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Abstract

We present a Transformer-based framework for
Constraint Satisfaction Problems (CSPs). CSPs
find use in many applications and thus acceler-
ating their solution with machine learning is of
wide interest. Most existing approaches rely on su-
pervised learning from feasible solutions or rein-
forcement learning, paradigms that require either
feasible solutions to these NP-Complete CSPs
or large training budgets and a complex expert-
designed reward signal. To address these chal-
lenges, we propose ConsFormer, a self-supervised
framework that leverages a Transformer as a so-
lution refiner. ConsFormer constructs a solution
to a CSP iteratively in a process that mimics lo-
cal search. Instead of using feasible solutions as
labeled data, we devise differentiable approxima-
tions to the discrete constraints of a CSP to guide
model training. Our model is trained to improve
random assignments for a single step but is de-
ployed iteratively at test time, circumventing the
bottlenecks of supervised and reinforcement learn-
ing. Experiments on Sudoku, Graph Coloring,
Nurse Rostering, and MAXCUT demonstrate that
our method can tackle out-of-distribution CSPs
simply through additional iterations.

1. Introduction

Constraint Satisfaction Problems (CSPs) are fundamental
to many real-world applications such as scheduling, plan-
ning, and resource management. However, solving CSPs
efficiently in practice remains a significant challenge due to
their NP-complete nature. Traditional solvers based on con-
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straint propagation and backtracking search can be compu-
tationally expensive, especially for large problem instances.
This has motivated the exploration of learning-based ap-
proaches as fast neural heuristics for CSP solving (Dai et al.,
2017; Selsam et al., 2019; Bengio et al., 2021).

Most existing learning-based methods use either supervised
or reinforcement learning (RL). Supervised approaches train
models on datasets of CSP instances with feasible solutions
as labels, a paradigm that is laden with drawbacks. First,
generating labels for CSP instances requires solving them,
which makes it challenging to generate the large quanti-
ties of data often needed to train a model that generalizes
well. This is especially true for hard instances that tradi-
tional solvers struggle to solve quickly. Second, CSPs often
have multiple feasible solutions (Russell & Norvig, 2016),
making it difficult to apply supervised learning unambigu-
ously when there are many possible labels for the same
input. RL-based methods, on the other hand, search for so-
lution strategies through black-box optimization of a reward
function, often requiring extensive computing resources.
Designing reward functions that capture solution feasibility
across different constraints is difficult yet crucial to success
in RL (Arulkumaran et al., 2017). These limitations hinder
the generalization and scalability of learned heuristics.

To address these challenges, we introduce ConsFormer, a
Transformer-based self-supervised framework for solving
CSPs. Inspired by Constraint-based Local Search (Hen-
tenryck & Michel, 2009), ConsFormer learns to iteratively
refine variable assignments through a self-supervised train-
ing paradigm that approximates discrete constraints with
continuous differentiable penalty functions. Our model is
trained to improve an initial random assignment in a single
refinement step, but is applied iteratively at test time. While
a single step may not yield a feasible solution, a sufficiently
large number of improving iterations (on average) does.
Examples of ConsFormer solutions are shown in Figure 1.

Transformers provide a natural fit for this approach due to
their strong generalization capabilities and their ability to
process structured data efficiently (Lewkowycz et al., 2022;
Achiam et al., 2023). They are particularly effective at
learning with tokenized inputs, making them well-suited
for combinatorial problems formulated in the Constraint
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Figure 1. ConsFormer models construct solutions for Sudoku (Top) and Graph Coloring (Bottom). The models are trained with a single
step from randomly initialized assignment. At test time, a ConsFormer model is invoked iteratively until a feasible solution is found or an

iteration limit is met.

Programming paradigm (Rossi et al., 2006). Furthermore,
recurrence has been shown to enhance the generalization
abilities of Transformers (McLeish et al., 2024; Fan et al.,
2025), reinforcing their suitability for our setting.

Our iterative solution improvement strategy enables Cons-
Former to generalize beyond its training distribution, ef-
fectively solving out-of-distribution (OOD) CSP instances
simply by performing more refinement steps. We evaluate
ConsFormer on a diverse set of CSP problems, including
Sudoku, Graph Coloring, and Nurse Scheduling, demon-
strating its ability to generalize across problem domains.
Our implementation is available on GitHub'.

The following high-level findings summarize our work:

— Self-supervised learning can be applied to solve
CSPs. We show that a loss function that combines
differentiable penalties for the violation of the discrete
constraints of a CSP can guide model training without
the need for labels.

Decision variable positional information is key for
Transformer learning. We show that by represent-
ing variable positional information as absolute and
relational positional encodings in the Transformer, we
enable solution improvement in variable space.

ConsFormer can generalize when trained to per-
form solution improvement. While trained to perform
a single improvement step, ConsFormer generalizes to

'nttps://github.com/khalil-research/
ConsFormer

out-of-distribution instances and achieves state-of-the-
art results for generalizing to OOD tasks in Sudoku,
outperforming all existing neural methods.

2. Background
2.1. Constraint Satisfaction and Programming

A Constraint Satisfaction Problem (CSP) is a mathematical
model used to represent problems that involve finding val-
ues for a set of variables subject to (possibly discrete and
non-linear) constraints. Formally, a CSP is defined as a tu-
ple (X, D,C), where X = {x1,2,...,2,} is a finite set
of variables, D = {D1,Ds,...,D,},D; C Z Vi € [n]
represents the discrete domains of these variables, and
C ={c1,ca,...,cm} is the set of constraints, where each
constraint ¢; is defined over a subset of variables X; C X,
restricting the values that can be simultaneously assigned to
them. The goal in solving a CSP is to assign to each variable
a value from its domain such that all constraints in C' are
satisfied.

