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SUPPLEMENTARY MATERIAL FOR ICLR 2024

A Related Work

In our work, we draw from prior literature from causality as well as from multi-armed
bandits. We will briefly cover these two in the following section.

A.1 Multi-armed bandits:

The stochastic Multi-Armed Bandit (MAB) setup is a standard model for studying the
exploration-exploitation trade-off in sequential decision making problems (Kuleshov & Pre-
cup, 2014; Bubeck et al., 2012). Such trade-offs arise in several modern applications, such as
ad placement, website optimization, recommendation systems, and packet routing (Bounef-
fouf et al., 2020) and are thus a central part of the theory relating to online learning (Slivkins
et al., 2019; Lattimore & Szepesvári, 2020).

Traditional performance measures for MAB algorithms have focused on cumulative regret
(Auer et al., 2002; Agrawal & Goyal, 2012; Auer & Ortner, 2010), as well as best-arm
identification under the fixed confidence (Even-Dar et al., 2006) and fixed budget (Audibert
et al., 2010) settings. In some settings however, one may be interested in optimizing the
exploration phase. Another variant of regret that has been considered is the mini-max
regret (Azar et al., 2017) which focuses on the worst case over all possible environments.
However, as a metric for pure exploration in MABs, simple regret has been proposed as
a natural performance criterion (Bubeck et al., 2009). In this setting, we allow for some
period of exploration, after which the learner has to choose an arm. The simple regret is
then evaluated as the difference between the average reward of the best arm and the average
reward of the learner’s recommendation. We focus on simple regret in this work.

Each of these performance metrics come with their own lower bounds (Orabona et al., 2012;
Osband & Van Roy, 2016; Bubeck et al., 2012), which are naturally the benchmarks for

any algorithms proposed. The lower bound on simple regret is known to be O(
√

n/T ) for a
stochastic multi-armed bandit problem with n arms. This bound is obtained from the lower
bound for pure exploration provided by Mannor & Tsitsiklis (2004).

Note that, a naive approach to the causal bandit problem which simply treats an intervention
on each of exponentially many combinations of the nodes as an arm, may thus incur an
exponential regret. We now review some of the literature from Causality, which helps in
addressing the causal aspects of the problem.

A.2 Causality:

There are three broad threads in causality related to our work. These are causal graph
learning, causal testing and causal bandits. We address relevant works in these areas below.

Learning Causal Graphs: Tian & Pearl (2002) laid the grounds for analysing functional
functional constraints among the distributions of observed variables in a causal Bayesian
networks. Similarly, Kang & Tian (2006) derive such functional constraints over interven-
tional distributions. These two seminal works lead to a great interest in the problem of
learning causal graphs.

There have been several studies that provide algorithms to recover the causal graphs from
the conditional independence relations in observational data (Pearl & Verma, 1995; Spirtes
et al., 2000; Ali et al., 2005; Zhang, 2008). Subsequent work considered the setting when
both observational and interventional data are available (Eberhardt et al., 2005; Hauser &
Bühlmann, 2014). Kocaoglu et al. (2017a) extend the causal graph learning problem to a
budgeted setting. Shanmugam et al. (2015) uses interventions on sets of small size to learn
the causal structure. Kocaoglu et al. (2017b) provide an efficient randomized algorithm to
learn a causal graph with confounding variables.
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Testing over Bayesian networks: Given sample access to an unknown Bayesian Net-
work (Canonne et al., 2017), or Ising model (Daskalakis et al., 2019), one may wish to decide
whether an unknown model is equal to a known fixed model, and analyse the sample com-
plexity of this hypothesis test. Acharya et al. (2018) address this question by introducing
the concept of covering interventions. These covering interventions allow us to understand
the behaviour of multiple interventions (that are covered) simultaneously. We utilize the
concept of covering interventions from Acharya et al. (2018) towards our question of finding
the optimal intervention in a causal bandit. The area of reinforcement learning over causal
bandits has also been studied in Zhang (2020).

Apart from these areas in causality, our primary problem of causal bandits have been ad-
dressed by Lattimore et al. (2016); Maiti et al. (2022); Sen et al. (2017a); Lu et al. (2020);
Nair et al. (2021); Sen et al. (2017b); Lu et al. (2021; 2022); Varici et al. (2022); Xiong &
Chen (2023). We detail these in the main Related Works Section 1.2.

B Algorithms in Detail

In this section, we outline the three algorithms that are used as helpers in ConvExplore.
The first that we outline now, Algorithm 2, would be used to estimate the transition prob-
abilities out of context 0 on taking various actions.

Algorithm 2 Estimate Transition Probabilities

1: Input: Time budget T ′

2: For time t← {1, . . . , T ′

2
} do

3: Perform do() at context 0. Transition to i ∈ [k]
4: Count number of times context i ∈ [k] is observed
5: Update q̂0j = P

{
X0

j = 1
}

end
6: Using q̂0j s, estimate m0 and the set Amo . Estimate P̂(a,i) = P[i | a] ∀a ∈ Ac

m0
and i ∈ [k]

7: For intervention a ∈ Amo at context 0

8: For time t← {1, . . . T ′

2|Am0
|}

9: Perform a ∈ Amo and transition to some i ∈ [k]
10: Count number of times context i is observed

end
end

11: Estimate P̂(a,i) = P[i | a] for each a ∈ Am0 and contexts i ∈ [k]

12: return Estimated matrix P̂ =
[
P̂(a,i)

]
i∈[k],a∈A0

aIn the first half of time T ′/2, we perform do() at State 0.
bIf A0 := do() ∪ {X0

j = 0, X0
j = 1}j∈[n], we can find m0 ≤ |A0|/2 such that A0 = Am0 ∪ Ac

m0

where the interventions in Ac
m0

are observed with probability more than 1/m0 and |Am0 | = m0.
cFor the interventions a ∈ Ac

m0
, we can estimate P̂(a,i) = P[i | a] ∀i ∈ [k] in the first half.

dIn the second half, we may intervene on the atomic interventions in Am0 for time T/(2m0)
each.

eUsing observations of a ∈ Am0 , we estimate P̂(a,i) = P[i | a] ∀a ∈ Am0 and i ∈ [k].

Next we outline two algorithms that estimate parameters for the other contexts i ∈ [k]. To
estimate the causal parameters at all contexts i ∈ [k], we use Algorithm 3. Then we will use
Algorithm 4 to estimate the rewards on various interventions at the intermediate contexts.

For estimating the causal parameters, we use a variant of SRM-ALG, which estimates the
causal observational threshold mi, under the setting of unobserved confounders and identi-
fiability. We note that even in the presence of general causal graphs with hidden variables,
SRM-ALG is able to efficiently estimate the rewards of all the arms simultaneously using
the observational arm pulls. As mentioned in Section 3 of Maiti et al. (2022), the challenge
is to identify the optimal number of arms with bad estimates during the initial phase of
the algorithm, such that these arms can be intervened upon at the later phase. The qi(x)
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parameter is the minimum conditional probability of X = x, given different configurations
of the parents of X. Once we have these estimates, the remaining algorithm can proceed as
per usual.

