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Abstract1

In this paper we study the practicality and usefulness of incorporating distributed2

representations of graphs into models within the context of drug pair scoring. We3

argue that the real world growth and update cycles of drug pair scoring datasets4

subvert the limitations of transductive learning associated with distributed repre-5

sentations. Furthermore, we argue that the vocabulary of discrete substructure6

patterns induced over drug sets is not dramatically large due to the limited set of7

atom types and constraints on bonding patterns enforced by chemistry. Under this8

pretext, we explore the effectiveness of distributed representations of the molecular9

graphs of drugs in drug pair scoring tasks such as drug synergy, polypharmacy, and10

drug-drug interaction prediction. To achieve this, we present a methodology for11

learning and incorporating distributed representations of graphs within a unified12

framework for drug pair scoring. Subsequently, we augment a number of recent13

and state-of-the-art models to utilise our embeddings. We empirically show that the14

incorporation of these embeddings improves downstream performance of almost15

every model across different drug pair scoring tasks, even those the original model16

was not designed for. We publicly release all of our drug embeddings for the17

DrugCombDB, DrugComb, DrugbankDDI, and TwoSides datasets.18

1 Introduction19

Recent advancements in graph representation learning (GRL) — particularly in message passing20

based graph neural networks — have enabled new ways of modelling natural phenomena and tackling21

learning tasks on graph structured data. One of the areas which now sees application of graph22

neural networks is drug pair scoring [1]. Drug pair scoring refers to the prediction tasks that answer23

questions about the consequences of administering a pair of drugs at the same time such as drug24

synergy prediction, polypharmacy prediction, and predicting drug-drug interaction types which are25

of great interest in the treatment of diseases. One of the primary challenges in elucidating and26

discovering the effects of drug combinations is the dramatically growing combinatorial space of drug27

pairs. Furthermore, reliance on human trials (in polypharmacy), and proneness to human error [2]28

makes manual/experimental discovery of useful drug combinations difficult without even considering29

the prohibitive financial and labour costs that make it only possible on small sets of drugs. Such30

conditions make in silico modelling of drug combinations an attractive solution.31

A key component to modelling drug pairs is finding useful representations of the drugs to input into32

the drug pair scoring models. Traditional supervised machine learning methods for drug pair scoring33

rely on carefully crafted descriptors such as MDL descriptor keysets [3] and fingerprinting techniques34

such as Morgan fingerprinting [4]. More recently, graph neural network layers and permutation35

invariant pooling operators have enabled inputting the molecular graphs of drugs directly to learn36

task oriented representations in an end-to-end manner. Interestingly, graph kernel techniques and37

specifically distributed representations of graphs were not considered at all for inclusion in drug pair38

scoring pipelines to the best of our knowledge. We may only speculate to the reasons for this such as39

publication biases or its limitations in not using node feature vectors and the transductive nature that40

have made these approaches less appropriate in observations with rich/continuous node features and41

dynamic graphs [5, 6].42
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However, we will argue that the transductive learning of distributed representations is hardly a43

limitation in the context of drug pair scoring tasks in Section 3.2. This is primarily as we are learning44

the representations of the drugs whose number in the real world rises in the timescale of many years45

and immense investment [7, 8]. Furthermore, as the set of atom types and bonding patterns of drugs46

are strictly constrained by the rules of chemistry, the number of generic substructure patterns that may47

be induced over the molecular graphs of a drug set are much smaller than the theoretically possible set48

of combinations. Additionally, as the self supervised learning objective is agnostic to the downstream49

task the drug embeddings may be transferred trivially making distributed representations an attractive50

modelling proposition for representation learning of structural patterns for drug pair scoring.51

Under this pretext our research questions are: "How can we learn and then incorporate the distributed52

representations of the drugs into drug pair scoring pipelines?" and "Are distributed representations of53

graphs useful in drug pair scoring tasks?". To answer these questions we describe a methodology54

for learning distributed representations of graphs and their inclusion within a unified framework55

applicable all drug pair scoring tasks in Section 3. Subsequently, we create a simple MLP model56

based solely on the distributed representations of the drugs and show that this performs considerably57

better than random suggesting the usefulness of discrete substructure affinities of the drugs in drug58

pair scoring. Building upon this, we augment a number of recent and state-of-the-art models for59

drug pair scoring tasks to utilise our drug embeddings. Empirical results show that the incorporation60

of the distributed representations improves the performance of almost every model across synergy,61

polypharmacy, and drug interaction prediction tasks in Section 5. To the best of our knowledge this is62

the first application and study of distributed representations of molecular drug graphs for drug pair63

scoring tasks. To help further research and inclusion of these distributed representations we publicly64

release all of the drug representations as learned and utilised in this study.65

To summarise our contributions are as follows:66

• We show that learning distributed representations of graphs as a source of additional features is67

reasonable within drug pair scoring pipelines.68

• We present a generic methodology for learning various distributed representations of the molec-69

ular graphs of the drugs and incorporating these into machine learning pipelines for drug pair70

scoring.71

• We augment state-of-the-art models for drug synergy, polypharmacy, and drug interaction72

prediction and improve their performance through the use of distributed drug representations73

across tasks; even tasks they were not originally designed for.74

• We publicly release all of the drug embeddings for DrugCombDB [2], DrugComb [9, 10],75

DrugbankDDI [11], and TwoSides [12] datasets as utilised in this study with the accompanying76

code for generating more.77

2 Background and related work78

In drug pair scoring tasks we are concerned with learning a function which predicts scores for pairs of79

drugs in a biological or chemical context. Naturally within the domain of deep learning this learned80

function takes on the form of a neural network. Drug pair scoring have three main applications and81

questions which models are designed to answer [1]:82

• Inferring drug synergy: Do drugs i and j have a synergistic effect on treatment of disease k?83

• Inferring polypharmacy side effects: Does the simultaneous use of drugs i and j have a propensity84

for causing side effect k?85

• Inferring drug-drug interaction types: Do drugs i and j have a k type interaction?86