Constraint Programming (CP) (Rossi et al., 2006) is
the study of mathematical models and solution algo-
rithms for CSPs. CP uses highly expressive global con-
straints (Beldiceanu et al., 2005) that involve multiple vari-
ables and are designed to capture common constraint struc-
tures that appear in a wide range of real-world applications.
One prominent example of a global constraint is the ALLD-
IFFERENT constraint (Régin, 1994), which ensures that a
subset of the variables take on distinct values.
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2.2. Related Work

Constraint solving with supervised learning. Super-
vised learning has been extensively applied to constraint
solving. For example, Pointer Networks (Vinyals et al.,
2015) are used for the sequential generation of combinato-
rial problems involving permutations such as the traveling
salesperson problem. Palm et al. (2018) propose a graph-
based recurrent network to model CSPs, effectively leverag-
ing the graph structure to refine variable assignments iter-
atively. SATNet (Wang et al., 2019) differentiates through
semidefinite programming relaxations in a supervised set-
ting to handle logical constraints. Du et al. (2024) introduce
a method for iterative reasoning through energy diffusion,
focusing on progressive refinement of solutions. More re-
cently, Yang et al. (2023) proposed a recurrent Transformer
architecture that reuses the same Transformer weights across
multiple steps, iteratively refining inputs before projecting
them to the final outputs. The common drawback for su-
pervised approaches is the need for labels, which is not
easy to generate for many large CSP problems. Addition-
ally, for problems with more than one unique solution, label
generation becomes non-trivial.

Constraint solving without labels. A common recipe for
Reinforcement Learning (RL) in constraint solving is to
express the problem with a graph which is then processed
using Graph Neural Networks (GNN). The GNN’s weights
are updated using RL based on a reward function express-
ing an objective function and/or constraint satisfaction (Dai
et al., 2017; Chalumeau et al., 2021; Li et al., 2024; Boisvert
et al., 2024). For example, Tonshoff et al. (2023) converts
a CSP instance into a tripartite variable-domain-constraint
graph which is then solved using a GNN trained by RL.
Similarly, Yolcu & Péczos (2019) represent SAT problems
using a clause-variable graph. Wu et al. (2022) use a Trans-
former architecture to learn discrete transformation steps
with RL for routing problems. However, RL approaches
require significant computational resources for training, as
well as an expertly designed reward signal for each problem.

Non-RL based methods require addressing the non-
differentiability of discrete constraints. Yang et al. (2022)
use the straight-through estimator (Bengio et al., 2013) for
logical constraints and Tang et al. (2024) explore a similar
approach for mixed-integer non-linear programs. Toenshoff
et al. (2021) devise a continuous relaxation for binary con-
straints (i.e., constraints involving two variables) which are
used to guide a recurrent GNN to generate solutions; this
approach is limited in applicability as many CSPs of interest
have non-binary constraints. Bai et al. (2021) design contin-
uous relaxations for some constraint classes in conjunction
with a reconstruction loss to tackle a visual Sudoku prob-
lem; it is unclear how their architecture can be adapted to
CSP solving in general. Self-supervised learning has been

successfully applied in continuous domains (Donti et al.;
Park & Van Hentenryck, 2023), as well as for SAT (Ozolins
et al., 2022).

Continuous relaxation of discrete functions. Continu-
ous relaxations have been used effectively to approximate
discrete functions. For example, T-norm has been widely
implemented as a continuous approximation for discrete bi-
nary logic operations (Petersen et al., 2022; Giannini et al.,
2023; Gimelfarb et al., 2024). Petersen et al. (2021) intro-
duced continuous relaxations for discrete algorithms, such
as if-statements and while-loops. Combinatorial constraints
have also been approximated using entropy-based relax-
ations (Chen et al., 2019), probabilistic methods (Karalias
& Loukas, 2020; Bu et al., 2024), and set function exten-
sions (Karalias et al., 2022).

Recurrency for generalization. The incorporation of re-
currency has been shown to improve a model’s general-
ization. Bansal et al. (2022) implement recurrent ResNet
blocks to solve simple logic puzzles and show that in-
creasing recurrent steps at test-time allows generalization
to harder unseen tasks. Recurrency was introduced to
the Transformer architecture by sharing weights across
Transformer layers (Dehghani et al., 2019; Takase & Kiy-
ono, 2023), yielding improved generalization capabilities
on arithmetic and logic-based string manipulation tasks
(McLeish et al., 2024; Fan et al., 2025). Our method dif-
fers from the existing work as recurrency is only introduced
during test-time deployment.

3. ConsFormer: a Single-Step Self-Supervised
Transformer

We introduce ConsFormer, a single-step Transformer trained
with self-supervision. Given an assignment of values to vari-
ables (hereafter referred to as variable assignment), Cons-
Former attempts to generate a refined variable assignment
that is closer to satisfying the constraints of the input CSP.
An overview of our model is shown in Figure 2.

Section 3.1 presents a Transformer-compatible representa-
tion of variable assignments. Section 3.2 details the Trans-
former design and how it generates an updated assignment.
Section 3.3 focuses on the self-supervised training process.
Finally, Section 3.4 discusses how the model, trained for
single-step solution refinement, can be deployed iteratively
at test time to solve CSPs.

3.1. Input Representation

The input to the model includes the current variable assign-
ment (which may be infeasible), variable indices, and a
binary relational constraint graph indicating the participa-
tion of a variable in a constraint. We adapt the Transformer
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Figure 2. ConsFormer: a Single-Step Self-Supervised Transformer for CSP. A CSP instance is transformed into a set of input embeddings
composed of the variable assignment value encoding, index-based Absolute Position Encoding, and a selected update set embedding
es indicating the variables to be updated. The input is processed by L Transformer layers, incorporating the binary constraint graph as
Relative Positional Encodings for attention. The output values are used to update the variable assignments which are then used to compute
a differentiable self-supervised loss on constraint violation. Although trained to perform one step of solution improvement, ConsFormer
can be deployed iteratively at test time, improving the odds of solving instances never seen during training.

architecture to process a CSP instance by encoding these
elements as follows.

Variable assignments as tokens. Let X =
{z1,22,...,2,} be the set of variables in a CSP,
each of which has a finite domain D;. A variable
assignment x; = v, v € D;, is treated as a token. A
learnable embedding e(v) is assigned to each unique value
v € Ui, D;. The input variable assignment, represented
as X = {z1 = v1, 22 = v, ..., T, = v, }, forms the input
token set to the Transformer. Thus, the input embedding set
is given by

E= {e(Ul)ae(v2)v~'~ve(Un)}' (1)

In this paper, we focus on problems where all variables
share the same domain D.

Representing variable indices with Absolute Positional
Encoding. Transformers use Absolute Positional Encoding
(APE) to represent the position of tokens in a sequence. For
CSPs, we use APE to encode the indices of variables. If the
indices of a variable x; are multi-dimensional, we concate-
nate the positional encodings for each dimension. Specif-
ically, let z;, ;,.....;, denote a variable with k-dimensional
indices (i1, 12, ...,1x). The APE for this variable is com-
puted as:

APE(x;, 4,....4, ) = Concat(PE(i1), PE(i2), . .., PE(ix)),
@)
where PE(iy) is the positional encoding for dimension .
For example, in Sudoku, a variable z12 would have an APE
formed by concatenating the encodings for row 1 and col-
umn 2. This approach is inspired by the APE design in
Vision Transformers (Carion et al., 2020; Li et al., 2025).

