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ABSTRACT

We consider coverless steganography where a Large Language Model (LLM)
drives an arithmetic coding decoder to generate stego-texts. An efficient method
should embed secret message bits in as few language tokens as possible, while
still keeping the stego-text natural and fluent. We show that on the individual to-
ken level, this problem is mathematically equivalent to maximizing the entropy
of a replacement probability distribution of the next token generation, subject to a
constraint on the KL divergence between the chosen probability distribution and
the original distribution given by the LLM. A closed-form solution is provided for
the optimization problem, which can be computed efficiently. Several important
practical issues are also tackled: 1) An often-overlooked tokenization mismatch
issue is resolved with a simple prompt selection approach, 2) The combination of
the optimized distribution and the vocabulary truncation technique is considered,
and 3) The combination of the optimized distribution with other sequence-level
selection heuristics to further enhance the efficiency and reliability is studied.

1 INTRODUCTION

In a steganography system, Alice, the sender, aims to convey a secret message to Bob, the receiver.
The carrier signal can take the form of text, image, audio, or video (Anderson & Petitcolas, 1998;
Cox et al., 2007; Provos & Honeyman, 2003). In this work, we focus on natural language text
messages as the type of carrier signals, and in this case, the resultant signal with the secret message
embedded is referred to as the stego-text. Alice transmits the stego-text to Bob via a public channel,
which is being monitored by an eavesdropper Eve. Eve wishes to determine whether there is a
hidden message in the stego-text. Alice must ensure that the stego-text can be decoded correctly by
Bob, and at the same time, guarantee with a high probability that Eve cannot detect whether a secret
message exists or not. A good analogy is that Bob is a prisoner, Alice is the family member outside
the prison who has a letter for Bob, and Eve is the prison guard who may confiscate the letter if
something unusual is detected about the letter (Simmons, 1984).

Conventionally, steganography relies on an existing cover signal (cover text), and achieves steganog-
raphy by making subtle changes imperceptible to Eve on the cover text. For example, Alice can re-
place certain words by their synonyms following pre-agreed patterns (Topkara et al., 2006; Chang &
Clark, 2010; Safaka et al., 2016). Recently, as generative models, particularly large language mod-
els, become more and more powerful, coverless steganography has shown significant performance
advantages. With this approach, the stego-text appears indistinguishable from natural languages,
and more importantly, a large amount of the secret information can be hidden in shorter stego-texts
than the traditional cover-text-based approaches (Fang et al., 2017; Yang et al., 2018; Ziegler et al.,
2019; Xiang et al., 2017; Dai & Cai, 2019; Zhang et al., 2021; Shen et al., 2020; Kaptchuk et al.,
2021; Ding et al., 2023; de Witt et al., 2024).

The underlying driver for LLM-based steganography is usually the arithmetic coding (AC) algorithm
(Witten et al., 1987), which is an efficient data compression algorithm based on the idea that any
finite-length finite-alphabet data sequence (e.g., text) can be mapped to a small interval in the range
of [0, 1) based on the cumulative probability distribution function. Therefore, a binary representation
that accurately specifies this interval is a compressed representation of the sequence. The decom-
pression process can reverse this encoding process and recover the original sequence. In LLM-based
steganography, Alice utilizes the arithmetic coding decoder, together with the probability distribu-
tion produced by LLM, to map the secret binary sequence to a stego-text. Bob can then recover the
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secret message by performing the arithmetic encoding, which is assumed to have access to the same
LLM. Intuitively, the arithmetic coding decoder essentially performs token-wise sampling following
the conditional probability distribution given by the LLM, using the secret message bits as the start-
ing randomness (from a uniform distribution to a non-uniform one). The stego-text would appear
natural and fluent if the LLM captures accurately the true distribution of natural languages.

In many use scenarios, the security requirement in steganography can in fact be relaxed: 1) when
Eve is computation-bounded (e.g., in a mobile device), 2) when Eve is delay-constrained (e.g., in
streaming processing or time-sensitive applications), or 3) under societal constraint (e.g., censor-
ship under constitutional right protection). In such cases, Eve can be modeled as a weak detec-
tor, and correspondingly the steganography security requirement can be relaxed to take advantage
of the situation. This consideration is in fact already implicit in several previous works invoking
“near-imperceptibility” (Dai & Cai, 2019; Shen et al., 2020) where the LLM next token probability
distributions were truncated or positions were skipped to either reduce computation or avoid exces-
sive distribution mismatch. Clearly, the “perceptibility” of a casual user is different from that of an
expert, and the authors there used the KL divergence to quantity the security loss, and studied its re-
lation with the embedding capability when more truncation is taken or more positioned are skipped.
Further generalizing this idea, we can replace the conditional probability distribution produced with
another distribution, as long as the replacement mechanism is deterministic and causal, such that
Alice and Bob remain synchronized, when the steganography security requirement is less stringent.