2.1 Unified framework for drug pair scoring87

The machine learning tasks born out of the questions above can be generalised and formalised with88

a unified view of drug pair scoring described in Rozemberczki et al. [1]. We briefly reiterate this89

framework below to build upon in our proposed work in the next section.90

Assume there is a set of n drugs D = {d1, d2, ..., dn} for which we know the chemical structure of91

molecules and a set of classes C = {c1, c2, ..., cp} that provides information on the contexts under92

which a drug pair can be administered.93
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A drug feature set is the set of tuples (xd,Gd,Xd
N ,X

d
E) ∈ XD,∀d ∈ D, where xd is the molecular94

feature vector, Gd is the molecular graph of the drug, Xd
N is the node/atom feature matrix and Xd

E95

the edge/bond feature matrix. In this setup, drugs can be attributed with 4 types of information: (i)96

Molecular features which give high-level information about the molecules such as measures of charge.97

(ii) The molecular graph in which nodes are atoms and edges describe bonding patterns. (iii) Node98

features in the molecular graph can give us information such as the type of atom or whether it is in a99

ring. (iv) Edge features which can provide context such as the type of bond that exists between atoms100

in the molecule.101

A context feature set is the set of context feature vectors xc ∈ XC ,∀c ∈ C associated with the context102

classes C. This set allows for making context specific presdictions that take into account the similarity103

of the contexts. For example, in a synergy prediction scenario the context features can describe the104

gene expressions in a targeted cancer cell.105

The labeled drug-pair and context triple set is a set of tuples (d, d′, c, yd,d
′,c) ∈ Y where d, d′ ∈ D,106

c ∈ C and yd,d
′,c ∈ {0, 1}. This set of observations associates a drug pair within a specific biological107

or chemical context with a binary target. This target could specify whether a pair of drugs is108

synergistic in terminating a cancer cell type or have a certain drug-drug interaction type. Naturally, it109

is also common to have continuous targets yd,d
′,c ∈ R. The machine learning practitioner is tasked110

with constructing predictive models f(·) such that ŷd,d
′,c = f(d, d′, c) for these drug-pair context111

observations.112

2.2 Representations for drugs113

A major source of research interest is the study and development of drug feature vectors and114

representations as they form inputs into various drug learning tasks. In our case these form integral115

parts of the molecular feature vector xd in the drug feature set (see Section 2.1) often arising from116

the molecular graph of the drugs.117

Two dimensional representations and diagrams of the structure of molecules are often used as a118

convenient representation for their 3-dimensional structures and electrostatic properties that give rise119

to their biological activities. Whilst this abstraction is useful for communication in person, technical120

limitations drove the development of linear string based representations including SMILES [13] and121

InChI [14] which are present across many popular chemical information systems today. Language122

models have been applied onto such molecular strings to learn embeddings such as in Bombarelli123

et al. [15] which utilises the SMILES strings within a VAE framework to sample low dimensional124

continuous vector representations of the drugs. The success of this inspired similar work such as125

DeepSMILES [16] and SELFIES [17].126

Two dimensional graph structures have been used before to generate discrete bag-of-words type127

feature vectors of molecules based on the presence of a specified vocabulary of descriptive substruc-128

tures as in Morgan’s work in 1965 [18]. Subsequent years saw efforts in finding different descriptive129

properties within the molecule structures or optimising existing sets of descriptive substructures such130

as in Durant et al. [3] which optimised the set of substructure based 2D descriptors from MDL keysets131

for drug discovery pipelines. The use of molecular fingerprints such as Morgan/Circular fingerprints132

[4] continues this branch of constructing descriptors and kernels for molecules. Concurrent efforts133

recently focus on end-to-end neural models involving graph neural network operators [1, 19]. Here134

graph neural networks operate over the molecular graph of the drug such that atoms are treated as135

nodes and bonds are the edges. Node level representations are updated through a series of message136

passing layers as in Equation 1 as described in Gilmer et al. [20] and Battaglia et al. [21].137

hl
i = ϕ

(
hl−1
i ,

⊕
j∈Ni

ψ(hl−1
i ,hl−1

j )
)

(1)

Here hl
i is the lth layer representation of the features associated with node i (in our context these138

would be atom features arising from message passing using Xd
N and Xd

E). hl
i is the output of the139

local permutation invariant function composed of the node i’s previous feature representation hl−1
i140

and its neighbours j ∈ Ni with ψ(hl−1
i ,hl−1

j ) being the message computed via function ψ and
⊕

141

is some permutation invariant aggregation for the messages such as a sum, product, or average. ϕ142

and ψ are typically neural networks. Subsequently, the node level representations are aggregated via143
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permutation invariant pooling operations to form graph-level drug representations. For example, the144

EPGCN-DS model [22] utilises GCN layers [23] to produce higher level node representations of the145

atoms in the molecular graphs. The drug representations are then computed via a mean aggregation146

of the node representations. Such operators have become prevalent in recent proposals of drug147

pair scoring models with primary distinction being the form of ψ in the message passing layers148

[1, 22, 24, 25].149

Our proposed system lies somewhere in between and in parallel to these efforts. We learn low150

dimensional continuous distributed representations (described in Section 3.1) of the drugs within151

the drug pair scoring dataset. These form additional drug features that can be utilised in augmented152

versions of existing drug pair scoring models. To the best of our knowledge this is the first application153

of distributed representations of drugs within drug pair scoring.154

2.3 Neural models for drug pair scoring155

All recent neural models for drug pair scoring can be described with an encoder-decoder framework156

typically involving 3 parametric functions: (i) a drug encoder, (ii) an encoder for contextual features,157

and (iii) a decoder which infers the target value. We describe each component below, followed by how158

some state-of-the-art models can be instantiated out of this framework. A more thorough treatment of159

this can be found in Rozemberczki et al. [1].160

The drug encoder is the parametric function fθD (·) in Equation 2 that takes the drug feature set161

as input and produces a vector representation of the drug d called hd. fθD (·) maps the molecular162

features of the drug into a low dimensional vector space, this can incorporate various neural operators163

such as feed forward multi-layer perceptron layers as in DeepSynergy [26] and MatchMaker [27] or164

graph neural network layers as in DeepDDS [24] and DeepDrug [25]. Differences in the architecture165

of the encoder such as the flavour of message passing network is typically the main differentiator166

between current existing methods.167

hd = fθD (x
d,Gd,Xd

N ,X
d
E),∀d ∈ D (2)

