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A SIMULATION PROCEDURE

Our synthetic data include confounders, instrumental, adjustment, and irrelevant variables. The in-
terrelations among these variables, treatments, and outcomes are illustrated in Figure 1. The number
of observed variables in the vector X = (Cᵀ, Zᵀ, Iᵀ, Aᵀ)ᵀ is set to 100, including 35 confounders
in C, 35 adjustment variables in A, 10 instrumental variables in Z, and 20 irrelevant variables in
I . The model used to generate the continuous outcome variable Y in this simulation is the partially
linear regression model, extending the ideas described in Robinson (1988); Jacob et al. (2019); Chu
et al. (2020):

Y = τ((Cᵀ, Aᵀ)ᵀ)T + g((Cᵀ, Aᵀ)ᵀ) + ε, (1)

where ε are unobserved covariates, which follow a standard normal distribution N(0, 1) and
E[ε|C,A, T ] = 0. T ind.∼ Bernoulli(e0((Cᵀ, Zᵀ)ᵀ)) and e0((Cᵀ, Zᵀ)ᵀ) is the propensity score,
which represents the treatment selection bias based on their own confounders C and instrumental
variables Z. Because we aim to simulate multiple data sources {Dd; d = 1, ..., D}, the vector of
all observed covariates X = (Cᵀ, Zᵀ, Iᵀ, Aᵀ)ᵀ is sampled from different multivariate normal dis-
tribution with mean vector µdC , µ

d
Z , µ

d
I , and µdA and different random positive definite covariance

matrices Σd.

Figure 1: The types of variables.

For each data source, except for the different magnitude of mean vector and structure of covariance
matrix, the simulation procedure is the same. Let D be the diagonal matrix with the square roots of
the diagonal entries of Σ on its diagonal, i.e., D =

√
diag(σ), then the correlation matrix is given

as:
R = D−1ΣD−1. (2)

We use algorithm 3 in Hardin et al. (2013) to simulate positive definite correlation matrices consist-
ing of different types of variables. Our correlation matrices are based on the hub correlation structure
which has a known correlation between a hub variable and each of the remaining variables (Zhang

1



Under review as a conference paper at ICLR 2021

& Horvath, 2005; Langfelder et al., 2008). Each variable in one type of variables is correlated to the
hub-variable with decreasing strength from specified maximum correlation to minimum correlation,
and different types of variables are generated independently or with weaker correlation among vari-
able types. Defining the first variable as the hub, for the ith variable (i = 2, 3, ..., n), the correlation
between it and the hub-variable in one type of variables is given as:

Ri,1 = ρmax −
(
i− 2

d− 2

)γ
(ρmax − ρmin), (3)

where ρmax and ρmin are specified maximum and minimum correlations, and the rate γ controls rate
at which correlations decay.

After specifying the relationship between the hub variable and the remaining variables in the same
type of variables, we use Toeplitz structure to fill out the remainder of the hub correlation matrix
and get the hub-Toeplitz correlation matrix Rtype for other type of variables. Here, R is the n × n
matrix having the blocksRZ , RC , RA, andRI along the diagonal and zeros at off-diagonal elements.
This yields a correlation matrix with nonzero correlations within the same type and zero correlation
among other types. The amount of correlations among types which can be added to the positive-
definite correlation matrix R is determined by its smallest eigenvalue.

The function τ((Cᵀ, Aᵀ)ᵀ) describes the true treatment effect as a function of the values of adjust-
ment variables A and confounders C; namely τ((Cᵀ, Aᵀ)ᵀ) = (sin ((Cᵀ, Aᵀ)ᵀ × bτ ))2 where bτ
represents weights for every covariate in the function, which is generated by uniform(0, 1). The
variable treatment effect implies that its strength differs among the units and is therefore condi-
tioned on C and A. The function g((Cᵀ, Aᵀ)ᵀ) can have an influence on outcome regardless of
treatment assignment. It is calculated via a trigonometric function to make the covariates non-
linear, which is defined as g((Cᵀ, Aᵀ)ᵀ) = (cos ((Cᵀ, Aᵀ)ᵀ × bg))2. Here, bg represents a weight
for each covariate in this function, which is generated by uniform(0, 1). The bias is attributed to
unobserved covariates which follow a random normal distribution N(0, 1). The treatment assign-
ment T follows the Bernoulli distribution, i.e., T ind.∼ Bernoulli(e0((Cᵀ, Zᵀ)ᵀ)) with probability
e0((Cᵀ, Zᵀ)ᵀ) = Φ(a−µ(a)σ(a) ), where e0((Cᵀ, Zᵀ)ᵀ) represents the propensity score, which is the
cumulative distribution function for a standard normal random variable based on confounders C and
instrumental variables Z, i.e., a = sin ((Cᵀ, Zᵀ)ᵀ × ba), where ba is generated by uniform(0, 1).

We totally simulate five different data sources with five different multivariate normal distributions
to represent the incrementally available observational data. In each data source, we randomly draw
10000 samples including treatment units and control units. Therefore, for five datasets, they have
different selection bias, magnitude of covariates, covariance matrices for variables, and number of
treatment and control units. To ensure a robust estimation of model performance, for each data
source, we repeat the simulation procedure 10 times and obtain 10 synthetic datasets.
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