Algorithm 3 Estimate Causal Parameters

1: Input: Frequency vector f̃ and time budget T ′

2: Update f(a)← 1
2

(
f̃(a) + 1

|A0|

)
∀a ∈ A0

3: For intervention a ∈ A0

4: For time t← {1, . . . T ′ · f(a)}
5: Perform a ∈ A0 and transition to some i ∈ [k].
6: At context i, perform do() and observe Xi

js

7: Update q̂ij = minParents(Xi
j)
P
{
Xi

j = 1 | Parents(Xi
j)
}

end
end

8: Using q̂ijs, estimate m̂i values for each context i ∈ [k]

9: return M̂ , the diagonal matrix of the m̂i values

aWe choose actions a ∈ A0 such that we visit the contexts i ∈ [k] approximately equally, in
expectation.

bOn each visit to a context i ∈ [k], we perform do(). From these we can estimate qji values,
which may be used to estimate mi values.

cBased on these do() interventions at each context i ∈ [k], we get estimates of mi and the
intervention sets Ami such that (I) |Ami | = mi and (II) interventions in Ami are observed with
probability less than 1/mi.

Note that in Algorithm 4 there are two phases. In the first phase, we carry out estimates
for interventions that have high probability of being observed on the do() intervention. In
the second phase, we specifically perform interventions which have not been observed often
enough. This is similar to Algorithm 2 where we carry out the two phases of interventions
at context 0.
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Algorithm 4 Estimate Rewards

1: Input: Optimal frequency f∗, min-max frequency f̃ , and time budget T ′

2: Set f(a)← 1
3

(
f∗(a) + f̃(a) + 1

|A0|

)
∀a ∈ A0

3: For intervention a ∈ A0 at context 0
4: For time t← {1, . . . f(a) · T ′/2}
5: Perform a ∈ A0. Transition to some i ∈ [k]. Perform do() at context i ∈ [k].
6: Observe variables Xi

j ’s and rewards Ri.
end

end
7: Find the set Ami ∀i ∈ [k] using qij estimates.

8: Estimate mean reward R̂(b,i) = E [Ri | b] for each b ∈ Ac
mi

9: For intervention a ∈ A0 at context 0
10: For time t← {1, . . . f(a) · T ′/2}
11: Perform a ∈ A0 and transition to some i ∈ [k].
12: Iteratively perform b ∈ Ami . Observe Ri

end
end

13: Estimate mean reward R̂(b,i) = E [Ri | b] for each b ∈ Ami

14: return R̂ =
[
R̂(b,i)

]
i∈[k],b∈Ai

aWe perform the interventions in the ratio of f∗ which is the optimum given the mi values at
the various contexts.

bIn the first half we estimate rewards for the interventions Ac
mi

in the first half, and the inter-
ventions in Ami in the second half.

cNote that we round robin over the interventions b ∈ Ami across visits in the second half of the
algorithm.
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C Proof of Theorem 1

In this section, we restate Theorem 1 and provide its proof, along with all the lemmas that
are used in the proof.

Theorem. Given number of rounds T ≥ T0 and λ as in equation (3), ConvExplore
achieves regret

RegretT ∈ O

(√
max

{
λ

T
,
m0

Tp+

}
log (NT )

)

C.1 Proof of Theorem 1
To prove the theorem, we analyze the algorithm’s execution as falling under either good
event or bad event, and tackle the regret under each.

Definition 1. We define five events, E1 to E5 (see Table 3), the intersection of which we call
as good event, E, i.e., good event E :=

⋂
i∈[5] Ei. Furthermore, we define the bad event F :=

Ec.

Table 3: Table enumerating Good Events

Event
Condition Explanation

E1
k∑

i=1

|P̂(a,i) − P(a,i)| ≤
p+
3
∀a ∈ A0

for every intervention a ∈ A0, the empirical
estimate of transition probability in each of
Algorithms 2, 3 and 4 is good, up to an

absolute factor of p+/3

E2 m̂0 ∈ [ 2
3
m0, 2m0]

our estimate for causal parameter m0 for state
0 is relatively good in Algorithm 2.

E3 m̂i ∈ [ 2
3
mi, 2mi] ∀i ∈ [k]

our estimate for causal parameter mi for each
context i ∈ [k] is relatively good in Algorithm

3.

E4

∑
i∈[k]|P̂(a,i) − P(a,i)| ≤ ζ,

∀a ∈ A0

The error in estimated transition probability in
Algorithm 2 sums to less than ζ where

ζ :=
√

150m0
Tp+

log
(
3T
k

)
E5

∣∣∣E [Ri | a]− R̂(a,i)

∣∣∣ ≤ η̂i ∀i ∈
[k], a ∈ Ai

The error in reward estimates in Algorithm 4 is
bounded3 by η̂i where

η̂i =
√

27m̂i

T (P̂⊤f̂∗)i
log (2TN)

Considering the estimates P̂ and M̂ , along with frequency vector2 f̂∗ (computed in Step 5),
we define random variable

λ̂ :=

∥∥∥∥P̂ M̂1/2
(
P̂⊤f̂∗

)◦− 1
2

∥∥∥∥2
∞

.

Note that λ̂ is a surrogate for λ. We will show that under the good event, λ̂ is close to λ
(Lemma 3).

Recall that RegretT := E[ε(π)] and here the expectation is with respect to the policy π
computed by the algorithm. We can further consider the expected sub-optimality of the

algorithm and the quality of the estimates (in particular, P̂ , M̂ and λ̂) under good event
(E).

Based on the estimates returned at Step 5 of ConvExplore, either the good event holds,
or we have the bad event. We obtain the regret guarantee by first bounding sub-optimality
of policies computed under the good event, and then bound the probability of the bad event.

3Recall that f̂∗ denotes the optimal frequency vector computed in Step 5 of ConvExplore.

Also, (P̂⊤f̂∗)i denotes the ith component of the vector P⊤f∗.
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Lemma 1. For the optimal policy π∗, under the good event (E), we have∑
i∈[k] P(π∗(0),i)E [Ri | π∗(i)]−

∑
P̂(π∗(0),i)R̂(π∗(i),i) ≤ O

(√
max{λ̂,m0/p+}/T log (NT )

)
Proof. We add and subtract

∑
i∈[k] P(π∗(0),i)R̂(π∗(i),i) and reduce the expression on the left

to:
∑

i∈[k] P(π∗(0),i)(E [Ri | π∗(i)]− R̂(π∗(i),i)) +
∑

i∈[k] R̂(π∗(i),i)(P(π∗(0),i) − P̂(π∗(0),i)).

