Lipschitz, it follows that

Ladv
ρ (h(x′)) ≤ Ladv

ρ ( E
x∼Dc

h(x)) + Lσ (12)

If we add the assumption that h(·) is linear, Ex∼Dc
h(x) = h(Ex∼Dc

x), then

ℓ̃advρ (x′) ≤ ℓ̃advρ ( E
x∼Dc

x) + Lσ (13)

Combining Eq. 4, 11, 13, we get

ℓ̃advρ (x′) ≤ E
x∼Dc

ℓ(x) + ρ E
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2
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Discussion The inequality in line (2) is an equality if and only if the direction of the gradient is the
same as the direction of λ1. Previous work has empirically shown that the two directions have a large
cosine similarity in the input space of neural networks. Our assumption about the Lipschitz continuity
of Ladv

ρ (·) is reasonable, as recent work has shown improved estimation of the Lipschitz constant of
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Figure 3: A comparison between the curvature profiles of DC (left) and GUARD (right), which is
shown in the form of sorted eigenvalues of the Hessian. We took the average of sorted eigenvalues of
100 samples in the real training data.

neural networks in a wide range of settings (Khromov & Singh, 2023). Although our assumptions
about the convexity of ℓ̃(x) and the linearity of h(·) is relatively strong, it still reflects important
aspects of reality, as our experiment in Table 2 has shown that reducing the curvature term in r.h.s of
Eq. 14 effectively improves the robustness of models trained on distilled data. Moreover, in Fig. 3 we
plot the distribution of eigenvalues of the real data samples on the loss landscape of a model trained
on standard distilled data and a model trained on robust distilled data from our GUARD method,
respectively. GUARD corresponds to a flatter curve of eigenvalue distribution, indicating that the loss
landscape becomes more linear after our regularization.

We show the curvature profiles of DC and GUARD to demonstrate that GUARD does limit the
curvature profile of the resulting dataset in Figure 3. It can be seen that GUARD (right) has much
lower curvature profiles towards both ends of the plot.

B EXPERIMENT RESULTS ON ROBUST DISTRIBUTION MATCHING

We experimented with Dataset Condensation with Distribution Matching (DM) (Zhao & Bilen, 2023)
using robust feature extractors. We used a pool of 50 ConvNet models with different initialization,
and one model is randomly selected as the feature extractor at each iteration. Two settings were used:
in the online learning setting (denoted as ”DM+O”), we alternated between training the synthetic
set with the MMD loss and training the model with the curvature regularization; in the pretraining
setting (denoted as ”DM+P”), we pretrained all the models with the curvature regularization on the
real dataset for 10 epochs before starting data distillation. The result is shown in Table 3. With the
large computational cost of pretraining, the ”DM+P” setting only brings marginal and inconsistent
improvement over the DM method, and the ”DM+O” setting degrades the performance severely.

Table 3: Robust accuracies of models trained on synthetic datasets from DM, under various attack
settings.

MNIST CIFAR10
ipc 1 10 1 10

Attack ℓ∞* ℓ∞ ℓ2 ℓ∞* ℓ∞ ℓ2 ℓ∞* ℓ∞ ℓ2 ℓ∞* ℓ∞ ℓ2

M
et

ho
d DM 0.2±0.2 52.0±1.9 65.8±1.1 0.0±0.0 65.3±2.7 78.6±1.2 2.1±0.7 14.6±0.9 18.8±0.6 0.3±0.1 14.8±0.8 22.4±1.0

DM + P 0.8±0.3 52.9±2.8 63.9±1.3 0.0±0.0 66.9±2.6 78.6±1.5 3.7±0.8 16.0±0.5 19.5±0.8 0.3±0.1 17.2±0.8 25.4±0.7
DM + O 0.9±0.3 45.1±1.8 57.1±1.5 0.0±0.0 68.4±2.3 79.8±1.2 0.2±0.2 5.8±1.2 9.7±1.1 0.1±0.0 12.7±0.8 20.5±0.7
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C ALGORITHM OF GUARD

We present the exact algorithm of GUARD in Algorithm 1. For each outer iteration k, we sample
a new initial weight from some random distribution of weights to ensure the synthetic dataset can
generalize well to a range of weight initializations. After, we iteratively sample a minibatch pair from
the real dataset and the synthetic dataset and compute the loss over them on a neural network with
the weights θt. We compute the regularized loss on real data through Eq. 8. Finally, we compute the
gradient of the losses w.r.t. θ, and update the synthetic dataset through stochastic gradient descent on
the distance between the gradients. At the end of each inner iteration t, we update the weights θt+1

using the updated synthetic dataset.

Algorithm 1: GUARD (Geometric regUlarization for Adversarial Robust Dataset)
Input: T : Training set; S: initial synthetic dataset with C classes; p(θ0): initial weights

distribution; ϕθ: neural network; K: number of outer-loop steps; T : number of inner-loop steps;
ςθ: number of steps for updating weights; ςS : number of steps for updating synthetic samples;
ηθ: learning rate for updating weights; ηS : learning rate for updating synthetic samples; D:
gradient distance function; h: discretization step; λ: strength of regularization

for each outer training step k = 1 to K do
Sample initial weight θ0 ∼ p(θ0)
for each inner training step t = 1 to T do

for each class c = 1 to C do
Sample ω ∼ Ω and a minibatch pair BT

c ∼ T and BS
c ∼ S

Compute loss on synthetic data LS
c = 1

|BS
c |

∑
(s,y)∈BS

c
ℓ(ϕθt(s), y)

Compute loss on real data LT
c = 1

|BT
c |

∑
(x,y)∈BT

c
ℓ(ϕθt(x), y)