The context encoder fθC (·) in Equation 3 is a neural network that outputs a low dimensional repre-168

sentation of the contextual feature set xc. This component does not feature in all of the models we169

will discuss but plays a prominent part in DeepSynergy [26], MatchMaker [27], and DeepDDS [24].170

hc = fθC (x
c),∀c ∈ C (3)

Finally the decoder or head of the model fθH (·) in Equation 4 combines the outputs of the drug171

and context encoders (hd,hd′
,hc) and outputs the predicted probability for a positive label for the172

drug-pair context triple ŷd,d
′,c.173

ŷd,d
′,c = fθH (hd,hd′

,hc),∀d, d′ ∈ D,∀c ∈ C (4)

Training the models in the framework described involves minimising the binary cross entropy for174

the binary targets or mean absolute error for regression targets with respect to the θD, θC , and θH175

parameters using gradient descent algorithms.176

L =
∑

(d,d′,c,yd,d′,c)∈Y

l(ŷd,d
′,c, yd,d

′,c) (5)

3 Study and Methods177

3.1 Distributed representations of graphs178

We adopt the framework of Scherer and Liò [28] for describing distributed representations of graphs179

based on the R-Convolutional framework for graph kernels [29]. Given a set of n molecular graphs180

for the drugs in the dataset G = {Gd1 ,Gd2 , ...,Gdn} one can induce discrete substructure patterns181

such as shortest paths, rooted subgraphs, graphlets, etc. using side effects of algorithms such as182
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Floyd-Warshall [30–32] or the Weisfeiler-Lehmann graph isomorphism test [33]. This can be used to183

produce pattern frequency vectors X = {xd1 , xd2 , ..., xdn} describing the occurence frequency of184

substructure patterns for every graph over a shared vocabulary V. V is the set of unique substructure185

patterns induced over all graphs Gd ∈ G.186

Classically one may directly use these pattern frequency vectors within standard machine learning187

algorithms or construct kernels to perform some task. This has been the approach taken by many state188

of the art graph kernels in classification tasks [29, 34]. Unfortunately, as the number, complexity, and189

size of graphs in G increases so does the number of induced substructure patterns — often dramatically190

[28, 29, 34]. This, in turn, causes the pattern frequency vectors of X to be extremely sparse and191

high dimensional both of which are detrimental to the performance of estimators. Furthermore, the192

high specificity of the patterns and the sparsity cause a phenomenon known as diagonal dominance193

across kernel matrices wherein each graph becomes more similar to itself and dissimilar from others,194

degrading machine learning performance.195

To address this issue it is possible to learn dense and low dimensional distributed representations of196

graphs that are inductively biased to be similar when they contain similar substructure patterns and197

dissimilar if they do not in a self supervised manner. To achieve this we need to construct a corpus198

dataset R that details the target-context relationship between a graph and its induced substructure199

patterns. In the simplest form for graph level representation learning we can specify R as the set of200

tuples (Gd, p) ∈ R where p is a substructure pattern that is part of the shared vocabulary p ∈ V and201

can be induced from Gd which we denote p ∈ Gd.202

The corpus can then be used to learn embeddings via a method that incorporates Harris’ distributive203

hypothesis [35] to learn the distributed representations. Methods such as Skipgram, CBOW, PV-DM,204

PV-DBOW, and GLoVE are some examples of neural embedding methods that utilise this inductive205

bias [36–38]. In our study we implement Skipgram with negative sampling which optimises the206

following objective function.207

L =
∑
Gd∈G

∑
p∈V

|{(Gd, p) ∈ R}|(log σ(Φd · Sp)) + Ep−∈V[log σ(−Φd · Sp−)] (6)

Here Φ ∈ R|G|×z is the z-dimensional matrix of graph embeddings we desire of the set of drug208

graphs G, and Φd is the embedding for Gd ∈ G. In similar vein, S ∈ R|V |×z are the z-dimensional209

embeddings of the substructure patterns such that Sp represents the vector embedding corresponding210

to the substructure pattern p ∈ V. Whilst these embeddings are tuned as well during the optimisation211

of Equation 6, ultimately, these substructure embeddings are not used in our case as we are interested212

in the drug embeddings. The cardinality of the set |{(Gd, p) ∈ R}| indicates the number of time213

a positive substructure pattern is induced in the graph to tighten the association of the pattern to214

the graph. p− ∈ V denotes a negative context pattern that is drawn from the empirical unigram215

distribution PR(p) = |{p|∀Gd∈G,(Gd,p)∈R}|
|R| and the expectation is approximated using 10 Monte216

Carlo samples as originally devised in Mikolov et al. [36].217

The optimisation of the above objective creates the desired distributed representations in Φ, in this218

the case graph-level drug embeddings. These may be used as additional drug features in the drug219

feature set as we show in section 3.3. The distributed representations benefit from having lower220

dimensionality than the pattern frequency vectors, in other words |V | >> z, being non-sparse, and221

being inductively biased via the distributive hypothesis. A more thorough treatment of the distributive222

hypothesis and in-depth interpretation of the embedding methods in this family can be found in223