We have: (a) R̂(π∗(i),i) ≤ 1 (as rewards are bounded) (b)
∑

i∈[k]|P̂(π∗(0),i) − P(π∗(0),i)| ≤

ζ (by E4) and (c)
∣∣∣E [Ri | π∗(i)]− R̂(π∗(i),i)

∣∣∣ ≤ η̂i (by E5). The above expres-

sion is thus bounded above by
∑

i∈[k] P(π∗(0),i)η̂i + ζ Furthermore, it follows from

E1 (See Corollary 2 in Section D.1 in the supplementary material) that (component-

wise) P ≤ 3
2 P̂ . Hence, the above-mentioned expression is bounded above by

3
2

∑
i∈[k] P̂(π∗(0),i)η̂i + ζ. Note that the definition of λ̂ ensures

∑
i∈[k] P̂(π∗(0),i)η̂i =

O(
√
λ̂/T log(NT )). Further, ζ = O(

√
m0/(Tp+) log(T/k)). Hence,

∑
i∈[k] P(π∗(0),i)ηi+ζ =

O(
√
max{λ̂,m0/p+}/T log (NT )), which establishes the lemma.

We now state another similar lemma for any policy π̂ computed under good event.

Lemma 2. Let π̂ be a policy computed by ConvExplore under the good event (E). Then,∑
i∈[k] P̂(π̂(0),i)R̂(π̂(i),i) −

∑
i∈[k] P(π̂(0),i)E [Ri | π̂(i)] ≤ O

(√
max{λ̂,m0/p+}/T log (NT )

)
Proof. We can add and subtract

∑
i∈[k] P(π̂(0),i)R̂(π̂(i),i) to the expression on the left to get:∑

i∈[k] R̂(π̂(i),i)(P̂(π̂(0),i) − P(π̂(0),i)) +
∑

i∈[k] P(π̂(0),i)(R̂(π̂(i),i) − E [Ri | π̂(i)]). Analogous to

Lemma 1, one can show that this expression is bounded above by ζ +
∑

i∈[k]
3
2 P̂(π̂(0),i)η̂i =

O(
√

max{λ̂,m0/p+}/T log (NT )).

We can also bound λ̂ to within a constant factor of λ.

Lemma 3. Under the good event E, we have λ̂ ≤ 8λ.

Proof. Event E1 ensures that 2
3P ≤ P̂ ≤ 4

3P (see Corollary 2 in Appendix section D.1).

In addition, note that event E3 gives us M̂ ≤ 2M . From these observations we obtain the

desired bound: λ̂ = P̂ M̂0.5(P̂⊤f̂∗)◦−0.5 ≤ P̂ M̂0.5(P̂⊤f∗)◦−0.5 ≤ 8PM0.5(P⊤f∗)◦−0.5 = 8λ;

here, the first inequality follows from the fact that f̂∗ is the minimizer of the λ̂ expression,

and for the second inequality, we substitute the appropriate bounds of P̂ and M̂ .

Recall that:

π∗(i) = argmax
a∈Ai

E [Ri | a] (4)

π∗(0) = argmax
b∈A0

(

k∑
i=1

E [Ri | π∗(i)] · P{i | b}) (5)

We will now define ε(π), denoting the sub-optimality of a policy π, as the difference

between the expected rewards of π∗ and π. i.e. ε(π) =
∑k

i=1 E [Ri | π∗(i)] · P{i |
π∗(0)} −

∑k
i=1 E [Ri | π(i)] · P{i | π(0)}.

Corollary 1. For any π̂ computed by ConvExplore under good event E, ε(π̂) =

O
(√

max{λ,m0/p+}/T log (NT )
)

Proof. Since ConvExplore selects the optimal policy (maximizing rewards with re-

spect to the estimates),
∑

P̂(π∗(0),i)R̂(π∗(i),i) ≤
∑

P̂(π̂(0),i)R̂(π̂(i),i). Combining this

18



Under review as a conference paper at ICLR 2024

with Lemmas 1 and 2, we get
∑

i∈[k] P(π∗(0),i)E [Ri | π∗(i)] −
∑

i∈[k] P(π̂(0),i)E [Ri | π̂(i)] =
O(
√
max{λ̂,m0/p+}/T log (NT )) under good event. The left-hand-side of this expression is

equal to ε(π̂). Using Lemma 3, we get that ε(π̂) = O
(√

max{λ,m0/p+}/T log (NT )
)
.

Corollary 1 shows that under the good event, the (true) expected reward of π∗ and π̂ are

within O
(√

max{λ,m0/p+}/T log (NT )
)
of each other. In Lemma 10 (see Section D.5 in

the supplementary material) we will show 4 that P{
⋃

i∈[5] ¬Ei} = P {F} ≤ 5k/T whenever
T ≥ T0

5.

The above-mentioned bounds together establish Theorem 1 (i.e., bound the regret of Con-
vExplore): RegretT = E[ε(π)] = E[ε(π̂) | E]P {E} + E[ε(π′) | F ]P {F}. Since the
rewards are bounded between 0 and 1, we have ε(π′) ≤ 1, for all policies π′. But
P{E} ≤ 1 giving us RegretT ≤ E[ε(π) | E] + P{F}. Therefore, Corollary 1 along with

Lemma 10, leads to guarantee RegretT = O
(√

max{λ,m0/p+}/T log (NT )
)
+ 5k/T =

O
(√

max{λ,m0/p+}/T log (NT )
)

D Bounding the Probability of the Bad Event

Recall that the good event corresponds to
⋂

i∈5 Ei (see Definition 1). Write F :=

¬
(⋂

i∈5 Ei

)
and note that, for the regret analysis, we require an upper bound on P{F} =

P
{
¬(
⋂

i∈5 Ei)
}
= P

{⋃
i∈5 ¬Ei

}
. Towards this, in this section we address P{¬Ei}, for each

of the events E1-E5, and then apply the union bound.

D.1 Bound on ¬E1

The next lemma upper bounds the probability of ¬E1.

Lemma 4. In each of Algorithms 2, 3 and 4 and for all interventions a ∈ A0, we have

P{¬E1} = P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > p+

3

}
< k

T whenever T ≥ max
{

1620N
p3
+

, 2025N
p2
+

log
(
9NT
k

)}
.

Proof. On performing any intervention a ∈ A0 at context 0, the intermediate context that
we visit follows a multinomial distribution. Hence, we can apply Devroye’s inequality (for
multinomial distributions) to obtain a concentration guarantee; we state the inequality next
in our notation.

Lemma 5 (Restatement of Lemma 3 in Devroye (1983)). Let Ta be the number of times
intervention a ∈ A0 is performed in context 0. Then, for any η > 0 and any Ta ≥ 20s

η2 , we

have P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
−Taη

2

25

)
. Here, s is the support of the distribution

(i.e., the number of contexts that can be reached from a with a nonzero probability).