Taking this generalized view, our work is based on the following observation. There appears to
be a fundamental tradeoff between the amount of secret bits one can hide in the stego-text and the
detectability of steganography; the former consideration is usually measured by the embedding ca-
pability or embedding utilization in the literature (Dai & Cai, 2019; Shen et al., 2020; Kaptchuk
et al., 2021; Ding et al., 2023). Improving the utilization is particularly important for LLM-based
steganography, since the generative process in LLMs can become almost deterministic, and it be-
comes difficult to embed secret bits unless a very long stego-text is used. In the context of LLM-
based steganography and the underlying arithmetic coding decoder, this requirement at the token
level essentially translates to maximizing the entropy of a replacement probability distribution, sub-
ject to a constraint on the distance between this new token generation distribution and the original
one produced by the LLM. We formalize this problem under the KL divergence constraint, and show
that it has a closed-form solution that can be computed efficiently. We refer to this steganography
approach via an optimized distribution simply as OD-Stega.

Our formulation formalizes the general tradeoff between steganography security and embedding
utilization, and our approaches can be specialized to previous methods. For example, in the perfectly
secure extreme, our approach essentially reduces to the approach given in Kaptchuk et al. (2021).
Moreover, given the fundamental nature of the mathematical formulation, our approach can also be
straightforwardly incorporated into other methods such as Ding et al. (2023); Zhang et al. (2021).

In addition to the principled formulation outlined above, our work also tackles several practical
issues. Firstly, previous works using LLM for steganography assumed that the tokenizer is one-to-
one, such that Bob can decode correctly every time. However, modern tokenizers in LLM are often
not one-to-one, and therefore, these approaches often encounter decoding errors. We propose a
simple strategy to remedy this issue through LLM prompting selection. Secondly, we combine OD-
Stega with the existing technique of vocabulary truncation to reduce the computation complexity,
and analyze the overall KL divergence of this strategy. Lastly, we combine the proposed single-token
probability adjustment technique with other heuristics on the sequence level, and adaptively select
optimization parameters based on the conditional entropy for each token. We conduct extensive
experiments and demonstrate that the proposed approach can indeed embed significantly more secret
message bits into the stego-text, and the generated stego-text remains perpetually indistinguishable.

The contribution of this work can be summarized as follows: 1) We provide a principled formulation
to optimize the generative conditional distribution in order to embed more bits in shorter stego-texts;
2) We design an efficient algorithm to compute the optimized distribution for each token; and 3) We
tackle several practical issues and provide strategies to combine OD-Stega with other methods to
improve the efficiency and reliability at the sequence level.

We defer a detailed discussion on related works to the appendix.
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2 PRELIMINARY

2.1 LLM-BASED STEGANOGRAPHY

A Large Language Model (LLM) can provide an estimate for the conditional probability distribution
for the next token, given the sequence of tokens preceding it (Vaswani, 2017; Brown, 2020; Tou-
vron et al., 2023). To generate a natural language sequence, one can sample the tokens from these
distributions in an autoregressive manner. We next provide some notation for the rest of the paper.

Following the work of Shen et al. (2020) for LLM-based steganography, we assume that the secret
message bit sequence S is already encrypted, before Alice starts to embed it in the stego-text. Before
encoding, Alice selects an initial prompt text Tp, independent of S, which typically determines
the nature or semantic of the resulting stego-text. To encode S, Alice uses an encoding function
f(Tp, S) to produce a sequence of tokens xi>0 = (x1, x2, x3, . . .), which is then converted to the
corresponding stego-text Ts via detokenizing. The prompt and the stego-text (Tp, Ts) are sent on
the public channel. Bob first converts Ts into the token form xi>0, then uses a decoding function
g(·) such that g(Tp, xi>0) = S.

In LLM-based steganography, both f and g rely on the same LLM. At time i, an LLM
takes the tokenized input xi−1 = (x−np−1, x−np−2, · · · , xi−1) as the prompt, where x0 =
(x−np−1, x−np−2, · · · , x0) represents the tokenized sequence of Tp and np is the number of to-
kens in Tp. This produces the probability distribution PLLM for the next token xi. We shall write
it as PLLM (Y = xi | xi−1), or simply P i, which is the conditional probability for the next token,
given the proceeding tokens (in the context window).