[35, 36, 39].224

Various instances of models for learning distributed representations of graphs following our de-225

scription have been made such as Graph2Vec [40], DGK-WL/SP/GK [29], and AWE [41]. These226

differentiate primarily on the type of substructure pattern is induced over G. These have shown strong227

performance in graph classification tasks, still often performing on par with modern graph neural228

networks despite using significantly less features and parameters. However, limitations such as the229

dependency on a set vocabulary and inability to inductively infer representations for new subgraph230

patterns and new graphs (at least in its standard definitions), coupled with difficulty in scaling to large231

graphs with many millions of node have led to less attention on these methods. We speculate this has232
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Table 1: Table of dataset details containing information on the application domain, and summary
statistics on the number of drugs, context types, and drug pair context triples. Additional columns
highlight the number of unique substructure patterns found across the molecular graphs of the drugs
in the dataset based on the substructure patterns induced. |D| represents the number of unique drugs.
|C| represents the set of unique contexts. |Y| represents the number of labeled drug-drug context
triples. The remaining columns indicate the number of unique substructure patterns found in the
drugs with respect to the corresponding substructure patterns extracted: WL (k = 2) is the number
of discrete rooted subtrees up to depth 2, WL (k = 3) for rooted subgraphs up to depth 3, and the
discrete shortest paths.

Dataset Task |D| |C| |Y| WL (k = 2) WL (k = 3) Shortest paths

DrugCombDB [2] Synergy 2956 112 191,391 70 1591 1310
DrugComb [9, 10] Synergy 4146 288 659,333 70 1651 1432
DrugbankDDI [11] Interaction 1706 86 383,496 74 1287 2710
TwoSides [12] Polypharmacy 644 10 499,582 64 934 8070

led to developments of deep drug pair score models completely ignoring distributed representations233

of graphs as part of the pipeline.234

3.2 Arguing for the use of distributed representations of drugs in drug pair scoring pipelines235

Here we show that the use of distributed representations of graphs to construct additional drug236

features is sensible in drug pair scoring tasks. As discussed in Section 2.1 a drug score pairing237

model is tasked with learning the function f(d, d′, c) = yd,d
′,c from the labelled drug-pair context238

triples in Y . Looking at the statistics of drug pair scoring datasets in Table 1, we can see that the239

number of drugs and contexts is far lower than the number of triple observations. The huge and240

complex combinatorial space of drug-pair contexts (without even considering dosage effects) as241

well as the time/cost associated with experimenting more triples is a motivating factor for machine242

learning models. In practice, when such databases are updated it is through the addition of more243

labelled drug-pair context observations for better coverage [42]. The number of drugs considered244

rarely increases, as drugs can take many years of development, clinical trials, massive investment and245

regulatory processes before they enter studies for application domains of drug pair scoring [7, 8].246

Therefore we can argue that learning distributed representations of the molecular graphs of the drugs247

in drug pair scoring tasks is sensible. Importantly, the number of discrete substructure patterns grows248

with the number of unique drugs, not the number of drug-pair-context observations within the dataset.249

Hence, as long as the number of drugs stays the same, trained drug embeddings can be carried over to250

any model being trained over the drug-pair context triples with minimal augmentation as we show in251

Section 3.3. To add further motivation, the number of discrete substructure patterns in the considered252

set of drugs is driven by the unique atom types and substructure patterns arising out of the bonded253

atoms. This set of unique atom types is theoretically limited to the periodic table and is obviously a254

limited subset of this in drugs. Furthermore, the size of the molecular graphs tend to be considerably255

smaller than social network scale graphs and less random due to chemical bonding rules hence the256

resulting substructure patterns are fewer and more informative making suitable descriptors in these257

settings [29, 34, 43].258

3.3 Incorporating distributed representations of graphs into existing drug pair scoring259

pipelines260

Through retrieval of the SMILES strings, we generated the molecular graphs for each of the drugs261

G = {Gd|d ∈ D} using TorchDrug [44] and RDKit [45]. Given this set of graphs we considered262

two discrete substructure patterns to induce over the graphs. For the first substructure pattern we263

considered rooted subgraphs at different depth k = 3. These may be induced as a side effect of the264

Weisfeiler-Lehman graph isomorphism test [33, 43]. The second substructure pattern we considered265

were all the shortest paths of the molecular graph which may be induced using the Floyd-Warshall266

algorithm [30–32]. Both choices were made based on their completeness and deterministic nature of267

their inducing algorithms for which there are also fast implementations [28, 46].268
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Figure 1: A summary of the proposed pipeline for learning and utilising distributed representations of
drugs for drug pair scoring. The pipeline consists of two main stages: the learning of the distributed
representations and the augmentation of existing models to utilise the new drug embeddings Φ which
become part of the drug feature set described in Section 2.1. As the learning of the distributed
representations is separate from the drug pair scoring task we may transfer the embeddings into the
drug feature set of any existing drug pair scoring model without retraining.

In either case, the set of unique substructure patterns found across all molecular graphs in D gives269

us the molecular substructure vocabulary V. We construct a target-context corpus of the drugs270

RD = {(Gd, p)|Gd ∈ G, p ∈ Gd, p ∈ V}. We use a skipgram model with negative sampling to learn271

the desired drug embeddings, optimising the objective function in equation 6.272

After training and obtaining the distributed representations of drugs Φ we add the embeddings to the273

drug feature set (xd,Φd,Gd,Xd
N ,X

d
E) ∈ XD,∀d ∈ D. The remaining task is to develop downstream274

models which utilise the distributed representations. As the self supervised learning of the distributed275

representations is separate from the learning for the drug pair scoring task, we may transfer the276

embeddings into any of the existing drug pair scoring models. A diagram of this workflow can be277

seen in Figure 1.278

In order to validate the usefulness of the distributed representations we chose to extend existing279

drug pair scoring models from different application domains. As a sanity check to see whether the280

distributed representations carry any useful signal we also implemented a simple MLP with three281

hidden layers based on DeepSynergy called DROnly which only utilises the embeddings learned.282