Note that each intervention a ∈ A0 is performed at least Ta = T
9N times across Algorithms

2, 3 and 4. Setting η = p+

3 and Ta = T
9N above, we get that for each intervention a ∈ A0,

in each subroutine, P
{∑k

i=1|P(a,i) − P̂(a,i)| > p+

3

}
≤ 3 exp

(
− Tp2

+

9N ·9·25

)
= 3 exp

(
− Tp2

+

2025N

)
.

Note that to apply the inequality, we require T
9N ≥ 180s

p2
+
, i.e., T ≥ 1620sN

p2
+

. In the current

context, the support size s is at most 1
p+

; this follows from the fact that on performing any

intervention a ∈ A0, at most 1
p+

contexts can have P(a,i) ≥ p+. Hence, the requirement

reduces to T ≥ 1620N
p3
+

.

4Recall that, by definition, F = Ec.
5T0 as defined in Lemma 10 in Section D.5 in the supplementary material.
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Next, we union bound the probability over the N interventions (at state 0) and the
three subroutines, to obtain that, for any intervention a ∈ A0 and in any subroutine,

P
{∑k

i=1|P(a,i) − P̂(a,i)| > p+

3

}
≤ 3N · 3 exp

(
− Tp2

+

2025N

)
= 9N exp

(
− Tp2

+

2025N

)
.

Note that 9N exp
(
− Tp2

+

2025N

)
≤ k

T , for any T ≥ 2025N
p2
+

log
(
9NT
k

)
. Hence, for any T ≥

max
{

1620N
p3
+

, 2025N
p2
+

log
(
9NT
k

)}
, we have P[¬E1] ≤ 9N exp

(
− Tp2

+

2025N

)
≤ k

T . This completes

the proof of the lemma.

We state below a corollary which provides a multiplicative bound on P̂ with respect to P ,
complementing the additive form of E1.

Corollary 2. Under event E1, we have 2
3P(a,i) ≤ P̂(a,i) ≤ 4

3P(a,i), for all interventions
a ∈ A0 and contexts i ∈ [k].

Proof. Event E1 ensures that
k∑

i=1

|P̂(a,i) − P(a,i)| ≤ p+

3 , for each interventions a ∈ A0 and

contexts i ∈ [k]. This, in particular, implies that for each intervention a ∈ A0 and context

i ∈ [k] the following inequality holds: |P̂(a,i) − P(a,i)| ≤ p+

3 . Note that if P(a,i) = 0,
then the algorithm will never observe context i with intervention a, i.e., in such a case

P̂(a,i) = P(a,i) = 0. For the nonzero P(a,i)s, recall that (by definition), p+ = min{P(a,i) |
P(a,i) > 0}. Therefore, for any nonzero P(a,i), the above-mentioned inequality gives us

|P̂(a,i) − P(a,i)| ≤ 1
3P(a,i). Equivalently, P̂(a,i) ≤ 4

3P(a,i) and P̂(a,i) ≥ 2
3P(a,i). Therefore, for

all P(a,i)s the corollary holds.

D.2 Bound on Events ¬E2 and ¬E3

In this section, we bound the probabilities that our estimated m̂is are far away from the
true causal parameters mis.

Lemma 6. For any T ≥ 144m0 log
(
TN
k

)
, in Algorithm 2, P[¬E2] =

P
{
m̂0 /∈ [ 23m0, 2m0]

}
≤ k

T .

Proof. We allocate time T
3 to Algorithm 2. Lemma 8 of Lattimore et al. (2016) ensures

that, for any δ ∈ (0, 1) and T
3 ≥ 48m0 log(

N
δ ), we have m̂0 ∈ [ 23m0, 2m0], with probability

at least (1− δ). Setting δ = k
T , we get the required probability bound.

Next, we address P{¬E3 | E1}.

Lemma 7. For any T ≥ 648max(mi)N
p+

log (2NT ), in each of Algorithms 3 and 4, we have

P
{
∃i ∈ [k], m̂i /∈ [ 23mi, 2mi]

∣∣ E1

}
≤ k

T .

Proof. Fix any reachable context i ∈ [k]. Corresponding to such a context, there exists an

intervention α ∈ A0 such that P(α,i) ≥ p+. Event E1 (Corollary 2) implies that P̂(α,i) ≥
2
3P(α,i) ≥ 2

3p+.

Now, write Ti to denote the number of times context i ∈ [k] is visited by the Algorithms 3

and 4. Recall that in the subroutines we estimate P̂(α,i) by counting the number of times
context i was reached and simultaneously intervention α observed. Furthermore, note that
we allocate to every intervention at least T

9N time (See Steps 2 in both the subroutines).

In particular, intervention α was necessarily observed T
9N times. Therefore, P̂(a,i) ≤ Ti

( T
9N )

.

This inequality leads to a useful lower bound: Ti ≥ T
9N P(a,i) ≥ T 2p+

27N .
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We now restate Lemma 8 from Lattimore et al. (2016): Let Ti be the number of times

context i ∈ [k] is observed. Then, P
{
m̂i /∈ [ 23mi, 2mi]

}
≤ 2N exp

(
− Ti

48mi

)
.

Since Ti ≥ 2Tp+

27N , this guarantee of Lattimore et al. (2016) corresponds to

P
{
m̂i /∈ [ 23mi, 2mi]

}
≤ 2N exp

(
− Tp+

648Nmi

)
≤ 2N exp

(
− Tp+

648N max(mi)

)
.

Union bounding over all contexts i ∈ [k] and the two Algorithms 3
and 4, we obtain P

{
∃i ∈ [k] in Algorithms 3, 4 with m̂i /∈ [ 23mi, 2mi]

}
≤

2Nk exp
(
− Tp+

648N max(mi)

)
.Finally, substituting the value of T ≥

648max(mi)N
p+

log (2NT ), gives us P
{
∃i ∈ [k] in Algorithms 3, 4 with m̂i /∈ [ 23mi, 2mi]

}
≤

2Nk exp
(
− p+

648N max(mi)
·
[
648max(mi)N

p+
log (2NT )

])
= k

T . This completes the proof.

D.3 Bound on E4:

The following lemma provides an upper bound for P{¬E4 | E2}.

Lemma 8. Let ζ :=
√

150m0

Tp+
log
(
3T
k

)
. Then, P{¬E4 | E2} =

P

{ ∑
i∈[k]

∣∣∣P(a,i) − P̂(a,i)

∣∣∣ > ζ
∣∣E2

}
≤ k

T .

Proof. As in the proof of Lemma 4, we will use Devroye’s inequality. Write Ta to denote
the number of times intervention a ∈ A0 is observed (in state 0) in Algorithm 2. For any

η ∈ (0, 1) and with Ta ≥ 20s
η2 , Devroye’s inequality gives us P

{
k∑

i=1

|P̂(a,i) − P(a,i)| > η

}
≤

3 exp
(
−Taη

2

25

)
. Here, s is the size of the support of the multinomial distribution.