Constraint relations as Relative Positional Encoding. A
Relative Positional Encoding (RPE) is typically used by
Transformers to capture the positional relationship between
tokens independently of their absolute positions in a se-
quence. For CSPs, we use RPE to encode the constraint re-
lationships between variables. Specifically, we represent the
CSP constraints as a binary constraint graph G = (V| E),
where V = {1,2,...,n} corresponds to the variables and
FE contains edges between pairs of variables that participate
together in at least one constraint of the CSP.

The RPE is incorporated into the attention mechanism by
modifying the attention logits. Let A;; denote the attention
logit between variables ¢ and j. The modified logits are
computed as:

A;; = A;; + RPE(4, j),

where

and ¢ < 0 is either a constant hyperparameter or a learned
parameter. Setting c to —oo effectively masks the attention
between variables that do not have any constraints in com-
mon. The inclusion of the constraint graph via the RPE
helps the model identify variable pairs that have a strong
effect on each other’s assignments.

3.2. A Single-Step Transformer Architecture

Our model takes the inputs described in the previous section
and outputs a new variable assignment. Below, we outline
the key components of the Transformer architecture.
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Variable subset selection. Inspired by the local search
principle, we posit that small modifications to a variable
assignment are preferable as it is easier to assess their impact
on constraint satisfaction. Our model essentially performs
a stochastic local search by randomly selecting a subset
S C X of the variables to update. We do this by flipping a
biased coin with probability of selection p for each variable,
where p is a hyperparameter. A special learned embedding
e, is added to the variables in S. The Transformer’s output
for the variables in S is used to update the assignment;
variables not in S take on the same values as in the input
variable assignment. The input to the first Transformer block
for a variable z; is given by:

n” = a-e(v;) + - APE(z;) + 7 - e, -Ifz; € S|, (4)
where e(v;) is the token embedding of variable x;’s current
value v; as described in Equation (1), and APE(z;) is its
positional encoding as computed in Equation (2). «, 5,y
are learnable scalars that allow the model to balance the
contributions of each encoding, inspired by Li et al. (2025).
The set of embeddings for all variables forms the input set
HO = (b{” n{” ... hP}.

We note that this allows for easy handling of problems where
certain variables have fixed values, such as in Sudoku. We
simply bypass the variable subset selection step for the fixed
variables, ensuring they are never updated by ConsFormer.

Self-attention. ConsFormer employs a multi-head self-
attention mechanism to compute updated representations of
variables based on other variables. For each variable token
hgl) e Rh*1 gt layer [, the self-attention mechanism for a
single attention head proceeds as follows:

* Each input token is projected to query, key, and value
vectors:

q; =W Kk =wrfnl" v,=w'nl",

(3

where W@ € R WX ¢ R™h and WV €
R *" are learnable weight matrices.

* The relative positional encoding RPE(%, j) as described
in Equation (3) is added to the attention logits A;;:

Tk,
Aij — q; J
Vd
* The attention weights are computed using a softmax:
exp(Aij)
> kes ©XP(Adk)

 The output representation for token ¢ is computed as:

z; = E aijvj~

JES

+ RPE(4, j).

Q5 =

Feedforward network and layer stacking. The output of
the self-attention mechanism z; is passed through a position-
wise feedforward network (FFN):

hl(-l+1) = FFN(Zl) = WQ(GCLU(W]_Zi + bl)) + bo,

where W1, Wy, by, and b, are learnable parameters. The
Transformer consists of multiple such layers.

Output: one-hot variable assignments. At the final layer,
the Transformer outputs a one-hot vector over the domain
D; of each variable in the subset .S, representing its new
assignment. Specifically, for variable z;, the output is:

y: = GumbelSoftmax (Wouthl(.L) + boul)7

where |y;| = |D;|, Wou and bgy, are learnable, and L is the
number of Transformer layers. The Gumbel-Softmax (Jang
et al., 2017) operator serves as a differentiable proxy to
selecting the highest-output domain value. The predicted
assignment for z; is then:

v, = argmaxy,;, Vi€ S.

3.3. Self-supervised Loss Function

How should the Transformer learn to refine an input vari-
able assignment into a better one? In the CSP context, the
loss function must reflect the level of constraint satisfaction
achieved by the predicted assignment. As argued earlier,
one could use a supervised approach in which a feasible
solution is first computed for each training CSP and a loss
function measuring the variable-wise mismatch between the
prediction and the solution is used. However, this approach
hinges on solving many NP-Complete CSPs, a substantial
overhead for large and complex problems. Additionally,
there may be multiple feasible solutions, making supervi-
sion by a single solution somewhat arbitrary. Alternatively,
our Transformer could be trained by RL, with the reward
function reflecting the level of constraint satisfaction. We
argue that this is unnecessarily complicated. An input CSP
instance is fully observable as is the amount of violation
of a constraint for any given variable assignment. Treating
this violation signal as part of a reward function given by a
black-box “environment” is thus overkill. Should we be able
to derive differentiable approximations to the constraints,
their violations could be used directly in a loss function,
enabling end-to-end differentiable training.

With these design principles in mind, we train our Trans-
former using self-supervision. As our loss function, we use
a linear combination of approximations to the amount of
constraint violations by the predicted variable assignment to
guide the model towards a satisficing predicted assignment.
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Table 1. Discrete constraints used in our studied problems and their continuous penalty counterparts. In the continuous penalties, the

variables x; are represented by probability distributions approximating their one-hot form such that 2 e [0,1] Vj € {1,...,m}, where

i
{1, ..., m} represents the domain D;. Numerical examples for each constraint can be found in Appendix A.

Discrete Constraint (c) Continuous Penalty (p)

’k - i xz(‘j)’

Explanation: The cardinality constraint ensures that there are exactly k variables taking the value 5. The continuous
relaxation penalizes the deviation from the desired count k.

Z;n:1 (’1 — i xz(‘j)

Explanation: The all-different constraint ensures that each variable takes a unique value. When the number of variables
equals the domain size m, the all-different constraint can be rewritten as n cardinality constraints restricting the cardinality

of every value in the domain to be 1.
Sy [ReLU (20 o = 1) + 20, o (L= 2 o))

Explanation: When there are more domain values than variables, each value should appear no more than once. This is

CARDINALITY (21, ...,2,) =k

ALLDIFFERENT =, (21, . . ., Zp)

ALLDIFFERENT 50 (21, . . ., Tp)

enforced by ensuring values above 1 are penalized and values remain in the set {0, 1}.