We took seminal models representing the state of the art and recent models containing graph neural283

networks that operate over the molecular graphs of the drugs. Each augmented model we propose284

takes the original name of the model and is suffixed with "DR" and the substructure pattern induced285

over the graphs (WL or SP for rooted subgraphs and shortest paths respectively). In most cases286

we simply concatenate the distributed representation of the first and second drug (drugs α and β287

in Figure 1) to the corresponding molecular feature vectors being used in the model. In the case288

of EPGCN-DS-DR and DeepDrugDR the left and right drug embeddings are concatenated to the289
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Table 2: Table of results with information about the original drug pair scoring models such as year
of publication and their original application domains. We report the average AUROC on the hold
out test set with standard deviations from 5 seeded random splits. Bolded numbers indicate best
performing model for each dataset.
Model Year Orig. application DrugCombDB DrugComb DrugbankDDI TwoSides

DeepSynergy [26] 2018 Synergy 0.796 +- 0.010 0.739 +- 0.005 0.987 +- 0.001 0.933 +- 0.001
EPGCN-DS [22] 2020 Interaction 0.703 +- 0.006 0.623 +- 0.002 0.724 +- 0.002 0.809 +- 0.006
DeepDrug [25] 2020 Interaction 0.743 +- 0.001 0.648 +- 0.001 0.862 +- 0.002 0.926 +- 0.001
DeepDDS [24] 2021 Synergy 0.791 +- 0.005 0.697 +- 0.002 0.988 +- 0.001 0.944 +- 0.001
MatchMaker [27] 2021 Synergy 0.788 +- 0.002 0.720 +- 0.003 0.991 +- 0.001 0.928 +- 0.001
DROnly (WL k=3) Proposed Not applicable 0.763 +- 0.002 0.651 +- 0.002 0.809 +- 0.005 0.917 +- 0.002
DROnly (SP) Proposed Not applicable 0.711 +- 0.004 0.621 +- 0.002 0.710 +- 0.005 0.823 +- 0.005
DeepSynergy-DR (WL k=3) Proposed Not applicable 0.814 +- 0.004 0.738 +- 0.001 0.988 +- 0.000 0.934 +- 0.002
DeepSynergy-DR (SP) Proposed Not applicable 0.813 +- 0.003 0.740 +- 0.004 0.988 +- 0.001 0.935 +- 0.000
EPGCN-DS-DR (WL k=3) Proposed Not applicable 0.711 +- 0.002 0.627 +- 0.001 0.741 +- 0.004 0.822 +- 0.006
EPGCN-DS-DR (SP) Proposed Not applicable 0.704 +- 0.001 0.622 +- 0.001 0.730 +- 0.003 0.808 +- 0.002
DeepDrug-DR (WL k=3) Proposed Not applicable 0.743 +- 0.001 0.648 +- 0.001 0.863 +- 0.000 0.926 +- 0.001
DeepDrug-DR (SP) Proposed Not applicable 0.743 +- 0.000 0.648 +- 0.001 0.863 +- 0.001 0.926 +- 0.000
DeepDDS-DR (WL k=3) Proposed Not applicable 0.799 +- 0.004 0.700 +- 0.002 0.989 +- 0.000 0.944 +- 0.001
DeepDDS-DR (SP) Proposed Not applicable 0.790 +- 0.003 0.696 +- 0.001 0.988 +- 0.001 0.943 +- 0.001
MatchMaker-DR (WL k=3) Proposed Not applicable 0.783 +- 0.004 0.714 +- 0.003 0.992 +- 0.000 0.930 +- 0.001
MatchMaker-DR (SP) Proposed Not applicable 0.784 +- 0.002 0.714 +- 0.004 0.991 +- 0.001 0.928 +- 0.002

outputs of the graph neural network drug encoders and fed into the decoder. All of the code for these290

models is available in our supplementary materials.291

4 Experimental setup292

We empirically validate the usefulness of the distributed drug representations in downstream drug pair293

scoring tasks. We consider 4 datasets from the domains of drug synergy prediction, polypharmacy294

prediction, and drug interaction to evaluate our augmented models, which we have previously outlined295

in Table 1. Five seeded random 0.5/0.5 train and test set splits were made and the average AUROC296

performance was evaluated over the hold-out test set with standard deviation in Table 2.297

For the distributed representations of the graphs we set the desired dimensionality at z = 64 and the298

Skipgram model was trained for 1000 epochs. These hyperparameter values were chosen arbitrarily299

to simplify the following comparative analysis, however we explore their effects on downstream300

performance in an ablation study in Appendix A.301

To obtain the non DR drug-level features as used in DeepSynergy and MatchMaker we retrieved the302

canonical SMILES strings [13] for each of the drugs in the labeled drug-pair context triples. 256303

dimensional Morgan fingerprints [4] were computed for each drug with a radius of 2. Molecular304

graphs for entry into models with GNNs were generated using TorchDrug (and the underlying RDKit305

utilities) from the SMILES strings for each drug.306

We utilised the default hyperparameters for each of the drug pair scoring models as in [47] which are307

summarised in Table 3 of appendix B. Augmentation of the models affects the input shapes of the308

drug encoders or the final decoder by the chosen dimensionality of the distributed representations,309

but does not affect any other original model hyperparameters.310

Optimisation hyperparameters for training of the models were all kept the same. All drug pair311

scoring models were trained using an Adam optimiser [48] for 250 epochs with a batch size of 8192312

observations, an initial learning rate of 10−2, β1 was set to 0.9 with β2 set to 0.99, ϵ = 10−7 and313

finally a weight decay of 10−5 was added. A dropout rate of 0.5 was applied for regularisation.314

Naturally in addition to these details we make all of our code containing all implementations and315

scripts for evaluation available in the supplementary materials for reproducibility.316