We first show that Ta is sufficiently large, for each intervention a ∈ A0. Recall that we
allocate time T

3 to Algorithm 2. Furthermore, we observe each intervention in state 0,

at least T
3m̂0

times, either as part of the do-nothing intervention or explicitly in Step 9 of

Algorithm 2. Now, event E2 ensures that m̂0 ∈ [ 23m0, 2m0]. Hence, each intervention a ∈ A0

is observed Ta ≥ T
3m̂0

≥ T
3·2m0

= T
6m0

times.

Substituting this inequality for Ta in the above-mentioned probability bound, we obtain

P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > η

}
≤ 3 exp

(
− Tη2

150m0

)
when T ≥ 120sm0

η2 . As observed in Lemma 4,

the support size s is at most 1
p+

. Therefore, the requirement on T reduces to T ≥ 120m0

η2p+
.

Setting η =
√

150m0

Tp+
log
(
3T
k

)
gives us

P

{
k∑

i=1

|P̂(a,i) − P(a,i)| >

√
150m0

Tp+
log

(
3T

k

)}
≤ 3 exp

 −T

150m0

[√
150m0

Tp+
log

(
3T

k

)]2
≤ k

T
.

Therefore P
{

k∑
i=1

|P̂(a,i) − P(a,i)| > η

}
≤ k

T , and this probability bound requires T ≥ 120m0

η2p+
.

That is, η ≥
√

120m0

Tp+
. This inequality is satisfied by our choice of η. Hence, the lemma

stands proved.

D.4 Bound on ¬E5

The next lemma bounds P{¬E5 | E1, E3}.
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Lemma 9. Let η̂i =
√

27m̂i

T (P̂⊤f̂∗)i
log (2TN). Then, P{¬E5 | E3, E1} ≤ k

T . In other words:

P
{
∃i ∈ [k] and a ∈ Ai such that

∣∣∣E [Ri | a]− R̂(a,i)

∣∣∣ > η̂i | E3, E1

}
≤ k

T
.

Proof. For intermediate contexts i ∈ [k], we denote the realization of the causal parameters

mi and the transition probabilities P in Algorithm 4, as m̃i and P̃ , respectively. The

estimates in the previous subroutines are denoted by m̂i and P̂ .

Event E1 gives us P(a,i) ∈ [ 34 P̂(a,i),
3
2 P̂(a,i)]and P̃(a,i) ∈ [ 23P(a,i),

4
3P(a,i)]. Hence, the estimates

across the subroutines are close enough: P̃(a,i) ∈ [ 12 P̂(a,i), 2P̂(a,i)]. Similarly, event E3 gives

us m̃i ∈ [ 13m̂i, 3m̂i].

Write T̃i to denote the number of times context i ∈ [k] was visited in Algorithm 4. For

all contexts i ∈ [k], we first establish a useful lower bound on T̃i, under events E1 and

E3. The relevant observation here is that the estimate P̃(α,i) was computed in Algorithm
4 by counting the number of times context i was visited with intervention α ∈ A0 (at
state 0). By construction, in Algorithm 4 each intervention α ∈ A0 was performed at least
f̂∗
α

3
T
3 times. Furthermore, given that P̃(α,i) was computed via the visitation count, we get

that context i is visited with intervention α ∈ A0 at least P̃(α,i)
T f̂∗

α

9 times. Therefore,

T̃i ≥
∑

α∈A0
P̃(α,i)

T f̂∗
α

9 = T
9 (P̃

⊤f̂∗)i ≥ T
18 (P̂

⊤f̂∗)i. Here, the last inequality follows from

the above-mentioned proximity between P̂ and P̃ .

Now, note that, at each context i ∈ [k], Algorithm 4 (by construction) observes every

intervention a ∈ Ai at least
T̃i

m̃i
times. Write T̃(a,i) to denote the number of times intervention

a ∈ Ai is observed in this subroutine. Hence,

T̃(a,i) ≥
T̃i

m̃i
≥ 1

m̃i

T

18
(P̂⊤f̂∗)i ≥

1

3m̂i

T

18
(P̂⊤f̂∗)i (6)

For each context i ∈ [k] and intervention a ∈ Ai, define the event ¬E5(a, i) as |E [Ri | a]−
R̂(a,i)| > η̂i. Hoeffding’s inequality gives us P {¬E5(a, i) | E1, E3} ≤ 2 exp

(
−2T̃(a,i)η̂

2
i

)
≤

2 exp
(
−T

(P̂⊤f̂∗)iη̂
2
i

27m̂i

)
. The last inequality is obtained by substituting Equation 6.

Recall that η̂i =
√

27m̂i

T (P̂⊤f̂∗)i
log (2TN). Hence, the previous inequality corresponds to

P {¬E5(a, i) | E1, E3} ≤ 2 exp

(
−T (P̂⊤f̂∗)i

27m̂i
·
[√

27m̂i

T (P̂⊤f̂∗)i
log (2TN)

]2)
= 1

TN .

Note that ¬E5 =
⋃

i∈[k]

⋃
a∈Ai

E5(a, i). Taking a union bound over all contexts i ∈ [k] and

interventions a ∈ Ai, we obtain P{¬E5 | E1, E3} ≤ kN
TN = k

T . This completes the proof.

D.5 Bound on bad event (F):

Write T0 := O
(

N max(mi)
p3
+

log (2NT )
)
= Õ

(
N max(mi)

p3
+

)
.

Lemma 10. P{F} ≤ 5k
T for any T > T0.

Proof. We summarize the statements of Lemmas 4, 6, 7, 8 and 9 as follows. When T ≥
T0 where T0 = max

{
1620N
p3
+

, 2025N
p2
+

log
(
9NT
k

)
, 144m0 log

(
Tn
k

)
, 864max(mi)N

p+
log (2nT )

}
=

O
(

N max(mi)
p3
+

log (2NT )
)
, we obtain P{F} = P

{[⋃
i∈[5] ¬Ei

]}
≤ P{¬E1} + P{¬E2} +

P{¬E3 | E1}+ P{¬E4 | E2}+ P{¬E5 | E3, E1} ≤ 5k
T .

22



Under review as a conference paper at ICLR 2024

E Nature of the Optimization Problem

Proposition E.1. Let f̃ = argmax
fq. vectorf

min
contexts [k]

P̂⊤f . Then, finding f̃ is an LP

Proof. We rewrite the above max
fq. vectorf

min
i∈[k]

(·) as a simpler program:

max
f

z

subject to P̂⊤
1 f ≥ z

. . .