Compute z = ∇ℓ(ϕθt (s),y)
∥∇ℓ(ϕθt (s,y))∥

Compute loss on perturbed real data LTz
c = 1

|BT
c |

∑
(x,y)∈BT

c
ℓ(ϕθt(x + hz), y)

Compute regularizerR = ∇θLTz
c (θt)−∇θLT

c (θt)

Compute regularized loss on real data LTR
c = LT

c + λR
Update Sc ← sgdS(D(∇θLS

c (θt),∇θLTR
c (θt)), ςS , ηS)

end
Update θt+1 ← sgdθ(L(θt,S), ςθ, ηθ)

end
end
Output: robust condensed dataset S

D CLEAN ACCURACY OF THE DISTILLATION METHODS

In addition to conducting various experiments on robustness, we also examined how GUARD affects
the clean accuracy of the trained model. In Table 4, we present the performance of our method in
standard i.i.d. setting in comparison with other methods.

Table 4: Clean accuracy of models trained on synthetic datasets from different methods

ipc Method
DD DC DSA DM MTT FrePo Ours

MNIST 1 / 86.5±0.7 86.3±0.7 89.7±0.6 91.4±0.9 93.0±0.4 89.2±0.3
10 79.5±8.1 96.4±0.1 96.1±0.1 97.5±0.1 97.3±0.1 98.6±0.1 95.8±0.1

CIFAR10 1 / 29.9±0.7 29.5±0.6 26.0±0.8 46.3±0.8 46.8±0.7 30.9±0.4
10 36.8±1.2 45.3±0.5 43.5±0.5 48.9±0.6 65.3±0.7 65.5±0.4 46.8±0.4
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E COMPARISON BETWEEN ADVERSARIAL TRAINING AND GUARD

In Table 5, we show a comparison between using adversarial training and using GUARD for dataset
condensation. For the adversarial training process, a dataset is initially condensed using the DC
method. Then, while a model is training on this synthetic dataset, an adversarial attack is applied to
the synthetic images following standard adversarial training procedures. In this case, the adversarial
attack employed is a PGD attack under the ℓ∞ setting as detailed in the Experiments section of this
paper.

Table 5: A comparison between training time, clean accuracy and robust accuracy of models trained
on DC with adversarial training and GUARD

ipc DC + Adversarial Training GUARD
Training Time Clean Acc Robust Acc Training Time Clean Acc Robust Acc

MNIST 1 15.2±0.3s 81.5±0.8 0.5±0.2 2.1±0.2s 89.2±0.3 0.7±0.3
10 24.3±0.1s 95.5±0.1 0.0±0.0 2.9±0.3s 95.8±0.1 0.5±0.2

CIFAR10 1 15.4±0.2s 25.8±0.5 2.6±0.3 2.1±0.1s 30.9±0.4 4.7±0.3
10 24.7±0.1s 34.4±0.6 0.7±0.2 3.0±0.1s 46.8±0.4 1.9±0.3

F OTHER ATTACKS ON GUARD

In Table 6, we compare some results from using other types of attacks against GUARD and DC.
We used three different attacks, including PGD100 with parameters ϵ = 2/255, α = 0.5/255,
steps = 100, Square Attack (Andriushchenko et al., 2020) with ϵ = 2/255, and AutoAttack with
ϵ = 2/255.

Table 6: Robust accuracy of GUARD and DC on CIFAR10 under various attacks in 10 ipc setting

PGD100 Square AutoAttack

GUARD 15.8±2.0 15.7±2.1 13.7±1.8
DC 10.6±1.4 11.5±1.6 10.1±1.7

G TRANSFERABILITY OF GUARD

Table 7: Clean and robust accuracy of SRe2L on ImageNette with and without GUARD, under PGD
attack with ϵ = 2/255, α = 0.5/255, steps = 100

ipc Method Clean Accuracy ℓ∞* ℓ∞

1 SRe2L 24.2 2.0 9.6
GUARD 29.2 1.6 13.5

10 SRe2L 51.4 0.0 6.7
GUARD 55.9 1.2 23.3

In this section, we discuss how GUARD can be transferred onto other dataset condensation methods.
This is especially useful since different dataset condensation methods have their own advantages and
drawbacks, therefore methods can be selected to best suit one’s needs.

In essence, GUARD works by reducing the curvature on a network trained with real data, and
optimizing the synthetic data to allow networks trained on it to have such characteristics. Therefore,
GUARD can be theoretically applied to any dataset condensation method, given that it optimizes
the synthetic dataset by comparing to a network trained with real data. This is very common among
dataset condensation methods, including DD (Wang et al., 2018), DC (Zhao et al., 2021), DSA (Zhao
& Bilen, 2021), MTT (Cazenavette et al., 2022), DCC (Lee et al., 2022), SRe2L (Yin et al., 2023),
and many more.
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In this case, we used SRe2L as an example, since it is a recent technique that performs much better
than DC on ImageNet. SRe2L works by first training a network with real data, then reconstructing
images from the network, and finally cropping the images and assigning a soft-label to each crop
with the network. GUARD can be applied to the first phase, allowing images to be reconstructed and
labeled using a network with low curvature.

We used the ℓ∞* and ℓ∞ PGD attack settings, and used ImageNette, a selection of ten classes from
ImageNet, as our dataset in this experiment. From the results in Table 7, it can be seen that GUARD
helps SRe2L to achieve significantly better robustness under adversarial attacks. In addition, possibly
due to GUARD’s nature as a regularizer, it also improved SRe2L’s clean accuracy as a side effect.
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