Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 SUPPLEMENTARY THEORETICAL ANALYSIS

In Section 4, we suppose the Transformer encoder fy is permutation equivariant. This result was
proved in Kossen et al. (2021), and for convenience, we repeat the properties, lemmas, and definitions
developed in this work with language adapted to few-shot and in-context learning. Kossen et al.
(2021) can be referenced for the corresponding proofs.

Definition 2. A function fg : S™ — S" is permutation-equivariant if for any permutation T :
[1,...,n] = [1,...,n] applied to the sequence elements of S™, we have for all i, f(S1,...,Sy)[i] =
f(Sﬂ.71(1), N Sﬂ.—l(n))[ﬂ'(i)].

Lemma 3. Any function of the form f¢(S1,...,5n) = (9(S1), ..., g(Sy)) for some g is permutation-
equivariant. These functions are denoted as ‘element-wise operations’, as they consist of the same
function applied to each of element of the sequence.

Lemma 4. The composition of permutation-equivariant functions is permutation-equivariant.
Lemma 5. Let W € R"*™ and S € R™2*". The function S — SW is permutation-equivariant.
Lemma 6. The function X s Att(SWC, SWK SWV) is permutation-equivariant.

Lemma 7. The following hold:

1. Multihead self-attention is permutation-equivariant.

2. If f and g are permutation-equivariant, then the function x — g(x) + f(x) is also
permutation-equivariant.

3. The residual connection in a Transformer encoder block is permutation-equivariant.

4. The Transformer encoder block itself is permutation-equivariant.

Property A.1.1. The Transformer encoder fy is permutation-equivariant.

A.2 ADDITIONAL TRAINING DETAILS

Training at Different Support Sizes. While pre-training on FS-Mol, CAMP used example sequence
sizes of {16, 32,64, 128, 256}. Similar to the training of language models or other sequence-based
methods that group examples within a batch to have a similar sequence length, we compose all
examples within a batch to have the same support size.

It is also the case that an initial example sequence of size |s| actually encodes |s| different example
sequences, each with sequence length |s| by changing the designation of support and query points
within that sequence. For instance, we could designate the first example in the sequence as the query
and all other points in the sequence as the support. Repeating this process for at every position in the
sequence—so that each example in the sequence is designated as the query exactly once—yields |s|
example sequences from an initial example sequence. We found this protocol to be imperative to
training stability and posit it serves as an implicit form of data augmentation, supplying the model
with additional training examples from a leave-one-out style strategy.

As we choose a batch size of 256, the “effective” batch size for each sequence length changes.
For example, let |s| = 16, then the effective batch size will contain 16 % 256 =4,096 example
sequences. Similarly, if |s| = 256, then the effective batch size will contain 256 * 256 =65,536
example sequences. We note that this augmentation is only performed during training. Future work
may explore also applying it during evaluation in a manner similar to noisy channel models (Brown
et al., 1993; Koehn et al., 2003; Min et al., 2021a) to improve test-time performance. Further, as we
train on a single A100 GPU and use the “base” variant ViT, GPU memory is not a limiting factor.

Nevertheless, without rebalancing batch sizes to depend on sequence length, our sequence-
augmentation protocol may lead to the model overfitting to smaller support sizes. For example,
suppose we instead set our batch size to 2 and train on a single dataset composed of 512 measure-
ments. Then we have 32 different 16-size example sequences by allocating each measurement in the
dataset to be used by only a single example sequence of size 16. Similarly, we would have 2 different

13

Under review as a conference paper at ICLR 2024

256-size example sequences by allocating each measurement in the dataset as belonging to only one
example sequence of size 256.

As the batch size is set to 2, the model would see 16 batches composed of 16-size initial example
sequences but only a single batch composed of a 256-size initial example sequence. Moreover, the
per-batch loss is normalized by the user-set batch size (i.e. 2 in this example) and gradient values are
clipped by their norm. Accordingly, the model’s parameters are updated at a ratio of 16:1 for 16-size
example sequences to 256-size example sequences. Training with respect to effectively 16x more
batches at the smaller sequence length may bias the model towards smaller sequence sizes and may
account for CAMP losing ground to other meta-learning baselines at large support sizes.

Training Hyperparameters. Our optimization protocol uses the Adam (Kingma & Ba, 2014)
optimizer with learning rate of 5 x 10~° with a linear warm-up schedule of 2,000 steps. Adam uses
the default 5, and 32 parameters set by Pytorch (Paszke et al., 2019). We follow the implementation
of Dosovitskiy et al. (2020) for the Transformer encoder, using the “base” variant and setting dropout
to 0.2 after a very coarse hyperparameter search over #warmup steps = {100, 2000} and dropout =
{0,0.05,0.1,0.2}. We use early stopping on the FS-Mol validation split, with a window-size of 10
and using the Validation cross entropy loss as our stopping criterion.

14

