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A Proofs1

In this section, we build on the assumption – that we empirically showed in the paper – that the2

gradient is noisy and demonstrate, through a Fourier perspective, that FORGrad method effectively3

recovers the true gradient. We then propose a convergence bound for SmoothGrad, showing that it4

also recovers the true gradient at the cost of multiple samplings, and provide convergence bounds as5

well.6

As a recall, we still consider a predictor f(·) that maps datum from an input space X ⊆ RW×H

(with W,H being positive integers) to an output space Y ⊆ R. Moreover, F and F−1 still denote the
Discrete Fourier Transform (DFT) on X and its inverse. We assume that f is L-lipschitz. We recall
that a function f is said L-lipschitz f ∈ Lip(X ) if and only if ∀(x, z) ∈ X 2, ||f(x) − f(z)|| ≤
L||x− z||, with L ∈ R. Finally, we define Kσ ∈ {0, 1}W×H as the binary mask parametrized by σ
that we used to filter high frequency, where each element Kσ

(i,j) is determined as follows:

Kσ
(i,j) =

{
1, if |i− W

2 | ≤ σ and |j − H
2 | ≤ σ,

0, otherwise.

Definition A.1. Noisy gradient. Let f be differentiable and ∇xf(x) denote the gradient of f7

in x. We consider that we only have access to ∇xf̂(x), a noisy estimator of ∇xf(x) such that8

∇xf̂(x) = ∇xf(x) + ε with ε ∈ RW×H . We denote ∥·∥F as the Frobenius norm.9

So far, we do not consider this noise to be random, and we aim at bounding the leftover noise after10

the application of our method. In particular, we’ll notice that at the level σ∗, it only depends on the11

value of σ∗ and is always upper bounded by the norm of the original noise.12

Proposition A.2. Let ∇f̂ = ∇f + ε as the noisy gradient of f , with ε ∈ RW×H . For σ∗ =13

inf
{
σ : ∥F(∇f)⊙ K̄σ∥2F = 0

}
, we have14

∥F−1(F(∇f̂)⊙Kσ∗
)−∇f∥2F = ∥F−1(F(ε)⊙Kσ∗

)∥2F ≤ ∥ε∥2F , (1)

where ⊙ is the Hadamard product, Kσ∗
a binary mask for low-pass filtering of frequency σ, and15

K̄σ∗
is the opposite mask.16
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Proof.

∥F−1(F(∇f̂ ⊙Kσ))−∇f∥2F = ∥F−1(F(∇f̂ ⊙Kσ))−F−1(F(∇f))∥2F (2)

= ∥F−1(F(∇f + ε⊙Kσ))−F−1(F(∇f))∥2F (3)

= ∥F−1(F(∇f ⊙Kσ) + F(ε⊙Kσ))−F−1(F(∇f))∥2F
(4)

= ∥F−1(F(∇f ⊙Kσ) + F(ε⊙Kσ)−F(∇f))∥2F (5)

= ∥F−1(F(ε⊙Kσ)−F(∇f ⊙ K̄σ))∥2F (6)
(7)

Then by selecting σ∗ =∈ f
{
σ : ∥F(∇f ⊙ K̄σ)−F(∇f)∥2F = 0

}
, we have that17

∥F−1(F(ε⊙Kσ)−F(∇f ⊙ K̄σ))∥2F = ∥F−1(F(ε)⊙Kσ)∥2F (8)

≤ ∥ε∥2F (9)
(10)

18

Now, by adding an assumption of randomness on the noise ε, we can deduct the distribution of the19

ratio of the two last members of the previous proposition, and deduce an order of scale of the norm of20

the remaining noise after filtration, compared to its original norm.21

Proposition A.3. Let the noise ε ∈ RW×H follow a normal distribution ε ∼ N (0, ς)⊗WH . Then22

the norm of the Fourier spectra of the noise ∥F(ε)∥2F ∼ Γ(k = 2WH, θ = ς2WH) and filtered23

noise ∥F(ε)⊙Kσ∥2F ∼ Γ(k = 8σ2, θ = 4ς2σ2) follows Gamma distributions.24

Therefore, the ratio of the two distributions R = ∥F(ε)∥2F /∥F(ε) ⊙Kσ∥2F follows a Beta prime25