2.2 ARITHMETIC CODING

Several authors have shown that Arithmetic Coding, or AC for short, can be used together with
language models to perform steganography (Ziegler et al., 2019; Shen et al., 2020; Ivasenko et al.,
2021). AC is a method for data compression that encodes a whole sequence of symbols as a single
value, based on the probability distribution. Typically, AC compresses the character in the sequence
sequentially into a sequence of bits at the transmitter, and converts the sequence back to text during
decompressing. The main idea of using AC for steganography is that an AC decoder can be viewed
as a sampler in the set of natural language paragraphs using the secret message as a random seed,
and since the secret message is uniformly distributed on the message set, the sampled text would
look like natural language. Note that the AC encoding procedure is the steganography decoding
procedure, and the AC decoding procedure is the steganography encoding procedure.
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Bit Sequence: 0.10111 [0.71875, 0.75)
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Figure 1: Example of AC in steganography

An illustrative example is given in Figure 1.
Initially, a secret bit string is transformed into a
decimal fraction interval. For instance, the se-
quence 10111 can be represented as the interval
I = [0.101110000 · · ·2 , 0.1011111111 · · ·2) ≃
[0.71875, 0.75). Next, we identify the range
where this interval falls in the probability dis-
tribution P i.

As illustrated in Figure 1, when we input the
starting prompt “What is the probability of”, the
LLM generates a probability distribution for the
most likely next tokens P 1. Based on this dis-
tribution, we determine where the interval lies.
In this example, the interval corresponds to the
token “winning”, so we select the first token of
the stego-text as x1 = “winning”.

Once the first token x1 is selected, the proba-
bility distribution P 2 is obtained by the same

procedure of prompting x1 into the LLM. The next token x2 is chosen based on where the interval
lies within this distribution. This process is repeated iteratively until there is no ambiguity regarding
where the interval I falls into. As Figure 1 illustrates, the interval is outside any Pn token interval
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range; thus, after choosing the n-th token, the stego-text generation is completed with a total of n
tokens, which can be converted directly into the stego-text.

During the decoding phase, Bob recognizes the starting token of the stego-text from the received
text. Bob can then derive the identical distribution P 1 from the same LLM with the starting prompt
text. With those stego-text tokens he receives, Bob is then able to retrieve the probabilities P i>0 and
reconstruct the bit sequence, continuing this process until every bit is recovered.

3 PROPOSED METHODOLOGY

A well-known fact in data compression is that the expected minimum number of bits to represent a
message symbol following a probability P is H(P ), i.e., the entropy of symbol (Cover & Thomas,
1991), and AC is one algorithm that can compress at a rate close to the minimum value. The same
relation holds for LLM-based steganography using AC, in the sense that the expected number of
secret message bits that can be embedded for a given token position-i is the entropy of the conditional
distribution H(P i). For example, if a token has a conditional distribution of { 1

4 ,
1
4 ,

1
4 ,

1
4} on four

possible token values, then 2 bits of secret message can be embedded in the stego-text.

It is obvious that a slight modification to the probability distribution from the true natural language
distribution is nearly imperceptible to a human reader (weak detector), or even to a computer pro-
gram for that matter. We can take advantage of such an opportunity to make the conditional distri-
bution P more amicable for embedding secret message bits, i.e., choose a different distribution Q
such that the entropy H(Q) is larger. As long as Q is kept close to P under certain measure, we
expect the generated stego-text to be nearly imperceptible, which leads us to the formulation given
next.

3.1 PROBLEM FORMULATION: SAMPLING STRATEGY UNDER PERCEPTION CONSTRAINT

We formulate the following optimization problem for each token at time instance-i.

max
Qi

j , ∀j∈[1:Ni]
H(Qi) =

Ni∑
j=1

−Qi
j logQ

i
j (1)

subject to DKL(Q
i||P i) =

Ni∑
j=1

Qi
j log

(
Qi

j

P i
j

)
≤ δ (2)

Qi
j ≥ 0, ∀j ∈ [1 : Ni] (3)

Ni∑
j=1

Qi
j = 1 (4)

Qi
j = 0 ∀j ∈ Ai = [Ni + 1 : N ] (5)

Let N = |V| be the total number of symbols in the vocabulary. The objective function H(Qi) in (1)
represents the standard Shannon entropy, where we use the logarithm of base 2, implying we will
measure the information in bits. We seek to replace the natural language distribution probability
distribution P given by the LLMs with a new distribution Q towards a larger entropy value, which
usually means a more uniform distribution. This would allow for embedding a greater number of
secret bits within a single token. It is crucial for the new distribution to be close to that of the natural
language, which is ensured by the constraint in (2), that the divergence between Q and P does not
exceed a small threshold δ. Note the problem above is a convex optimization problem.

There are in fact various other metrics to quantify the difference between P and Q, but we choose
to use the KL divergence in this work, since it has a clear operational meaning and is well adopted
in steganography, moreover, it is connected to the error exponent in hypothesis testing (Cover &
Thomas, 1991).