T # T,

S a)

Explanation: This constraint ensures that two variables take different values by penalizing overlapping one-hot encodings.
The continuous relaxation takes the dot product of the two variables, penalizing it if it is above 0.

However, many constraints in CSP are discrete and not dif-
ferentiable. To address this, we introduce simple continuous
penalties that approximate discrete constraints, which are
then used to compute the loss for guiding the model. Let
P = {p1,p2,...,pm} be the set of continuous penalties
approximating constraints C' = {c1, ¢, . .., ¢, } such that

pz(Xi) =0 <= Cz(Xz) = True,
implying that X * is a feasible solution for the CSP when
pi(X)=0 Vp; €P.

The loss for ConsFormer for a single CSP training instance
is therefore

L= Nf(pi(X) Vp €P, )

where hyperparameter )\; is the weight assigned to p;, and
f is an optional operation to transform the penalty for bet-
ter learning. In practice, we implemented the common
quadratic penalty, f(z) = x2. The discrete constraints and
their relaxed continuous counterparts we implemented for
our experiments are shown in Table 1. Further discussion
about the design process can be found in Appendix H and
numerical examples of valid and invalid assignments for
each constraint can be found in Appendix A.

3.4. Iterative Test-Time Deployment

Another issue with RL is its multi-step nature which requires
exploring an extremely large space of iterative solution re-
finement sequences. We show that learning a single-step
solution refiner with self-supervision suffices as the model
can be be deployed iteratively at test time. More specifi-
cally, our method refines an initial solution by repeatedly
feeding its output variable assignment back as input to the
next iteration as visualized in Figure 2.

In this sense, ConsFormer can be viewed as performing
a single step of neural local search to improve the candi-
date solution. Our experiments focus on basic iterative
solution refinement in one continuous sequence, without
additional augmentations. However, this capability can be
combined with techniques such as backtracking and random
restarts (Rossi et al., 2006) to create a neuro-symbolic solver.
Another possible extension is to incorporate ConsFormer
as an evolutionary algorithm (Holland, 1992) utilizing the
Transformer’s parallel processing ability to update a pool
of candidate solutions all at once. While we leave these
explorations as future work, we demonstrate the potential of
this direction by implementing a simple multi-start strategy,
which we show can significantly enhance performance in
Appendix F.
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4. Experimental Results
4.1. Problems

Sudoku is a well-known CSP problem that involves filling
a 9 x 9 grid with digits from 1 to 9 such that each row,
column, and 3 x 3 sub-grid contain each digit exactly once.
A single Sudoku instance consists of a partially filled board
and a unique assignment to the unfilled cells that satisfies
the constraints. A Sudoku instance’s difficulty is determined
by the initial board: fewer initially filled cells in the board
involve a larger space of possible assignments to the unfilled
cells, with the hardest Sudoku puzzles having only 17 of the
81 numbers provided (McGuire et al., 2014). We use the
ALLDIFFERENT,;,—, (21, . .., Z,) constraint from Table 1
to formulate the problem and its corresponding continuous
penalty as the loss function to guide the model learning. The
full formulation of Sudoku in CP is detailed in Appendix B.

We use the dataset from SATNet (Wang et al., 2019), which
contains instances with [31,42] missing values, as the train-
ing and in-distribution testing dataset. To test our model’s
ability to generalize to harder out-of-distribution instances,
we use the dataset from RRN (Palm et al., 2018) which
contains instances with [17, 34] missing values.

Graph Coloring is the problem of finding an assignment of
colors to vertices in a graph such that no two neighboring
nodes share the same color. The problem is defined by the
graph’s structure and the number of available colors k. We
generate two sets of graph instances for k = 5 and k = 10
following a similar procedure as Tonshoff et al. (2023) (See
Appendix C for details). Training graphs have 50 vertices
for k = 5 and 100 vertices for £k = 10 whereas OOD graphs
have 100 for k£ = 5 and 200 for k¥ = 10. We use inequality
constraints of the form x; # x; for an edge between nodes
1 and 7 and their penalty in Table 1 to represent the coloring
constraints.

Nurse Scheduling is an operations research problem of
assigning nurses to shifts. A problem instance has a speci-
fied number of days n, number of shifts per day s, number
of nurses per shift ns, and a total number of nurses. The
variables 4., s are the shift slots indexed by the day, shift,
and nurse and their domains are the indices of the nurses. A
feasible solution ensures that no nurse is assigned to more
than one shift per day and avoids assigning the same nurse
to both the last shift of one day and the first shift of the
following day. We use both the inequality =; # x; and
the ALLDIFFERENT,;,~,, (1, ..., Zy) constraints for this
problem; see Appendix B for the full formulation.

MAXCUT aims to partition the vertices of a graph into
two disjoint sets such that the number of edges crossing the
partition is maximized. The problem can be viewed as a
2-coloring problem where the objective is to satisfy as many
inequality constraints x; # x; as possible. Following the

Table 2. Performance comparison for Sudoku. In-distribution test
instances contain 1, 000 instances from the SATNet dataset, OOD
refers to Out-of-Distribution evaluation on the RRN test dataset
which contains 18K instances. *Values reported in (Du et al.,
2024).

Method Test Harder OOD
Instances Instances

Wang et al. (2019) * 98.3 3.2
Palm et al. (2018)* 99.8 28.6
Yang et al. (2023) 100 329
Yang et al. (2023) (2k Iters) 97.7 14.0

Du et al. (2024) * 99.4 62.1
ConsFormer (2k Iters) 100 65.88
ConsFormer (10k Iters) 100 717.74

same setup as Tonshoff et al. (2023), we generate random
graphs with 100 vertices for training and evaluate general-
ization on benchmark instances from the GSET dataset (Ye,
2003), which includes weighted graphs with sizes ranging
from 800 to 10000 vertices.

4.2. Training

For each of the problems, we train the model with randomly
initialized variable assignments guided by the loss function
defined in Equation (5) and the corresponding p; associated
with the constraints used to define the CSP. The training set
contains 9K instances for all problems. The training details
and hyperparameters for the best performing model for each
problem is detailed in Appendix D.