5 Results and discussion317

Looking at our main results Table 2 we can make 3 main observations. First looking at the original318

methods we can see that methods using precomputed drug features and contextual features instead of319

graph neural networks such as DeepSynergy and Matchmaker perform better across drug pair scoring320
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tasks. Combined with the fact that they train and evaluate much faster than methods using graph321

neural networks, it is generally advisable to use these models in the first instance validating the results322

in [47]. DeepDDS is the best performing model utilising a graph neural network. It is worth noting323

that it utilises contextual features like DeepSynergy and MatchMaker and unlike EPGCN-DS and324

DeepDrug. Secondly, looking at the DROnly model that serves as the sanity check for our embeddings,325

we can see that it is significantly better than a random model. This indicates the usefulness of the326

structural affinities and distributive inductive biases within the drug representations for the drug327

pair scoring tasks. Thirdly, we can see that the incorporation of the distributed representation into328

the models generally increases the performance of models. Particularly, we observe that the best329

performances for 3 out of 4 tasks are achieved by models incorporating our embeddings with the330

final one being a tie (within rounding error of 3 decimal points) between DeepDDS and its DR331

incorporating equivalent DeepDDS-DR (WL k=3) on TwoSides.332

The horizontal analysis of the drug pair scoring models highlights that the significantly more expen-333

sive graph neural network based models generally perform worse than simpler models employing334

precomputed drug and context features on MLPs. This in spite of the graph neural network modules335

also having access to additional atom features on the molecular graphs as computed in TorchDrug.336

These include features such as the one-hot embedding of the atomic chiral tag, whether it participates337

in a ring, and whether it is aromatic, and the number of radical electrons on the atom. Hence, despite338

the wealth of additional information inside the provided molecular graph, we surmise the primary339

bottleneck for the drug level representations arises from the comparatively simple permutation in-340

variant operators used to pool the node representations such as the global mean operator used in341

EPGCN-DS. There is an inevitable and large amount of information loss in the attempt to summarise342

variable amounts of higher level smooth node representations coming out of GNNs into a single343

vector of the same size, without any trainable parameters. We may partially attribute the additional344

performance boosts brought in by the distributed representations to the more refined algorithm to345

constructing the graph level representations, despite the input molecular graph only detailing the atom346

types and no additional node features. We can also attribute the performance boosts to the usefulness347

of substructure affinities to the drug pair scoring tasks as indicated in the DROnly performances348

across the tasks. Appendix C presents two additional experiments which were performed to study the349

effectiveness of distributed representations in more challenging drug pair scoring scenarios.350

The learning of the distributed representations comes with two hyperparameters which may affect351

downstream performance when incorporated into the drug pair scoring models. These use specified352

hyperparameters are: (i) the dimensionality of the drug embeddings and (ii) the number of epochs353

for which the skipgram model is trained. We give full details on an ablation study on how varying354

these hyperparameters affects downstream performance with the experimental setup in Appendix355

A. To summarise the main points, the downstream performance caused by varying the desired356

dimensionality initially rises and then falls as expected due to the information bottleneck in very small357

dimensions and curse of dimensionality in higher dimensions. For varying the training epochs we358

find a slight but statistically significant positive correlation with performance as the number of epochs359

increases in two out of four datasets. However, in both cases there is little variation (±0.02 ROCAUC360

in both ablation studies over the ranges studied) in the final performance of the downstream models361

given the hyperparameter choices except on the extreme ends of the studied ranges. This indicates362

the stable nature of the output embeddings and their usefulness in downstream tasks. As such we can363

generally recommend low dimensional embeddings on par with any other drug features being utilised364

and a high number of training epochs to obtain good performance.365

6 Conclusion366

We have answered our two research questions posed in the introduction. We presented a methodology367

for learning and incorporating distributed representations of graphs into machine learning pipelines368

for drug pair scoring, answering the first question on how we may integrate distributed representations.369

We assessed the usefulness of the distributed representations of drugs with two parts. In the first part370

we show that a model only using the learned drug embeddings shows significantly better performance371

than random, suggesting the usefulness of the substructure pattern affinities between drugs in drug372

pair scoring. Subsequently for the second part, we augmented recent and state-of-the-art models from373

synergy, polypharmacy, and drug interaction type prediction to utilise our distibuted representations.374

Horizontal evaluation of these models shows that the incorporation of the distributed representations375

improves performance across different tasks and datasets.376
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Figure 2: Figure of the test ROCAUC performance of DeepSynergyDR (SP and WL3) across the
drug pair scoring datasets. Performance is recorded with respect to the embedding dimension chosen
in the learning of the distributed representations of graphs.

Figure 3: Figure of the test ROCAUC performance of DeepSynergyDR (SP and WL3) across the
drug pair scoring datasets. Performance is recorded with respect to the number of training epochs
chosen in the learning of the distributed representations of graphs.

A Ablation study over the two hyperparameters in learning distributed549

representations550

The introduction of the distributed representations comes with two hyperparameters which may affect551

their downstream performance when incorporated into the drug pair scoring models. These user552

specified hyperparameters are: (i) the dimensionality of drug embeddings and (ii) the number of553

epochs for which the skipgram model is trained. We study the effect of the embedding dimensionality554

on downstream performance by setting the number of training epochs to 1000 and varying the555

dimensionality from 8 to 1024 following powers of 2. For our downstream drug pair scoring model556

we use DeepSynergyDR whilst keeping the same hyperparameter settings as in our comparative557

analysis described in Section 4. Similarly for studying the effect of training epochs we set the558

dimensionality of the embeddings at 64 and observe the downstream performance of the drug pair559

scoring model (with its own training epochs set at 250 as before) across a range of values (from 200560

to 2000, in steps of 200). In both cases, we perform 5 repeated runs to obtain empirical confidence561

intervals in the plots shown in Figures 2 and 3.562

A.1 Dimensionality of distributed representations563

The plots in Figure 2 summarise the effects of changing the dimensionality of the drug embeddings on564

downstream drug pair scoring performance with the DeepSynergyDR model. Across the datasets as565

well as the substructure patterns we observe there is little change in the downstream performance as the566

dimensionality increases from 8 to 1024. Furthermore, the resulting downstream performance seems567

robust against these changes with small confidence regions as in the plots. Both observations suggest568

that the skipgram model is effective in producing consistent drug gram matrices and capturing salient569

distributive context information within the embeddings. A Pearson correlation coefficient of 0.331570