Without loss of generality, we will assume throughout the rest of this paper that the elements in the
vocabulary are already given in descending order according to the probabilities P i. The set Ai in
the constraint (5) corresponds to the index set of elements in the alphabets with zero probability,
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i.e., P i
j = 0. Clearly there is no need to adjust tokens with a zero probability, since otherwise, the

resultant KL divergence will be unbounded; this consideration is reflected in (5). We denote the
number of nonzero elements in P i as Ni = N − |Ai|. As a result, the number of variables in this
optimization problem is in fact Ni instead of N .

3.2 THE OPTIMAL PROBABILITY ADJUSTMENT STRATEGY

The main theoretical contribution of the work is Theorem 1, which gives the solution to the opti-
mization problem (1)-(5).

Theorem 1 An optimal probability solution Qi to the optimization problem (1)-(5) is given by

Qi
j =


P i

j

u
1+u∑Ni

j=1 P i
j

u
1+u

, ∀j /∈ Ai

0, ∀j ∈ Ai

(6)

for some u ≥ 0 when δ ∈ [0, 1
Ni

∑Ni

j=1 log(
1

NiP i
j
)], otherwise

Qi
j =

{
1
Ni

, ∀j /∈ Ai

0, ∀j ∈ Ai
.

Observe that this solution adjusts each non-zero element’s probability P i by an exponential factor
in the range [0, 1]. In the extreme case of u = 0, the optimal Qi becomes a uniform distribution,
resulting in a large KL divergence; on the other hand, for the extreme case of u = ∞, we obtain
the original distribution, implying the KL divergence is zero. The following lemma provides a
connection between the parameter u and the divergence constraint δ.

Lemma 1 For Qi
j =

P i
j

u
1+u∑Ni

j=1 P i
j

u
1+u

and any δ ∈ [0, 1
Ni

∑Ni

j=1 log(
1

NiP i
j
)], there exists a positive u,

such that the solution given in Theorem 1 satisfies the constraint (2) with equality

DKL(Q
i||P i) =

Ni∑
j=1

Qi
j log

(
Qi

j

P i
j

)
= δ.

The proofs of Theorem 1 and Lemma 1 are given in the appendix, which are obtained by a careful
analysis of the KKT conditions. Note that the specified δ only places a meaning constraint within
the range given in Theorem 1. Otherwise, the KL constraint is essentially too loose, and the optimal
solution Qi defaults to a uniform distribution. It remains to solve for the value of u that satisfies the
KL constraint with equality. For this purpose, we establish the following lemma.

Lemma 2 For the assignment Qi
j =

P i
j

u
1+u∑Ni

j=1 P i
j

u
1+u

, i = 1, 2, . . . , Ni, DKL(Q
i||P i) is monotonically

non-increasing with respect to u in the range u ≥ 0.

The proof of Lemma 2 is provided also in the appendix. This lemma demonstrates that the KL
divergence decreases as u increases. This property is particularly useful in finding the value of u
since we can easily determine u numerically using a simple and efficient bisection search.

As an illustrative example, consider a probability distribution of four tokens with values
P i = [0.4, 0.3, 0.2, 0.1] and a small δ = 0.0384. Since this δ value lies in the interval
[0, 1

4

∑4
j=1 log(

1
4P i

j
)] = [0, 0.1757], satisfying the condition given in Theorem 1, Lemma 1 guar-

antees the existence of a positive u such that equality holds for the KL constraint (2). Numerically,
it turns out that the solution is u = 1 in this case, yielding the probability:

Qi =
1∑4

j=1 P
1

1+1

j

[0.4
1

1+1 , 0.3
1

1+1 , 0.2
1

1+1 , 0.1
1

1+1 ] = [0.3254, 0.2818, 0.2301, 0.1627] (7)

It is evident that the resulting probability distribution is more uniform compared to the initial P i.
This corresponds to a higher entropy, allowing us to embed more secret bits with Qi than with P i.

5
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4 PRACTICAL CONSIDERATIONS

4.1 TOKENIZATION ERROR

LLM-based steganography relies on several assumptions. Firstly, the underlying LLM and the pa-
rameters given to both Alice and Bob must be identical. Second, it is essential that Bob’s tok-
enization process matches that intended by Alice. The second assumption is in fact quite sub-
tle, and is complicated by the sub-word tokenizer used in modern pre-trained LLMs. These tok-
enizers can guarantee that after detokenizing, the original text can be recovered; however, it does
not guarantee the tokenizer can always reproduce the same sequence of tokens from the detok-
enized text. For example, a token sequence Alice generated during the stego-text encoding process
is {“This”, “mount”, “ain”, “is”, “high”}, resulting in the stego-text containing “This mountain is
high”, which Bob might incorrectly tokenize to {“This”, “mountain”, “is”, “high”}. In order words,
the tokenizer merged “mountain” into a single token rather than the two that the stego-text encoder
intended. This issue exists in most of the previous LLM-based steganography approaches (Ziegler
et al., 2019; Shen et al., 2020), though it has not been addressed explicitly so far.