P̂⊤
N f ≥ z

f · 1 = 1

f ⪰ 0

Where N = |A0|. This is equivalent to the standard form of a linear program, and hence is
an LP.

Lemma 11. min
fq. vectorf

max
interventions A0

P̂ M̂
1
2

[
P̂⊤f

]◦− 1
2

is a convex optimization problem

Proof. First we write the min-max in terms of a single minimization. First let us use the

shorthand A := P̂ M̂
1
2 and {A1, . . . , AN} (where N := |A0|) denote the rows of the matrix

OPT : min
f

z

subject to A1 ·
[
P̂⊤f

]◦− 1
2 ≤ z

. . .

AN ·
[
P̂⊤f

]◦− 1
2 ≤ z (7)

f · 1 = 1

f ⪰ 0

Proposition E.2. For any a ∈ R+, the function g(x) := ax− 1
2 is convex in x.

Proof. We observe that the second derivative is positive.

Proposition E.3. The constraint equations of OPT are convex in f

Proof. Consider the first constraint of the problem. We can simplify this to get∑
i∈[k]

A1i√
P̂ (∗,i)⊤f

.

Note that the ith term in the summand (i.e, A1i√
P̂ (∗,i)⊤f

) is of the form f(x) = c(v⊤x)−
1
2 for

some c ∈ R+ and v ∈ RN
+ . Let x1, x2 ∈ RN be any two vectors, and scalar λ ∈ [0, 1]. We

wish to show that f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

We have f(λx1 + (1− λ)x2) = c(v⊤(λx1 + (1− λ)x2))
− 1

2 = c(λv⊤x1 + (1− λ)v⊤x2)
− 1

2

But ax− 1
2 is convex as per Proposition E.2. Therefore c(λv⊤x1 + (1 − λ)v⊤x2)

− 1
2 ≤

λc(v⊤x1)
− 1

2 + (1− λ)c(v⊤x2)
− 1

2 = λf(x1) + (1− λ)f(x2), as required.

Since A1i√
P̂ (∗,i)⊤f

is convex, the sum
∑

i∈[k]
A1i√

P̂ (∗,i)⊤f
is convex as well. Similarly, all the

other constraints are also convex.
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Since the constraints are convex in f and the objective is linear, OPT is convex.

F Lower Bounds

This section establishes Theorem 2. We will identify a collection of instances for causal
bandits with intermediate feedback and show that, for any given algorithm A, there exists

an instance in this collection for which A’s regret is Ω

(√
λ
T

)
.

First we describe the collection of instances and then provide the proof.

For any integer k > 1, consider n = (k−1) causal variables at each context i ∈ {0, 1, . . . , k}.
The transition matrix P is set to be deterministic. Specifically, for each i ∈ [n], we have
P{i | do(X0

i = 1)} = 1. For all other interventions at context 0, we transition to context
k with probability 1. Such a transition matrix can be achieved by setting q0i = 0 for all
i ∈ [k − 1]. As before, the total number of interventions N := 2n+ 1 = 2k − 1.

Now consider a family of Nk + 1 instances6 {F0} ∪
{
F(a,i)

}
i∈[k],a∈Ai

. Here, F0 and each

F(a,i) is an instance of a causal bandit with intermediate feedback with the above-mentioned
transition probabilities. The instances differ in the rewards at the intermediate contexts.
In particular, in instance F0, we set the reward distributions such that E[Ri | a] = 1

2 for
all contexts i ∈ [k] and interventions a ∈ Ai. For each i ∈ [k] and a ∈ Ai, instance F(a,i)

differs from F0 only at context i and for intervention a. Specifically, by construction, we
will have E[Ri | a] = 1

2 + β, for a parameter β > 0. The expected rewards under all other
interventions will be 1/2, the same as in F0.

Given any algorithm A, we will consider the execution of A over all the instances in the
family. The execution of algorithm A over each instance induces a trace, which may include

the realized transition probabilities P̂ , the realized variable probabilities q̂ij for i ∈ [k] and

j ∈ [n] and the corresponding m̂is, and the realized rewards R̂. Each of such realizations
(random variables) has a corresponding distribution (over many possible runs of the algo-
rithm). We call the measures corresponding to these random variables under the instances
F0 and F(a,i) as P0 and P(a,i), respectively.

F.1 Proof of Theorem 2

For any algorithm A and given time budget T , we first consider the A’s execution over
instance F0. As mentioned previously, P0 denotes the trace distribution induced by the
algorithm for F0. In particular, write ri to denote the expected number of times context i
is visited, ri := EP0

[state i is visited] /T .

Recall that mi := max{j | qi(j) < 1
j } and Ami := {do(Xi

(j) = 1) | qi(j) < 1
j }, where the

Bernoulli probabilities of the variables at context i are sorted to satisfy qi(1) ≤ qi(2) ≤ · · · ≤
qi(n). Note that these definitions do not depend on the algorithm at hand. The algorithm,

however, may choose to perform different interventions different number of times. Write
N(a,i) to denote the expected (under P0) number of times intervention a is performed by
the algorithm at context i. Furthermore, let random variable T(a,i) denote the number of
times intervention a is observed at context i. Hence, EP0

[T(a,i)] is the expected number of

times intervention a is observed7.

Using the expected values for algorithm A and instance F0, we define a subset of Ami
as

follows: Ji :=
{
a ∈ Ami

: N(a,i) ≤ 2Tri
mi

}
. The following proposition shows that the size

of Ji is sufficiently large.

6Note the change in notation. We used the term Fi,j instead of F(a,i) in the main paper. This
has been amended in a later version of the main paper.

7Note that a can be observed while performing the do-nothing intervention. Also, the expected
value N(a,i) accounts for the number of times a is explicitly performed and not just observed.
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Proposition F.1. The set Ji is non-empty. In particular,

mi/2 ≤ |Ji| ≤ mi.

Proof. The upper bound on the size of subset Ji follows directly from its definition: since
Ji ⊆ Imi

we have |Ji| ≤ |Ami
| = mi.

For the lower bound on the size of Ji, note that Tri is the expected number of times context
i is visited by the algorithm. Therefore,∑

a∈Ami

N(a,i) ≤ Tri (8)

Furthermore, by definition, for each intervention b ∈ Ami
\Ji we have N(b,i) ≥ 2Tri

mi
. Hence,

assuming |Ami
\ Ji| > mi

2 would contradict inequality (8). This observation implies that
|Ami \ Ji| ≤ mi

2 and, hence, |Ji| ≥ mi

2 . This completes the proof.

Recall that T(a,i) denotes the number of times intervention a is observed at context i. The
following proposition bounds E[T(a,i)] for each intervention a ∈ Ji.

Proposition F.2. For every intervention a ∈ Ji

EP0
[T(a,i)] ≤

3Tri
mi

.