(p-value: 0.0097) and 0.584 (p-value: 9.873× 10−7) across substructure patterns on DrugCombDB571

and TwoSides respectively indicates a statistically significant upward correlation in performance for572

increased dimensionality. Conversely we find a downwards Pearson correlation coefficient of -0.573573

(p-value: 1.692× 10−6) in DrugComb. There is no statistically significant trend (p-value ≤ 0.05) in574

DrugbankDDI. Despite the observed upwards trends in performance DrugCombDB and TwoSides575

we do not recommend having a high embedding dimensionality as we expect an inevitable decrease576

in performance due to the curse of dimensionality. Hence, we suggest a more moderate choice on577

par with the dimensionality of other features in the drug feature set as the performance generally is578
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Table 3: A breakdown of the hyperparameters in each of the drug pair scoring models. Note that these
are the same for each of the augmented versions with distributed representations that we propose.

Model Hyperparameter Values

DeepSynergy
Drug encoder channels

Context encoder channels
Hidden layer channels

128
128

(32, 32, 32)

EPGCN-DS Drug encoder channels
Hidden layer channels

128
(32, 32)

DeepDrug Drug encoder channels
Hidden layer channels

(32, 32, 32, 32)
64

DeepDDS Context encoder channels
Hidden layer channels

(512, 256, 128)
(512, 128)

MatchMaker Drug encoder channels
Hidden layer channels

(32, 32)
(64, 32)

stable across the range of dimensionalities. The next ablation study studies how this varies under the579

number of training epochs.580

A.2 Number of training epochs for distributed representations581

The plots in Figure 3 summarises the effects of changing the number of epochs used in training the582

skipgram model for a set embedding dimensionality of 64. The plots report the downstream test583

ROCAUC performance achieved on the DeepSynergy model. Like before, we see that across datasets584

and induced substructure pattern the downstream performance is not affected strongly except when585

the number of training epochs is exceptionally low for obvious optimisation reasons. The small586

confidence bands indicate small variability between different runs. A Pearson correlation coefficient587

of 0.197 (p-value: 0.049) for DrugbankDDI and 0.473 (p-value: 6.597× 10−7) for TwoSides across588

substructure patterns indicates a light but statistically significant upwards trend in performance as589

the number of training epochs increases. DrugcombDB and DrugComb do not show any statistically590

significant correlations with regard to training epochs, but are generally stable irregardless. Hence we591

may suggest generally that more rigorous training regimes for learning the distributed representations592

are favourable in drug pair scoring tasks.593

B Hyperparameters for the drug pair scoring models594

Table 3 summarises the architectural hyperparameters of the drug pair scoring models utilised in this595

study. Note that these hyperparameters are the same for the DR augmented versions of these models596

as it only affects the input sizes to the drug encoders (or decoders in the case of EPGCN-DS-DR and597

DrugDrugDR).598

C Additional experiments599

In addition to our comparative analysis presented in the main part of the paper, two additional experi-600

ments were performed to study the effectiveness of distributed representations in more challenging601

drug pair scoring scenarios. The first involves constructing a more challenging train-test splits of602

the drugs and ensuring that a test set of triple observations contains drugs that the model has never603

seen in training. The second experiment involves studying the effect of distributional shifts in the604

substructure patterns caused by learning distributed representations over a different superset of drugs605

to the set found in the dataset and the effect of this on downstream performance. Due to time and606

hardware constraints this is performed on the MatchMaker and DeepDDS methods (and our DR607

augmented variants of these) which represent the most recent and state-of-the-art MLP and GNN608

methods respectively.609

15



Distributed representations of graphs for drug pair scoring

Table 4: Table of dataset details containing information summary statistics on the number of drugs
and drug pair context triples based on the train-test splitting procedure detailed in Appendix C.1.
|D| represents the number of unique drugs. |Y| represents the number of labeled drug-drug context
triples. |A| represents the number of unique drugs present across the training set of drug-drug context
triples. |B| represents the number of unique drugs present across the test set of drug-drug context
triples and are not seen at all during the training process. |Ytrain| and |Ytest| represent the number of
train and test drug-drug context triples created out of the protocol respectively.

Dataset |D| |A| |B| |Y| |Ytrain| |Ytest|
DrugCombDB 2956 2586 370 191,391 113,308 78,083
DrugComb 4146 3959 187 659,333 579,891 79,442
DrugbankDDI 1706 1298 408 383,496 237,515 146,101
TwoSides 644 604 40 499,582 440,718 58,864

Table 5: Table of results reporting the average AUROC on the hold out test set that includes drugs
that are never seen across any training pair of drugs. We report the average AUROC on the hold out
test set with standard deviations from 5 repeated runs. Bolded numbers indicate best performing
model for each dataset.

Model Year DrugCombDB DrugComb DrugbankDDI TwoSides

DeepDDS 2021 0.617 +- 0.010 0.573 +- 0.008 0.919 +- 0.003 0.698 +- 0.035
MatchMaker 2021 0.666 +- 0.015 0.580 +- 0.003 0.938 +- 0.004 0.729 +- 0.018
DROnly (WL k=3) Proposed 0.534 +- 0.011 0.517 +- 0.005 0.636 +- 0.011 0.626 +- 0.020
DROnly (SP) Proposed 0.542 +- 0.018 0.515 +- 0.010 0.612 +- 0.005 0.572 +- 0.007
DeepDDS-DR (WL k=3) Proposed 0.643 +- 0.008 0.563 +- 0.006 0.919 +- 0.006 0.705 +- 0.015
DeepDDS-DR (SP) Proposed 0.634 +- 0.015 0.569 +- 0.007 0.917 +- 0.004 0.708 +- 0.025
MatchMaker-DR (WL k=3) Proposed 0.666 +- 0.008 0.577 +- 0.005 0.941 +- 0.005 0.693 +- 0.014
MatchMaker-DR (SP) Proposed 0.668 +- 0.014 0.581 +- 0.004 0.938 +- 0.004 0.730 +- 0.024