👩

👨

🔍

B + Secret Message S + Starting Prompt Tp

Verify 
Tokenizing 
Error

GOOD

BAD

Public 
Channel

Recover Secret Message S (Discard B)

Stego-
text

Input tokens

LLM
P Q

append xi

token xi

Stego-text tokens

LLM
Q P

read next token

Select 
interval

W
rit

e 
bi

t

Choose New B

Figure 2: The OD-Stega approach

This tokenization error leads Bob to
decode a bit sequence different from
the original secret bit sequence. Af-
ter thorough testing, we found that
the likelihood of such errors occur-
ring is proportional to the length of
the bit file. In mathematical terms,
the relationship can be described as
ϵtok = O(n), where n is the number
of secret bits, and ϵtok represents the
error rate, measuring the proportion
of tests that fail due to tokenization
errors relative to the total number of
tests.

Since LLMs are computationally de-
manding, it is not realistic to enumer-
ate all such potential error cases to
design strategies to prevent such er-

rors from occurring. Instead, we observe that Alice can in fact verify whether the stego-text can be
correctly decoded by Bob since both sides have a copy of the same tokenizer. Based on this observa-
tion, we propose the following strategy. We prepend a short sequence of additional B bits to the bit
sequence S. Alice then iterates among all B-bits combinations, and uses f(Tp, (B,S)) to produce
the stego-text, until she verifies Bob can indeed correctly decode the text. Bob simply discards the
beginning B bits after decoding.

Next we determine an appropriate choice for the length of B that guarantees the entire steganography
process succeeds with high probability, which we set as 1 − 10−8 in our work. Our experiments
reveal that for LLAMA models, a single bit produces a tokenization error at a rate below 2× 10−4.
Since we are essentially making 2|B| independent attempts to find a successful embedding, we can
ensure that at least one of these attempts does not have any tokenization errors by setting

|B| > 3− log2 (4− log10 2− log10 |S|) , (8)

assuming B is considerably shorter than the length of S, which is justified by empirical observation
that tokenization errors do not occur very often. The overall OD-Stega approach with this consider-
ation is illustrated in Figure 2.

4.2 REDUCE COMPUTATIONAL COMPLEXITY VIA VOCABULARY TRUNCATION

To reduce the computational complexity when the vocabulary set is large, especially when there is a
large number of tokens with probabilities near zero, a simple strategy is to truncate the vocabulary in
the subsequent processing once a probability distribution has been generated. This strategy has been
adopted in Shen et al. (2020). To leverage our optimization formulation, we consider a two-stage

6
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process: first, we truncate the vocabulary, and second, we optimize the probability adjustment on the
truncated vocabulary as discussed in the previous section. For this two-stage approach, we establish
the KL divergence between the original distribution and the eventual distribution on the truncated
vocabulary, given below in Theorem 2.

Let us make the two-stage strategy more precise. We first expand the zero-probability index set Ai

from [Ni + 1 : N ] to [Nϵ + 1 : N ], where Nϵ = min{n |
∑n

j=1 P
i
j ≥ 1 − ϵ}. This leaves us

with a total of Nϵ variables. There may not exist an n such that
∑n

j=1 P
i
j = 1 − ϵ exactly, but

for simplicity, we assume that this can be achieved exactly, meaning that
∑Nϵ

j=1 P
i
j = 1 − ϵ. This

assumption is reasonable, since in LLMs, the number of tokens is quite large, and the cutoff value ϵ
is small, therefore, this approximation is usually quite accurate. After the first stage, the variables in
the optimization problem are reduced to [Qi

1, · · · , Qi
Nϵ

].

We can now focus on the most likely symbols in the probability list P i
j , j ∈ [1 : Nϵ]. We define the

re-normalized probability P̂ i
j (ϵ) =

1
1−ϵP

i
j , which we refer to as an ϵ cutoff probability of P i. The

KL divergences between P i and its cutoff P̂ i(ϵ) are

DKL(P̂
i(ϵ)||P i) =

Nϵ∑
j=1

P̂ i
j (ϵ) log

(
P̂ i
j (ϵ)

P i
j

)
=

Nϵ∑
j=1

1

1− ϵ
P i
j log

(
1

1−ϵP
i
j

P i
j

)
(9)

=
1

1− ϵ
log

(
1

1− ϵ

) Nϵ∑
j=1

P i
j = − log(1− ϵ) (10)

The next theorem establishes the KL divergence between the original distribution P i and the opti-
mized distribution Qi, the latter of which is obtained by solving the optimization problem in (1)-(5),
with P̂ i(ϵ) replacing P i(ϵ).