4.3. Results

Sudoku. Table 2 reports the performance of ConsFormer
and various neural methods on the Sudoku task. Cons-
Former solves 100% of the Sudoku tasks from the in-
distribution test dataset. On the harder out-of-distribution
dataset, ConsFormer significantly outperforms all learned
methods, demonstrating superior generalization capabilities.
ConsFormer achieves instance solve rates of 65.88% and
77.74% with 2k and 10k iterations, respectively.

This highlights the iterative reasoning nature of our ap-
proach. Harder instances can be solved with additional
reasoning steps, whereas other solvers with fixed reasoning
steps struggle. Notably, Yang et al. (2023)’s approach also
employs iterative reasoning with Transformers, but their
performance degraded with more test-time iterations while
ConsFormer’s continued to improve. This could be due
to Yang et al. (2023)’s approach being trained for 32 itera-
tions, while ConsFormer was trained for a single iteration,
allowing it to generalize better when applied iteratively.
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Table 3. Performance comparison for Graph-Coloring tasks. OOD
refers to Out-of-Distribution evaluation for ANYCSP and Cons-
Former where the number of verticies n in the graph is larger than
that of the training instances. All datasets has 1200 instances.
Method Test Harder OOD
Instances Instances

Graph-Coloring-5 (n = 50 — n = 100)

OR-Tools (10s) 83.08 57.16
ANYCSP (10s) 79.17 34.83
ConsFormer (10s) 81.00 47.33

Graph-Coloring-10 (n = 100 — n = 200)

OR-Tools (10s) 52.41 10.25
ANYCSP (10s) 0.00 0.00
ConsFormer (10s) 52.60 11.92

Graph Coloring. Table 3 summarizes the performance
of OR-Tools, ANYCSP (Tonshoff et al., 2023), and Cons-
Former on Graph Coloring instances. OR-Tools is a state-
of-the-art traditional solver for constraint programming ap-
plications and serves as a strong baseline (Perron & Di-
dier), achieving 100% on Sudoku instances. We ran test
instances sequentially through all models with a 10-second
timeout, though ConsFormer can process instances signifi-
cantly faster if processed in batches due to the Transformer
architecture. We note that the harder dataset is not out of dis-
tribution for OR-Tools, since it solves each task individually
and is not a learning-based solver.

ConsFormer demonstrates competitive performance on in-
distribution Graph Coloring with k = 5, solving 81% of
the test instances approaching the 83.08% achieved by OR-
Tools. While it lags behind the state-of-the-art solver with
47.33% on the harder OOD test set, ConsFormer outper-
forms ANYCSP on both distributions, which again shows
our method’s high generalization ability.

On the more challenging Graph Coloring with k£ = 10,
ConsFormer surpasses OR-Tools in performance, showcas-
ing the advantage of learned heuristic approaches: it may
not surpass state-of-the-art solvers on smaller instances, but
it excels in complex cases under short time limits—crucial
for real-world applications. Surprisingly, ANYCSP failed
to solve any instances within 10 seconds for both datasets,
underscoring the scalability limitations of its graph-based
representation and the difficulty of training with RL. Some
additional baselines can be found in Appendix G.

Nurse Scheduling. For the Nurse Scheduling problem,
ConsFormer matches OR-Tools in solving 100% of tasks
across both in-distribution and out-of-distribution instances
within the 10-second timeout. This high accuracy is ex-
pected, given the large number of feasible solutions for each
instance, as detailed in Appendix C. However, solving this

Table 4. Performance comparison for MAXCUT tasks on GSET.
Numbers reported are the average percentage gap to the best known
cut size, the lower the better.

Method [V|=800 |V|=1K |V|=2K |V|>3K
Greedy 5.26 6.64 6.81 6.30
SDP 3.14 4.24 - -
RUNCSP 2.38 2.90 3.30 3.26
ECO-DQN 0.83 1.01 1.45 3.49
ECORD 0.11 0.16 0.36 1.53
ANYCSP 0.02 0.05 0.12 0.42
ConsFormer 0.31 0.34 0.43 1.27
OR-Tools 1.84 2.09 3.38 3.08

problem neurally is non-trivial, as the model must learn to
balance multiple constraints within a single step of solution
refinement. ANYCSP was not evaluated on this dataset
due to their difficulty dealing with the ALLDIFFERENT con-
straint. This highlights ConsFormer’s potential to generalize
to complex problems with diverse constraint structures.

MAXCUT. Table 4 compares various methods on GSET
instances, reported as the relative gap (in percentage) to the
best known cut values (Matsuda, 2019). ConsFormer and
OR-Tools performances are obtained using the same set-
up as ANYCSP, while the rest are computed directly from
values reported by Tonshoff et al. (2023). While ANYCSP
remains the best-performing method on GSET, ConsFormer
achieves an average relative gap of 0.31% to 1.27% without
extensive model tuning, demonstrating its ability to scale to
larger problems with thousands of constraints.

4.4. Ablations

Effect of subset improvement. Figure 3 examines the im-
pact of varying probability of selection p on the performance
of the model. The horizontal axis refers to the number of
iterations at test time while the vertical axis represents the
percentage of in-distribution test instances solved. We inves-
tigate the behavior of the model under different probabilities
p € {1.0,0.9,0.7,0.5,0.3,0.1}, where p determines the
probability of selecting each variable for updates during a
single iteration as detailed in Section 3.2. A larger p results
in more variables being selected to be updated.

When p = 1.0 (blue line), all variables are selected for
updates during every iteration. This approach leads to rapid
improvement in the early stages, as the model converges
quickly to local optima. This is clearly observed in Graph
Coloring, where the p = 1.0 model rapidly solved 65%
of instances. Performance plateaus after the initial surge
whereas the stochastic models surpass it in accuracy after
50 iterations. The difference in model performance is even
more drastic for Sudoku, with the p = 1.0 model reaching
20% instances solved early and converging, while the p =
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Figure 3. Variable selection probability ablation for Sudoku (Top)
and Graph Coloring with £ = 5 (Bottom). The horizontal axis
shows the number of iterations at test time and the vertical axis
represents the % solved of in-distribution test instances.

0.9, p = 0.7, and p = 0.5 models surpass it and reach near
100% within 50 iterations.

These findings highlight the importance of incorporating
stochasticity into the update process for combinatorial opti-
mization tasks. While deterministic updates provide faster
initial convergence, they are prone to premature stagna-
tion. Stochastic updates, by selectively updating a subset
of variables, improve generalization and allow the model to
achieve higher final performance.