distribution R ∼ β′ (2WH, 4σ2, 1, WH
4σ2

)
.26

Proof. As defined previously, ε(i,j) ∼ N (0, ς). It is well known that the Fourier transform of that27

random matrix follows a complex normal distribution, or equivalently the real and imaginary random28

variables of the Fourier transform are i.i.d normally distributed, as RF(ε)(i,j) ∼ N (0, ς
√
WH/2)29

and IF(ε)(i,j) ∼ N (0, ς
√

WH/2). Therefore the scaled norm follows a χ2 distribution.30

∥F(ε)∥2F
ς
√

WH/2
∼ χ2

2WH and equivalently,
∥F(ε)⊙Kσ∥2F

ς
√
WH/2

∼ χ2
8σ2 . (11)

Note that χ2 distributions are a specific case of Gamma distributions, and can therefore be noted as31

follows ∥F(ε)∥2F ∼ Γ(k = WH, θ = ς2WH) and filtered noise ∥F(ε)⊙Kσ∥2F ∼ Γ(k = 4σ2, θ =32

4ς2σ2). Finally, let R = ∥F(ε)∥2F /∥F(ε)⊙Kσ∥2F . Since both random variables follow a Gamma33

distribution, their ratio is a Beta prime distribution of parameters R ∼ β′ (WH, 4σ2, 1, WH
4σ2

)
.34

The results remain valid in the input space by Parseval’s Theorem [1], up to a constant factor.35

Proposition A.4. We recall that SmoothGrad is defined as SG = 1
n

∑n
i=1 ∇xf(x + δi) with36

∀i=1,...,nδi ∈ N (0, ς)⊗WH . ∇xf(x+ δi) is a random matrix and therefore SG is. Assuming our37

predictor f ∈ L-Lip(X ) is L-Lipschitz. We denote ∥·∥2 as the spectral norm, and define the variance38

as V(SG) = max
(
∥E((SG− ESG) · (SG− ESG)T )∥2, ∥E((SG− ESG)T · (SG− ESG))∥2

)
.39

We then have, for t > 0,40

P (∥SG− ESG∥2 ≥ t) ≤ (W +H) · exp
(

−t2n2/2

V(SG) + 2Lt/3

)
. (12)

Proof. We first demonstrate the bounded difference property41

∀i=1···n∥∇xf(x+ δi)−E∇xf(x+ δi)∥2 ≤ ∥∇xf(x+ δi)∥2 + ∥E∇xf(x+ δi)∥2 ≤ 2L. (13)

Finally, the result follows by application of the Matrix Bernstein Inequality [2].42
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B Different measures of complexity43

To corroborate the results in S3.1 and S3.3 computing the high-frequency content from Kolmogorov44

image compression metric, we reproduce those experiments using the Laplace2-operator. We45

additionally show the evolution of high-frequency content in VGG16 and ViT using both metrics. On46

all the plots, we observe a similar trend between the metrics, confirming that :47

• Gradient-based and prediction-based methods have a different signature in the Fourier48

spectrum (see Figure 1)49

• On both convolutional models (ResNet50 and VGG) we observe more high frequencies50

when the models contain an MaxPooling operation or strided convolution instead of Aver-51

agePooling (see Figures 2, 3, 3, top curves)52

• On both convolutional models, training the model doesn’t alleviate the high frequency53

content (see Figures 2, 3, 3, bottom curves). However, we observe a different behaviour on54

ViT, suggesting that a different mechanism is responsible for the high-frequency content in55

this kind of architectures (see Figures 5, 6).56

B.1 For the methods57

Figure 1: High-frequency power in attribution methods. High-frequency power present in the
importance maps derived from different attribution methods, computed using Laplacian2 operator.
Prediction-based methods produce less high-frequency content than gradient-based methods.
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B.2 For the models58