Theorem 2 Let P̂ i(ϵ) be the ϵ cutoff probability distribution of P i and Qi be the solution of the
optimization problem (1)-(5) with the constraint DKL(Q

i||P̂ i(ϵ)) ≤ δ̂(ϵ), then it holds that

DKL(Q
i||P i) = DKL(P̂

i(ϵ)||P i) +DKL(Q
i||P̂ i(ϵ)). (11)

LLM

Pi

Input tokens {x0, x1, ⋯, xi−1}

Output Cutoff ϵ

ϵ

̂Pi(ϵ) Qi

Optimize xi

C
ho

os
e 

to
ke

n 
x i

Append xi

Figure 3: The two-stage design: Vocabulary trun-
cation and distribution optimization

The proof of Theorem 2 can be found in the
Appendix. It is well known that the KL diver-
gence is not a true metric since it is not sym-
metric and does not satisfy the triangular in-
equality in general. Theorem 2 indicates that, in
the specific scenario involving the cutoff proba-
bility and optimized counterpart, the KL diver-
gence is in fact additive. Given a total KL bud-
get δ, it is clear that we can determine δ̂(ϵ) =
δ + log(1 − ϵ), where − log(1 − ϵ) represents
the KL divergence between P̂ i(ϵ) and P i as
given in (10). Since the KL divergence is pos-
itive, it is essential to select ϵ within the range
0 < ϵ < 1 − e−δ to guarantee that δ̂(ϵ) repre-
sents a valid KL divergence value.

4.3 δ SELECTION ON THE SEQUENCE LEVEL

Denote the divergence threshold in each time i as δi. If δi is set too large, the resulting adjustment
to the probability distribution may lead to the selection of unusual tokens, negatively impacting the
fluency of the stego-text. This issue is particularly noticeable when dealing with positions that have
probability distributions with very low entropy values, i.e., most tokens have near-zero probability
and the choices of tokens are almost deterministic. To address this issue, we need to choose δi at the
sequence level adaptively to the entropy H(P i), i.e. δi = h(H(P i)). A simple approach is to set
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Figure 4: Average (over 100 runs) bytes embedded vs. KL divergence. The colored points represent
OD-Stega, while the black data points correspond to the truncation-based method. The parameter C
controls the adjustment δi at each time step; as C increases, the distribution diverges further from
the natural language distribution.

δi = C ·H(P i) where C is a constant. Furthermore, we introduce another threshold α,

δi =

{
C ·H(P i), if H(P i) ≥ α

0, if H(P i) < α
(12)

which means that for the position where H(P i) falls below this threshold, we set δi to zero.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

In our experiment, we chose the LLAMA2-7B pretrained model (Touvron et al. (2023)) as our main
Large Language Model, employing the SentencePiece tokenizer. This LLM features a vocabulary
of 32,000 tokens, facilitating efficient tokenization and diverse text representation.

We performed experiments using a range of starting prompts on different topics of interest. Exam-
ples topics include the Olympics, news, technology, and blogs, among others. The prompts usually
have 10 to 20 words. Despite their brevity, we demonstrate that OD-Stega can still generate stego-
texts that remains relevant to the initial prompt with the assistance of contemporary LLMs.

In our two-stage optimization framework, we typically select a cutoff value ϵ within the range
(0, 0.05], and adjust the constant C ∈ [0, 0.2) in (12) to control the δi values. Additionally, the
threshold α is adjusted within the interval [0, 2] to enhance the optimization procedure. Setting the
cutoff ϵ at its maximum of 0.05 results in the effective elimination of roughly 2000 variables. More-
over, by adjusting the range of δi and α values, we can assess how these values influence both the
performance of the generated stego-text and the number of embedded bits.

The primary evaluation metric used in this study is the number of embedded secret bits per token,
or equivalent the number of embedded bytes for a fixed number of generated stego-text tokens, for
which a higher value indicates more efficient embedding. The quality of the generated stego-text is
measured by two metrics: 1) The KL Divergence where a lower value implies better imperceptibil-
ity; 2) A perception evaluation using GPT-4 as a human perception surrogate, where we simply ask
GPT to determine whether the stego-text is written by human or not. We refer to the approach of
Shen et al. (2020) as the truncation-based method, and use it as the main reference to compare with
our proposed OD-Stega method.