C.1 Experiments predicting on unseen drugs610

To construct a train-test split which ensures that a test set of drug-pair context triple observations611

contains drugs that the model has never seen in training we performed the following steps:612

1. We precomputed a pairwise distance matrix for all of the drugs d1, d2, ..., dn ∈ D using the613

Tanimoto similarity T (di, dj). We used 1− T (di, dj) to get the equivalent distance measure.614

2. Split the drugs into two sets A and B using agglomerative clustering with a complete linkage615

criterion on our Tanimoto based distance matrix to split the drugs D. This ensures that drugs616

belonging to A are more similar to each other and dissimilar to those in B (and vice versa).617

3. Subsequently, for every pair of drugs (di, dj) that make up our observations in the triples we do618

the following.619

• If di and dj are in A, this is a training observation.620

• If di and dj are from different sets, this is a test observation.621

• If di and dj are in B, this is a test observation.622

4. This ensures that a drug pair scoring model never sees and instance of a drug from set B, which623

is also distinctly different from the training drugs in A by way of Tanimoto similarity.624

5. As an arbitrary choice we have chosen set A to be the larger set of drugs after the clustering.625

The effects of the above operations and the sizes of the different drug sets and the resulting train-test626

sets of triples is reported in Table 4. We trained and evaluate each of the models using the same627

experimental setup as in Section 4 of the main manuscript and report the results in Table 5. Firstly, we628

see that the task is indeed more challenging as the train-test splits ensures a given drug-pair scoring629

model never sees drugs from set B. This lowers the performance across methods as compared to630

random train-test splits in the main paper. The results also show that the distributed representations631

can help each of the methods perform better across the different drug pair scoring tasks in this more632

challenging setting. For both MatchMaker and DeepDDS the distributed representations improve633
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Table 6: Table of results with DR models utilising embeddings learned over the union of all drugs
across the 4 datasets. We report the average AUROC on the hold out test set with standard deviations
from 5 seeded random splits. Bolded numbers indicate best performing model for each dataset.

Model Year DrugCombDB DrugComb DrugbankDDI TwoSides

DeepDDS 2021 0.791 +- 0.005 0.697 +- 0.002 0.988 +- 0.001 0.944 +- 0.001
MatchMaker 2021 0.788 +- 0.002 0.720 +- 0.003 0.991 +- 0.001 0.928 +- 0.001
DROnly (WL k=3) Proposed 0.762 +- 0.002 0.652 +- 0.001 0.793 +- 0.002 0.909 +- 0.003
DROnly (SP) Proposed 0.712 +- 0.002 0.615 +- 0.004 0.708 +- 0.004 0.796 +- 0.008
DeepDDS-DR (WL k=3) Proposed 0.802 +- 0.002 0.700 +- 0.001 0.988 +- 0.001 0.944 +- 0.001
DeepDDS-DR (SP) Proposed 0.785 +- 0.002 0.693 +- 0.002 0.983 +- 0.006 0.944 +- 0.001
MatchMaker-DR (WL k=3) Proposed 0.783 +- 0.005 0.713 +- 0.004 0.991 +- 0.001 0.929 +- 0.001
MatchMaker-DR (SP) Proposed 0.784 +- 0.005 0.714 +- 0.004 0.991 +- 0.001 0.929 +- 0.002

performance or at least do not decrease the performance significantly. Increases in performance634

are particularly strong for DeepDDS in DrugCombDB and TwoSides. One observation to be made635

is that the DROnly performance may be a good indicator of potential gains to be made when the636

drug embeddings are incorporated into other models. The best performing method in general is637

MatchMaker-DR (WL or SP) which is a fortunate observation as it is considerably cheaper to train638

than DeepDDS. These results further suggest the positive impact the incorporation of distributed639

representations of graphs has on drug pair scoring models.640

C.2 Experiments with distributional shift in substructure patterns641

As distributed representations are necessarily learned in a transductive manner we believe that the642

most realistic approach of using the distributed representations in transfer settings would be to learn643

the embeddings of all the drugs in the DrugComb, DrugCombDB, DrugbankDDI and TwoSides644

datasets. We then performed the same evaluation with the same experimental setup as in the main645

part of the paper with the random train-test splits using these new embeddings and report the646

results in Table 6. The results indicate more variable positive results as compared to distributed647

representations learned on each subset of drugs separately. Specifically, we can see a stronger increase648

in performance for DeepDDS when using distributed representations in DrugCombDB than in Table649

2, and generally performance increases for DeepDDS across datasets. Decreases in performance as650

seen on MatchMaker in DrugCombDB and DrugComb are the same as in Table 2. The distributed651

representations do not hurt MatchMaker on DrugbankDDI and TwoSides. These results indicate that652

the neural drug pair scoring models in general are able to extract useful features for their end-to-end653

task from the incorporation of distributed representations.654

17


	1 Introduction
	2 Background and related work
	2.1 Unified framework for drug pair scoring
	2.2 Representations for drugs
	2.3 Neural models for drug pair scoring

	3 Study and Methods
	3.1 Distributed representations of graphs
	3.2 Arguing for the use of distributed representations of drugs in drug pair scoring pipelines
	3.3 Incorporating distributed representations of graphs into existing drug pair scoring pipelines

	4 Experimental setup
	5 Results and discussion
	6 Conclusion
	A Ablation study over the two hyperparameters in learning distributed representations
	A.1 Dimensionality of distributed representations
	A.2 Number of training epochs for distributed representations

	B Hyperparameters for the drug pair scoring models
	C Additional experiments
	C.1 Experiments predicting on unseen drugs
	C.2 Experiments with distributional shift in substructure patterns