Proof. Any intervention a ∈ Ji ⊆ Ami
may be observed either when it is explicitly per-

formed by the algorithm or as a random realization (under some other intervention, including
do-nothing). Since a ∈ Ami

, the probability that a is observed as part of some other in-
tervention is at most 1

mi
. Therefore, the expected number of times that a is observed by

the algorithm—without explicitly performing it—is at most Tri
mi

; 7 recall that the expected
number of times context i is visited is equal to Tri.

For any intervention a ∈ Ji, by definition, the expected number of times a is performed
N(a,i) ≤ 2Tri

mi
. Therefore, the proposition follows:

E[T(a,i)] ≤
Tri
mi

+N(a,i) ≤
3Tri
mi

.

We now state two known results for KL divergence.

Bretagnolle-Huber Inequality (Theorem 14.2 in Lattimore & Szepesvári (2020))
: Let P and P ′ be any two measures on the same measurable space. Let E be any event in
the sample space with complement Ec. Then,

PP{E}+ PP′{Ec} ≥ 1

2
exp (−KL(P,P ′)) . (9)

Bound on KL-Divergence with number of observations (Adaptation of Equation
17 in Lemma B1 from Auer et al. (1995)): Let P0 and P(a,i) be any two measures
with differing expected rewards (for exactly the intervention a at context i) by an amount
β. Then,

KL(P0,P(a,i)) ≤ 6β2 EP0 [T(a,i)] (10)

Using this bound on KL divergence and Proposition F.2, we have, for all contexts i ∈ [k]
and interventions a ∈ Ji:

KL(P0,P(a,i)) ≤ 6β2 · 3Tri
mi

= 18
Triβ

2

mi
(11)

7Here, we use the fact that the realization of a is independent of the visitation of context i.
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Substituting this in the Bretagnolle-Huber Inequality, we obtain, for any event E in the
sample space along with all contexts i ∈ [k] and all interventions a ∈ Ji:

PP(a,i)
{E}+ PP0

{Ec} ≥ 1

2
exp

(
−18

Triβ
2

mi

)
(12)

We now define events to lower bound the probability that Algorithm A returns a sub-optimal
policy. In particular, write π̂ to denote the policy returned by algorithm A. Note that π̂ is
a random variable.

For any ℓ ∈ [k] and any intervention b, write G1(b, ℓ) to denote the event that—under the
returned policy π̂—intervention b is not chosen at context ℓ, i.e., G1(b, ℓ) := {π̂(ℓ) ̸= b}.
Also, let G2(ℓ) denote the event that policy π̂ does not induce a transition to ℓ from context
0, i.e., G2(ℓ) := {π̂(0) ̸= ℓ}. Furthermore, write G(b, ℓ) := G1(b, ℓ) ∪ G2(ℓ). Note that the
complement Gc(b, ℓ) = Gc

1(b, ℓ) ∩Gc
2(ℓ) = {π̂(ℓ) = b} ∩ {π̂(0) = ℓ}.

Considering measure P0, we note that for each context ℓ ∈ [k] there exists an intervention
αℓ ∈ Jℓ with the property that PP0

{Gc
1(αℓ, ℓ)} = PP0

{π̂(ℓ) = αℓ} ≤ 1
|Jℓ| . This follows from

the fact that
∑

a∈Jℓ
PP0

{π̂(ℓ) = a} ≤ 1. Therefore, for each context ℓ ∈ [k] there exists an

intervention αℓ such that PP0
{Gc(αℓ, ℓ)} ≤ 1

|Jℓ| .

This bound and inequality 12 imply that for all contexts ℓ ∈ [k] there exists an intervention
αℓ that satisfies

PP(αℓ,ℓ)
{G(αℓ, ℓ)} ≥ 1

2
exp

(
−18

Trℓβ
2

mℓ

)
− 1

|Jℓ|
(13)

We will set

β = min

1

3
,

√∑
ℓ∈[k] mℓ

18T

 (14)

Therefore β takes value either

√∑
ℓ∈[k] mℓ

18T or 1
3 . We will address these over two separate

cases.

Case 1: β =

√∑
ℓ∈[k] mℓ

18T .

We wish to substitute this β value in Equation 13. Towards this, we will state a proposition.

Proposition F.3. There exists a context s ∈ [k] such that√
ms

18Trs
≥

√∑
ℓ∈[k] mℓ

18T

Proof. First, we note the following claim considering all vectors ρ = {ρ1, . . . , ρk} in the
probability simplex ∆.

Claim F.1. For any given set of integers m1,m2, . . . ,mk, we have

min
(ρ1,ρ2,...,ρk)∈∆

(
max
ℓ∈[k]

mℓ

ρℓ

)
≥
∑
ℓ∈[k]

mℓ

Proof. Assume, towards a contradiction, that for all ℓ ∈ [k], we have mℓ

ρℓ
<
∑

ℓ∈[k] mℓ. Then,

ρℓ >
mℓ∑

ℓ∈[k] mℓ
, for all ℓ ∈ [k]. Therefore,

∑
ℓ∈[k] ρℓ >

∑
ℓ∈[k]

mℓ∑
ℓ∈[k] mℓ

= 1. However, this is

a contradiction as
∑

ℓ∈[k] ρℓ = 1.

An immediate consequence of Claim F.1 is that

min
(r1,r2,...,rk)∈∆

(
max
ℓ∈[k]

√
mℓ

18Trℓ

)
≥

√∑
ℓ∈[k] mℓ

18T
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.

Therefore, irrespective of how ris are chosen, there always exists a context s ∈ [k] such that√
ms

18Trs
≥
√∑

ℓ∈[k] mℓ

18T .

For such a context s ∈ [k] that satisfies Proposition F.3, we note that, ms

18Trs
≥ β2 or

18Trsβ
2

ms
≤ 1.

Let us now restate Equation 13 for such a context s. There exists a context s ∈ [k] and an
intervention αs that satisfies

PP(αs,s)
{G(αs, s)} ≥ 1

2
exp

(
−18

Trsβ
2

ms

)
− 1

|Js|
≥ 1

2e
− 1

|Js|
(15)

Note that the last inequality lower bounds the to probability of selecting a non-optimal
policy when the algorithm A is executed on instance Fαs,s. Furthermore, in instance Fαs,s,
for any non-optimal policy π̂ we have ε(π̂) =

(
1
2 + β

)
− 1

2 = β. Therefore, we can lower
bound A’s regret over instance Fαs,s as follows:

RegretT = E[ε(π̂)] = PP(αs,s)
{G(αs, s)} · E[Regret | G(αs, s)] + (16)

PP(αs,s)
{Gc(αs, s)} · E[Regret | Gc(αs, s)]

≥
[
1

2e
− 1

|Js|

]
β + PP(αs,s)

{Gc(αs, s)} · 0

=

[
1

2e
− 1

|Js|

]
β (17)

Note that we can construct the instances to ensure that mℓ ≥ 8, for all contexts ℓ, and,

hence,
(

1
2e − 1

|Ji|

)
= Ω(1) (see Proposition F.1). Therefore Equation 17 gives us:

RegretT = Ω(β) = Ω

√∑ℓ∈[k] mℓ

T

 (18)

Case 2 We now consider the case when β = 1
3 . In such a case,

√∑
ℓ∈[k] mℓ

18T > 1
3 .