5.2 BITS/TOKEN (EMBEDDING UTILIZATION) VS. KL TRADEOFF

In this experiment, we keep the number of tokens in the stego-text to be 25, but attempt to embed
more secret bits than can be embedded with 25 tokens in order to test the limits of the method. By
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varying parameter C from 0 to 0.075 and adjusting parameters ϵ and α, we obtained various pairs
consisting of number of bytes embedded and the corresponding KL divergence, shown in Figure
4. Different shapes of the data points in this plot correspond to different levels of truncation cut-
off value. The highest contour curve predominantly consists of the square points, representing the
smallest cutoff category in our experiments, ranging from 0.005 to 0.015. This behavior suggests
that, given a fixed KL divergence budget, allocating a larger proportion of the probability distance
to the optimization process, rather than to the truncated portion, results in more effective bit embed-
ding.

We observe that as C increases (which corresponds to an increase in δi), the data points move
linearly towards the upper right, meaning more secret bits are embedded, but the stego-text becomes
less natural. On the other hand, the black points representing the truncation-based method (Shen
et al., 2020) shifts toward lower right, meaning losses in the embedding capability. From this plot, it
is clear that the proposed method has the ability to embed more than 20 bytes while maintaining a KL
divergence below 0.25. In comparison to the truncation-based method, at a KL divergence of 0.02,
our approach achieves a 1.25-times improvement in bit embedding capacity. At a KL divergence
close to 0.06, our method shows an even greater enhancement, achieving a 1.5-times increase in
embedding efficiency over the truncated method.

5.3 GPT EVALUATION
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GPT Evaluation Score
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0.01 < C  0.02
0.02 < C  0.03
C > 0.03

Cutoff Range
0.005    0.015
0.02    0.035
0.04    0.05
 > 0.05

Figure 5: Average (over 100 runs) bytes embedded vs. GPT
evaluation score. The colored data points represent the
OD method, while the black data points correspond to the
truncated-based method with varying cutoff values.

We use the GPT-4 model to evaluate
whether our stego-text appears nat-
ural and can avoid detection by the
human eavesdropper Eve. We in-
structed GPT to mimic a human eval-
uator to assess the text and determine
if it was likely written by a human,
responding with either “yes” or “no”.
In this experiment, we examined hun-
dreds of generated stego-texts with
GPT-4 under various parameters out-
lined in Section 5.2, with the results
displayed in Figure 5. The horizon-
tal axis represents the GPT evalua-
tion score, i.e., the ratio of test cases
marked “yes” by GPT in the total
number of files evaluated.

Since a higher GPT score indicates
a better result, the upper right direc-
tion means better performance in this
point cloud plot. We first observe that
the KL divergence is a relatively ac-

curate measure of human perception. The black data points represent the truncation-based method,
which again under-performs. At a GPT evaluation score of approximately 0.77, OD-Stega can attain
an embedding rate 1.4 times higher; at around 0.85, OD-Stega even achieves 1.5 times the number
of embedded bits than the truncation-based approach. We observe that a cutoff value between 0.01
and 0.3 appears to be suitable for OD-Stega.

Interestingly, at the extreme high GPT score regime, OD-Stega with a small truncation can achieve
above 0.9, which the approach with essentially unadjusted LLM distributions (extremely small trun-
cation values and no optimization of the distribution) cannot achieve. In other words, at the extreme
regime, the OD-Stega approach can achieve more natural stego-texts than those directly generated
from the LLAMA model, viewed from the point of a GPT surrogate.

5.4 EXAMPLES OF GENERATED STEGO-TEXTS

Figure 6 presents examples of stego-texts generated using our proposed method. Given a secret
message S and an initial prompt Tp, two text outputs were generated by varying the parameter
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values. The prompt, which discusses animals in the Amazon rainforest, yielded distinct results based
on the chosen parameter settings. The green text represents coherent and logical content, while the
red text deviates from the given topic. The green OD-Stega text, generated using the parameter
pair (C = 0.025, ϵ = 0.05), demonstrates fluency and maintains consistency with the prompt’s
topic. In contrast, the red OD-Stega text, produced with a larger parameter C = 0.05 and higher KL
divergence, shows a significant departure from the natural language distribution. Specifically, in the
second sentence, the text becomes incoherent, leading to the generation of awkward and off-topic
content in this instance.

S : 
00111001100010101
01111111001011100
00100011101010101
11100010011010110
01010100111111000
10100000100101110
01101011001100010
101001000..

Secret Message

Prompt : There are many species of animals living in the Amazon rainforest, including species such as  

iguanas, turtles, snakes, birds, and small amphibians. Forest 
clearing for permanent settlement may create refuge areas for big-
footed short-horned grassland ungulates by allowing the trees that 
otherwise line the field boundaries to be harvested … 

C = 0.025
ϵ = 0.05

iguanas, deer, porcupines and armadillos are likely culprits. In 
1804, Brother Bernard Hyacinthe Jusserand was appointed 
Professor of Mathematics. Joseph Girard took over the Dean's 
role. Walter Goodman replaced Erwin… 

C = 0.05
ϵ = 0.05

Figure 6: Stego-text examples in different parameters: The green text illustrates more fluent and
logically consistent output, while the red text shows incoherent and less natural results.