Effect of variable information as positional encodings.
Table 5 and 6 show the performance of ConsFormer with
different positional encodings. The value displayed indi-
cates the percentage of in-distribution test instances solved
by the model running 1, 000 iterations

Across both Graph Coloring and Sudoku, we observe that
the inclusion of relative variable relations with RPE provides
a significant performance boost. This is especially true in
the Graph Coloring problem, which heavily relies on the
constraint graph, since the vertices have no inherent ordering
to them, and therefore the indices have little meaning for
the model to learn from.

In Sudoku however, we see that the Transformer is able
to achieve strong performance using only 2D APE, with-
out leveraging explicit constraint graph information. This
indicates that in highly structured problems like Sudoku,
the positional indices of variables alone contain sufficient
information for solving the instances. We also observe that

Table 5. Positional Encoding Ablation on Sudoku.

Model Variant No APE 1D APE 2D APE
No RPE 0.00% 0.00% 99.90%
Learned RPE  98.70%  97.10%  98.20%
Masked RPE 99.80%  99.50%  99.80%

Table 6. Positional Encoding Ablation on Graph Coloring.

Model Variant No APE 1D APE
COL50 COL100 COL50 cCoL100
No RPE 1.58% 0.00% 1.25% 0.00%
Learned RPE  78.00% 12.50% 77.33% 0.25%
Masked RPE 75.67%  52.25% 77.00% 51.92%

2D APE outperforms the standard 1D APE typically used
in Transformers. These results suggests the importance of
supporting both forms of positional encodings, as different
properties of different problems requires distinct spatial or
relational information.

We also note that when RPE is implemented as masked
RPE, attention scores for each variable are restricted to its
connected variables, closely resembling the behavior of a
graph neural network with attention.

5. Limitations and Future Work

In its current form, ConsFormer assumes a fixed constraint
structure, the effects of which on solution feasibility are
implicitly learned during training via the loss function.
ConsFormer does not receive explicit constraint represen-
tations as input. Constraints which are “parametric”, e.g.,
a SAT clause in which some variables may be negated and
some not, cannot be handled with the architecture described
herein. It is possible to address this limitation through ex-
plicit constraint representations in the input; this is an im-
portant direction for future work.

Other future work includes exploring neural-symbolic ap-
proaches incorporating ConsFormer such as those discussed
in Section 3.4, other performance boosting techniques such
as self-improvement to augment the training data (Lee et al.,
2025), as well as extending ConsFormer to more problems
and more constraints, with the goal of devising a general
continuous approximation for constraints.

6. Conclusion

We introduced ConsFormer, a self-supervised Transformer
for iteratively solving Constraint Satisfaction Problems. We
showed that our method, trained to perform a single step of
solution improvement, is able to generalize to harder out-of-
distribution instances at test time, outperforming supervised
and reinforcement learning approaches.
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A. Example Continuous Penalty Evaluations

Table 7. Example assignments illustrating the evaluation of continuous penalties for discrete constraints. The variables x; are represented
by probability distributions approximating their one-hot form. Two assignments are shown: a valid assignment representing a set of
variable values that exactly satisfy the constraint, and an invalid assignment representing a set of variable values that violate the constraint.
The penalty evaluates to O for valid assignments and increases with the degree of constraint violation.

Constraint and Relaxation Example Assignments

Valid Assignment: z; = (1,0), 22 = (1,0), z3 = (0,1)
StV =14140=2

CARDINALITY (21, ...,2,) =k p=2-2/=o0.
- (@)
= p = “‘3 - in] | Invalid Assignment: z; = (0.7, 0.3), x5 =(0.2,0.8), 3= (0, 1)
_ ' St =0740240=09
J=Lk=2 p=12-09 =1.1.

Valid Assignment: x; = (1,0,0), 22 = (0,1,0), 3 = (0,0,1)

S U T S e C
ALLDIFFERENT =, (Z1, - . -, Tp) p;|1_1|+|11_1|+|1_1|l: 0.

— p = Z‘ 1- fo-”)- Invalid Assignment: 21 — (0.9,0.1,0), z = (0.9,0.1,0), 23 = (0,0,1)
’ ' St =18 2P =02 3,2 =1
P 1= 18+ 1= 02/ +|1—1]=08+08+0=16.

Valid Assignment: z; = (1,0,0), z2 = (0,1,0)
ALLDIFFERENT 50, (T1, - -+, Tp) ReZLU(l 1= ZO’ 11— 1] Z: 0
_ ReLU(1—0)=0, 0-]1—0] =0

_ (4) ’

:p—Z[ReLU(Z%J_l) p=0+0+0+0+0+0=0.
J @ Invalid Assignment: z; = (0.6, 0.4, 0), a2 = (0.7, 0.3, 0)

, . 1 2 3

+3 9 _le(aﬂ. SV =13 3.2 =07, 3,2 =0
: . ReLU(1.3—1)=0.3, 1.3-|1— 1.3| = 0.39

ReLU(0.7 —1) =0, 0.7- |1 —0.7] = 0.21
p=034+0394+0+4+0.214+0+4+0=0.9.

K2

Valid Assignment: x; = (1,0,0), zx = (0,1,0)

i # T p=(1-0)+(0-1)+(0-0) =0.
_ (1) ,.(9)
= P = Z(xz i) Invalid Assignment: z; = (0.7,0.3,0), z; = (0.7,0.2,0.1)
/ p=1(0.7-0.7) + (0.3-0.2) + (0- 0.1) = 0.49 + 0.06 4+ 0 = 0.55.
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B. Constraint Programming formulations
B.1. Sudoku

We define the Sudoku problem as a constraint satisfaction problem (CSP) with the following components:
Variables: Let X, ; denote the variable representing the value assigned to cell (i, j), where 4,5 € {1,2,...,9}.
Domains: Each variable X; ; takes values from the discrete domain:

X;;€{1,2,...,9}.
Constraints: The solution must satisfy the following AllDifferent constraints:

* Each row must contain unique values:
ALLDIFFERENT =, (X1, Xi2,..., Xi9), Vie{l,...,9}.
» Each column must contain unique values:
ALLDIFFERENT =, (X1 j, X2 5,..., Xo,;), Vje{l,...,9}.
* Each 3 x 3 subgrid must contain unique values. Let (r, ¢) index the subgrid with r, ¢ € {0, 1, 2}, then:

X3r41,3¢4+1> X3r+1,3¢4+2> X3r+1,3c+35
ALLDIFFERENT;,—p, | X3r423c41, X3r42.3c42, X3r42,3c43, |, Vr,c€{0,1,2}.
X3r43,3c4+1) X3r4+3,3c4+2, X3r4+3,3c4+3

B.2. Graph Coloring

Given a graph G = (V| E), we define the graph coloring problem as a constraint satisfaction problem (CSP) with the
following components:

Variables: Let X, be a variable representing the color assigned to vertex v € V.