We showed in Proposition F.3 that there exists a context s ∈ [k] such that
√

ms

18Trs
≥√∑

ℓ∈[k] mℓ

18T . Combining the two statements, there exists a context s such that
√

ms

18Trs
≥ 1

3 .

We now restate Inequality 13 for such a context s ∈ [k]:

PP(αs,s)
{G(αs, s)} ≥ 1

2
exp

(
−9β2

)
− 1

|Js|
=

1

2e
− 1

|Js|

Following the exact same procedure as in Case 1, we can derive that RegretT ≥
[

1
2e − 1

|Js|

]
β.

We saw in Case 1 that it is possible to construct instances such that
[

1
2e − 1

|Js|

]
= Ω(1).

Therefore the following holds for Case 2 also:

RegretT = Ω(β) = Ω

√∑ℓ∈[k] mℓ

T

 (19)

Inequalities 18 and 19 imply that there exists a context s and an intervention αs such that,
under instance F(αs,s), algorithm A’s regret satisfies

RegretT = Ω

√∑ℓ∈[k] mℓ

T

 (20)
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We complete the proof of Theorem 2 by showing that in the current context λ =
∑

ℓ∈[k] mℓ.

Proposition F.4. For the chosen transition matrix

λ := min
fq. vectorf

∥∥∥PM1/2
(
P⊤f

)◦− 1
2

∥∥∥2
∞

=
∑
ℓ∈[k]

mℓ

Proof. Recall that all the instances, F0 and F(a,i)s, have the same (deterministic) transition
matrix P . Also, parameter λ is computed via Equation 3.

Consider any frequency vector f over the interventions {1, . . . , N}. From the chosen tran-
sition matrix, we have the following:

P =


1 0 . . . 0
0 1 . . . 0

. . .
0 0 . . . 1

. . .
0 0 . . . 1

 PM
1
2 =



√
m1 0 . . . 0
0

√
m2 . . . 0

. . .
0 0 . . .

√
mk

. . .
0 0 . . .

√
mk

 P⊤f =


f1
f2
. . .
fk−1

fk + . . .+ fN


From here, we can compute the following:

PM1/2
(
P⊤f

)◦− 1
2 =

[√
m1

f1
, . . . ,

√
mk−1

fk−1
,

√
mk

fk + . . .+ fN
, . . . ,

√
mk

fk + . . .+ fN

]⊤
That is, for all ℓ ∈ [k − 1], the ℓth component of the vector PM1/2

(
P⊤f

)◦− 1
2 is equal to√

mi

fi
. All the remaining components are

√
mk

fk+...+fN
.

Write ρℓ := fℓ for all ℓ ∈ [k − 1] and ρk =
∑N

j=k fj . Since f is a frequency vector,

(ρ1, . . . ρk) ∈ ∆. In addition,

PM1/2
(
P⊤f

)◦− 1
2 =

[√
m1

ρ1
, . . . ,

√
mk−1

ρk−1
,

√
mk

ρk
, . . . ,

√
mk

ρk

]⊤
Therefore, by definition, λ = min(ρ1,...,ρk)∈∆

(
maxℓ∈[k]

mℓ

ρℓ

)
. Now, using a complementary

form of Claim F.1 we obtain λ =
∑

ℓ∈[k] mℓ. The proposition stands proved.

Finally, substituting Proposition F.4 into Equation 20, we obtain that there exists an in-
stance F(αs,s) for which algorithm A’s regret is lower bounded as follows

RegretT = Ω

(√
λ

T

)
. (21)

This completes the proof of Theorem 2.

F.2 Proof of Inequality (10)

For completeness, we provide a proof of inequality (10).

Lemma 12. KL(P0,P(a,i)) ≤ 6β2
i EP0

[T(a,i)]

Proof of Inequality (10). This proof is based on lemma B1 in Auer et al. (1995). We define
a couple of notations for this proof. Let Rt−1 indicate the filtration (of rewards and other
observations) up to time t− 1. and Rt indicate the reward at time t for this proof.

KL(P0,P(a,i)) = KL
[
PP0

(RT,RT−1, . . . ,R1) ∥ PP(a,i)
(RT,RT−1, . . . ,R1)

]
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We now state (without proof) a useful lemma for bounding the KL divergence between
random variables over a number of observations.

Chain Rule for entropy (Theorem 2.5.1 in Cover & Thomas (2006)): Let
X1, . . . , XT be random variables drawn according to P1, . . . , PT . Then

H(X1, X2, . . . , XT ) =

T∑
i=1

H(Xi | Xi−1, Xi−2, . . . , X1)

where H(·) is the entropy associated with the random variables.

Using the chain rule for entropy

KL(P0,P(a,i)) =

T∑
t=1

KL
[
PP0(Rt | Rt−1) ∥ PP(a,i)

(Rt | Rt−1)
]

Let at be the intervention chosen by the Algorithm A at time t. Then:

=

T∑
t=1

PP0
{at ̸= a | Rt−1}

(
1

2
∥ 1

2

)
+ PP0

{at = a | Rt−1}KL

(
1

2
∥ 1

2
+ βi

)
Since KL

(
1
2 ∥ 1

2

)
= 0, we get:

=

T∑
t=1

PP0
{at = a | Rt−1}KL

(
1

2
∥ 1

2
+ βi

)

= KL

(
1

2
∥ 1

2
+ βi

) T∑
t=1

PP0
{at = a | Rt−1}

= KL

(
1

2
∥ 1

2
+ βi

)
EP0

[T(a,i)]

Claim F.2. KL
(
1
2 ∥ 1

2 + βi

)
= − 1

2 log2(1− 4β2
i ) ≤ 6β2

i

Proof.

KL

(
1

2
∥ 1

2
+ βi

)
=

1

2
log2

[ 1
2

1
2 + βi

]
+ (1− 1

2
) log2

[
(1− 1

2 )

(1− 1
2 − βi)

]
=

1

2
log2

[
1

1 + 2βi

]
+

1

2
log2

[
1

1− 2βi

]
=

1

2
log2

[
1

1− 4β2
i

]
= −1

2
log2

[
1− 4β2

i

]
= − 1

2 ln(2)
ln
[
1− 4β2

i

]
≤ 4β2

i

2 ln(2)
< 6β2

i

where the last inequality is obtained from the Taylor series expansion of the log.

It follows that: KL(P0,P1) ≤ 6β2
i EP0

[T(a,i)].
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