Figure 2: Evolution of the high-frequency content in Resnet50. We compute the high-frequency
content along the depth of a ResNet50 varying either the weights or the pooling, using Laplace2-
operator. The top curve illustrates the impact of different poolings, with MaxPooling and stride
shown in dark blue and AveragePooling in light blue. The bottom curve represents the trained model,
indicated by the blue curve, while the untrained model is represented by the black curve. Each point
on the graph corresponds to a layer within the model.
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Figure 3: Evolution of the high-frequency content in VGG16 with Kolmogorov complexity. We
compute the high-frequency content along the depth of a VGG16 varying either the weights or the
pooling, using Kolmogorov image compression. The top curve illustrates the impact of different
poolings, with MaxPooling shown in dark red and AveragePooling in pink. The bottom curve
represents the trained model, indicated by the red curve, while the untrained model is represented by
the black curve. Each point on the graph corresponds to a layer within the model.
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Figure 4: Evolution of the high-frequency content in VGG16 with Laplace complexity. We
compute the high-frequency content along the depth of a VGG16 varying either the weights or the
pooling, using Laplace2-operator. The top curve illustrates the impact of different poolings, with
MaxPooling shown in dark blue and AveragePooling in light blue. The bottom curve represents the
trained model, indicated by the blue curve, while the untrained model is represented by the black
curve. Each point on the graph corresponds to a layer within the model.
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Figure 5: Evolution of the high-frequency content in ViT with Kolmogorov complexity. We
compute the high-frequency content along the depth of a ViT varying the weights, using Kolmogorov
image compression. The curve represents the trained model, indicated by the red curve, while the
untrained model is represented by the black curve. Each point on the graph corresponds to a layer
within the model. We show the labels representing the end of a block to give an idea of the evolution
of the complexity inside a block.
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Figure 6: Evolution of the high-frequency content in ViT with Laplace complexity. We compute
the high-frequency content along the depth of a ViT varying the weights, using Laplace2-operator.
The curve represents the trained model, indicated by the blue curve, while the untrained model is
represented by the black curve. Each point on the graph corresponds to a layer within the model. We
show the labels representing the end of a block to give an idea of the evolution of the complexity
inside a block.
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C Control conditions for the evidence of noise in the gradient59

We add several control conditions on the experiment S3.2 to show the difference between an informa-60

tive and uninformative gradient. We propose three different approaches :61

• σ = 0 ≡ ∇σ
xf(x) = 0 . In that case, we measure ||f(x+ ϵ)− f(x)||262

• ∇C
xf(x) = ρ(∇xf(x)) where ρ represents the permutation operator. Here we destroy the63

spatial structure, and therefore the information represented by high and low frequencies.64

• ∇C
xf(x) ∼ U(min(∇xf(x)),max(∇xf(x))). Finally, we measure the information65

carried by some random noise, following a uniform distribution.66

In the three cases, we compute the L2 norm between the first-order approximation of the model and67

something else containing no relevant information. We therefore expect a resulting curve with a68

higher estimation error than the others, containing some relevant information. We observe that is69

always the case for ResNet and ViT. This observation is a bit less clear for some radius value in the70

two first conditions on ConvNeXT but is present in the third condition.
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Figure 7: Control condition σ = 0. We plot the residual of the first-order approximation of the
model, that is f(x+ ε) ≈ f(x) + ε∇xf(x), with the gradient ∇f filtered at different bandwidths
σ. Additionally, we plot the control condition σ = 0 in pink, representing the absence of information
from the gradient.
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Figure 8: Control condition ∇C
xf(x) = ρ(∇xf(x)). We plot the residual of the first-order

approximation of the model, that is f(x+ ε) ≈ f(x) + ε∇xf(x), with the gradient ∇f filtered at
different bandwidths σ. Additionally, we plot the control condition ∇C

xf(x) = ρ(∇xf(x)) in pink,
representing some unstructured information from the gradient.
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Figure 9: Control condition ∇C
xf(x) ∼ U(min(∇xf(x)),max(∇xf(x))). We plot the resid-

ual of the first-order approximation of the model, that is f(x + ε) ≈ f(x) + ε∇xf(x), with
the gradient ∇f filtered at different bandwidths σ. Additionally, we plot the control condition
∇C

xf(x) ∼ U(min(∇xf(x)),max(∇xf(x))) in pink, representing some random information
from the gradient.
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