Domains: Each variable X, takes values from a set of k available colors:

X, €{1,2,...,k}, YveVW

Constraints: The solution must satisfy that any two adjacent vertices must be assigned different colors:

Xy # Xy, V(u,v)€E.

B.3. Nurse Rostering

We define the nurse rostering problem as a constraint satisfaction problem (CSP) with the following components:

Variables: Let 24 s be a variable representing the nurse assigned to the ns-th slot of shift s on day d, where:

Tasns €{1,2,...,N}, Vde{l,...,n}, Vse{l,...,S}, Vnse{l,...,NS}
Constraints: A feasible schedule must satisfy the following constraints:
* No nurse can be assigned to more than one shift per day:

ALLDIFFERENT ;5 (%d,1,1, d 1,2, - - -y £d,1,N S5 £d,2,15 £d,2,25 - -+, Ld,2, NSy - - - Ld,S,1,Ld, 8,25 - - - » Ld,S,NS)
Vd e {1,...,n}.

* A nurse cannot be assigned both the last shift of a given day and the first shift of the following day:
Td,Sns # Tat11mss, VA E{l,...,n—1}, Vns,ns' €{l,...,NS}.
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C. Dataset Details
C.1. Graph Coloring

Following (Tonshoff et al., 2023), we generate Graph Coloring instances with the following 3 distributions:

 Erdés-Rényi graphs with edge probability p ~ U]0.1, 0.3]
* Barabasi-Albert graphs with parameter m ~ U|[2, 10]

* Random geometric graphs with vertices distributed uniformly at random in a 2-dimensional 1 x 1 square and edge
threshold radius drawn uniformly from r ~ U[0.15,0.3].

The 5-coloring instances were drawn uniformly for all 3 distributions, with vertices count 50 for training and in-distribution
testing data, vertices count 100 for out of distribution testing. The 10-coloring instances were drawn uniforming from
Erd6s-Rényi graphs and Random geometric graphs, with vertices count 100 for training and in-distribution testing data, and
200 for out of distribution testing.

For each graph GG generated a linear time greedy coloring heuristic as implemented by NetworkX (Hagberg et al., 2008) to
color the graph without conflict. If the greedy heuristic required & colors for G, then we pose the problem of coloring G
with k colors as the training CSP instance, where k is chosen as:

k = max{3, min{10, k" — 1}}
We generate instances until a fixed number of instances for a specific k is reached. 9000 for training sets, 1200 for test sets.

C.2. Nurse Scheduling

We generate Nurse Rostering instances with varying difficulties. Each problem instance is defined by the number of days n,
number of shifts per day s, number of nurses required per shift ns, and the total number of available nurses N.

* in-distribution instances were generated with n = 10 days, s = 3 shifts per day, ns = 3 nurses per shift, and a total
of N = 10 nurses.

* Out-of-distribution instances were generated with n = 10, s = 3, ns = 3, and N = 10.

The in-distribution instances consisted of 9000 training instances and 1000 test instances. Out-of-distribution instances also
had 1000 samples.

To initialize different instances, we assign one random shift to every nurse as an initial assignment. This ensures that each
instance starts with a minimally constrained but valid configuration.

We note that these instances are relatively easy to solve due to the large number of feasible solutions available. The
constraints in the problem formulation do not drastically limit the space ofValid Assignments. The purpose of this dataset is
to examine ConsFormer’s ability to solve instances with a combination of different constraints.
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D. Model Details

Our models were trained on various single-core GPU nodes, including P100, V100, and T4. A grid search was conducted to
determine the best-performing hyperparameters, evaluating a few hundred configurations per problem. The final reported
models were trained with a batch size of 512 for 5000 epochs. The typical training time for a model ranges from 6 to 10
hours (wall clock). The hyperparameters for the best performing model for each of the problems is shown in Table 8. For all
models, we used AdamW as the optimizer and applied a dropout of 0.1, with learning rate set to 0.0001.

Table 8. Hyperparameters for the best performing models.

Sudoku  Graph-coloring-5 Graph-coloring-10  Nurse Scheduling MAXCUT
Layer Count 7 4 7 7 4
Head Count 3 3 3 3 3
Embedding Size 128 128 128 126 128
Selection Probability p 0.5 0.3 0.3 0.3 1.0

E. Effects of Gumbel Softmax

We use Gumbel-Softmax in ConsFormer to enable differentiable sampling of discrete variables, aligning with the discrete
nature of CSPs.

To better understand why Gumbel-Softmax improves performance, we investigate whether the benefit stems from the
stochasticity introduced by Gumbel noise or simply from producing sharper output distributions. To isolate these factors, we
compare against a softmax variant with temperature control:

exp (z;/7)

> exp(2/7)

This variant allows us to control the sharpness of the output distribution without introducing stochasticity. Table 9 presents
results for Sudoku and Graph Coloring (percentage of instances solved), and MAXCUT (absolute gap to best known values).

Softmax, (z;) =

Results indicate that softmax with temperature performs competitively or even better on smaller-scale problems such
as Sudoku and Graph Coloring instances. However, for larger problems like MAXCUT with thousands of variables,
Gumbel-Softmax clearly outperforms temperature-controlled softmax.

This suggests that while sharper distributions (e.g., from low temperature) are beneficial, the stochasticity allows the model
to generalize better across larger problem instances. The randomness can promote diversity in intermediate solutions which
may help the model escape local optima over multiple inference steps.

Table 9. Comparison of ConsFormer with and without Gumbel-Softmax

Method Gumbel-Softmax Softmax
=01 7=1 |7=01 71=1
Sudoku 100 100 100 100
Sudoku OOD 77.74 83.71 85.67 73.72
Graph-Coloring-5 V=50 78.16 76.91 77.33 7491
Graph-Coloring-5 V=100 42.50 41.08 42.66 35.33
Graph-Coloring-10 V=100  52.60 53.25 53.66 53.0
Graph-Coloring-10 V=200  11.92 12.75 12.92 12.75
MAXCUT |V|=800 24.44 102.89 | 123.11 126.56
MAXCUT |V|=1K 18.22 44.0 58.33 56.89
MAXCUT |V|=2K 47.0 119.33 | 123.67 135.11
MAXCUT |V|>3K 155.88 187.0 | 287.38 305.25
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F. ConsFormer with Multi-Start

A simple extension to enhance our model is the implementation of multi-start. Instead of a single initial solution continuously
refined, we maintain a pool of candidate solutions that are updated concurrently. A solution is accepted as soon as any
candidate satisfies all constraints. This approach naturally complements ConsFormer, as the Transformer architecture
efficiently handles batched processing.

Table 10 reports results for various candidate pool sizes. A candidate count of 1 corresponds to the standard version of
ConsFormer used in the main paper.

We observe that as the number of candidates increases, the number of update iterations per candidate slightly decreases due
to the fixed time budget. However, the drop is modest compared to the increase in candidates, highlighting the scalability of
the Transformer-based model. We observe that the multi-start strategy is able to noticably improve model performance,
boosting accuracy from 47.33% to 55.67% for graph coloring with k¥ = 5 and 11.92% to 15.00% for k = 10.

These findings highlight the potential of integrating with symbolic strategies, such as restarts and backtracking, as discussed
in Section 3.4. We leave further exploration of these hybrid techniques to future work.

Table 10. Performance comparison for Graph-Coloring tasks on Out-of-Distribution evaluation for ConsFormer. Candidates Count refers
to the number of solutions used for multi-start. # Iterations Average shows the number of iterations each candidate went through under the
time limit.

Method Harder OOD Pool # Iterations
Instances Size Avg
Graph-Coloring-5 (n = 100)
OR-Tools (10s) 57.16 - -
ConsFormer (10s) 47.33 1 2310
ConsFormer (10s) 43.42 2 2213
ConsFormer (10s) 50.92 10 1634
ConsFormer (10s) 55.17 50 1613
ConsFormer (10s) 55.67 100 892
Graph-Coloring-10 (n = 200)
OR-Tools (10s) 10.25 - -
ConsFormer (10s) 11.92 1 1490
ConsFormer (10s) 13.67 2 1445
ConsFormer (10s) 13.92 5 1064
ConsFormer (10s) 14.42 10 1150
ConsFormer (10s) 15.00 50 806
ConsFormer (10s) 13.25 100 229
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G. Additional Baselines for Graph Coloring

We provide additional baselines for comparison on the Graph Coloring task. We first run OR-Tools for additional time (30
and 60 seconds) with 10 colors (where ConsFormer had previously outperformed it under 10s). We see that CP-SAT can
outperform our method on small instances (nodes=100) with extended time, but it still underperforms on larger instances
(nodes=200), even with 6x more time. Furthermore, in the new MAXCUT problem, 20 parallel runs—each with 180s
limit—were used to compute the results. ConsFormer also outperforms OR-Tools by a significant margin.

We then include 3 additional heuristic baselines: Greedy Coloring, Feasibility Jump, Random Search. The first is the greedy
coloring algorithm implemented by networkx and the other two are local search approaches implemented by OR-Tools.
Results are shown in Table 11. We observe that while the local-search based heuristics were able to perform well on the
smaller instances, their performance significantly worsens on the larger instances with 10 colors.

Table 11. Performance comparison for Graph-Coloring tasks. OOD refers to Out-of-Distribution evaluation for ANYCSP and ConsFormer
where the number of verticies n in the graph is larger than that of the training instances. All datasets has 1200 instances.

Method Test Harder OOD

Instances Instances

Graph-Coloring-5 (n = 50 — n = 100)

Greedy 32.42 0.0

OR-Tools-FJ (10s) 82.83 54.5
OR-Tools-RS (10s) 83.08 56.91
OR-Tools (10s) 83.08 57.16
ANYCSP (10s) 79.17 34.83
ConsFormer (10s) 81.00 47.33

Graph-Coloring-10 (n = 100 — n = 200)

Greedy 0.75 0.0

OR-Tools-FJ (10s) 35.66 6.0

OR-Tools-RS (10s) 49.75 9.08
OR-Tools (10s) 52.41 10.25
OR-Tools (30s) 53.58 11.16
OR-Tools (60s) 53.67 11.66
ANYCSP (10s) 0.00 0.00
ConsFormer (10s) 52.60 11.92
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H. Penalty Functions Design
As detailed in Section 3.3, our continuous penalties are designed such that
p(X)=0 <= ¢(X) =True,

where penalty p approximates constraint ¢ defined over variables X. Intuitively, the penalty p only evaluates to O when the
constraint c is satisfied.

This approach follows constraint-based local search (Hentenryck & Michel, 2009). Here, a constraint c is associated with a
“violation degree” function v, where

V(X)) =0 <= ¢(X)=-satisfied

Specific functions to evaluate violation degrees are designed for different global constraints. For example, a violation
function for A11Different(xy,...,x,) can be defined as

(T, a) = Y max (0, {z; =i|jel,...,n}—1)

i€S
where S is the set of all values in the domains of z1, ..., z,. Intuitively, this violation degree counts how many values are
assigned to more than one variable among z1, . . ., x,,. This idea is extended to design the continuous penalty function for

ALLDIFFERENT ;50 (21, .« ., Tp,)-

The design of the penalty functions is a flexible and modular component of our framework, and can benefit from further
improvements which we leave for future work.

I. Direct Gradient Descent on Variables

A natural baseline to consider is optimizing variable assignments directly using stochastic gradient descent (SGD), without a
learned architecture. Specifically, if we ignore the Transformer component of ConsFormer and instead treat the variable
assignments as continuous parameters, we can optimize them using our self-supervised loss. In theory, this procedure should
lead to a relaxed satisfying solution.

However, we found that in practice, this method frequently converges to poor local optima. Additionally, because the
optimization is performed independently for each instance, the updates cannot generalize to other instances.

To illustrate the limitation of this approach, we performed a simple experiment on Sudoku. Starting from a random
initialization of missing cells, we applied SGD for 10000 steps using the self-supervised loss. The table below reports the
average number of satisfied A11Different constraints (out of 27 total) across 10 runs:

Table 12. Direct SGD optimization of Sudoku variable assignments

# Missing Cells 19 33 41 47
# Satisfied A11Different 268 258 245 21.8

As expected, performance degrades as the number of missing cells increases. The optimization becomes harder, and the
model fails to satisfy all constraints. This highlights the importance of learning a iterative improvement model, rather than
relying solely on instance-specific gradient descent.
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