S : 
0100111011011011
1110111000101111
1010111100000001
1111010010101001
0110101110000111
1000110111000110
1100100101101010
00101011001011..

Secret Message

Prompt : BREAKING NEWS: Yesterday in Pennsylvania,

C = 0.05
ϵ = 0.025

10/21, there was a 2-day Exhibition and Conference on Cement and 
Building Materials Various Densities of Self-Compacting Concrete 
with Polymeric Modification属于商业化的⼩麦图…ϵ = 0.05

Truncation 
based

13 farmers joined together to fight for the protections that 
would protect family farm businesses in between fourth 
quarter calendar quarters rather than incorporate schedule form 
adjustments available…

Figure 7: Stego-text examples in different methods. The green text illustrates more fluent and
logically consistent output, while the red text shows incoherent and less natural results.

Figure 7 presents a comparison between two stego-text generation methods: truncation-based and
OD-Stega. The results indicate that when using a larger value of ϵ in the truncation-based method,
the generated text can produce anomalous tokens, as illustrated by the red text in this example.
Specifically, with a cutoff of ϵ = 0.05, the truncation-based method starts generating irregular tokens
after producing 20 tokens. In contrast, by using a smaller ϵ and allocating more of the adjustment
budget to the optimization stage, as done for the green text, the output appears significantly more
natural. More examples can be found in Appendix F.

6 CONCLUSION

To embed more secret messages in stego-texts while reducing computational complexity and main-
taining near-imperceptibility, we propose the OD-Stega method. This approach optimizes the prob-
ability distribution towards a more uniform structure under a perception constraint. Additionally,
we address the tokenization errors that often arise in LLM-based steganography due to the use of
sub-word tokenizers in modern LLMs. Together with the vocabulary truncation technique, our two-
stage embedding process significantly increases the embedding efficiency under the KL divergence
constraint, and demonstrates strong imperceptibility performance. We conducted extensive tests and
evaluate the outputs both using the KL divergence value and the GPT evaluation. OD-Stega provides
a robust solution, enhancing both efficiency and security in LLM-based steganographic embedding.
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A RELATED WORKS

Linguistic Steganography (LS) can be divided into two main areas: modification-based (cover-
based) and generation-based (coverless). The modification-based approach conceals secret mes-
sages by altering the cover text through synonyms, syntactic changes, and word substitutions (Top-
kara et al., 2006; Chang & Clark, 2010; Qi et al., 2013; Chang & Clark, 2014). In contrast, the
generation-based approach creates stego-texts using methods like Markov chains (Dai et al., 2009;
2010; Moraldo, 2012) and deep learning techniques. With the advancement of generative language
models, an increasing number of steganography research efforts now leverage neural networks to
produce steganographic texts (Fang et al., 2017; Yang et al., 2018; Ziegler et al., 2019; Xiang et al.,
2017; Dai & Cai, 2019; Zhang et al., 2021; Shen et al., 2020; Kaptchuk et al., 2021; Ding et al.,
2023; de Witt et al., 2024)

Fang et al. (2017), for instance, explored a block-based methodology in which they designed a text
generation model that first partitions the dictionary and allocates a specific code for each word.
During the output stage, modified word-level LSTM neural network is utilized to choose words
according to the encoded secret information. Their method organizes the vocabulary into subsets,
the best word is chosen from a candidate pool based on the encoded bitstream at every generation
step. Yang et al. (2018) presented a model that enhances text fluency and security in steganography
by encoding each word dynamically based on its conditional probability distribution, employing
both fixed-length coding (FLC) and variable-length coding (VLC). Through the use of structures
like full binary trees or Huffman trees, this method enhances the naturalness and quality of generated
texts while embedding hidden information more effectively.

Ziegler et al. (2019) also utilized GPT-2 to create stego-texts, by proposing a linguistic steganog-
raphy method that uses arithmetic coding with a pretrained neural language model. This method
encodes secret messages by truncating the token distribution to the top K most probable tokens
at each generation step, thus minimizing the difference between the conditional probability distri-
butions of steganographic and normal text, achieving close to optimal statistical security. Human
evaluations were conducted to confirm that the generated text successfully deceived readers.

Building on Ziegler et al.’s arithmetic coding and truncating probability method, Shen et al. (2020)
modified K for each iteration, adjusting the conditional probability threshold with each new token.
They claimed to select the smallest K that still ensured near-imperceptibility. Additionally, they
employed human evaluations to confirm their findings, demonstrating their method’s effectiveness
in deceiving eavesdroppers.

Dai & Cai (2019) employed GPT-2 for generating steganographic texts, crafting a novel stegano-
graphic mapping to embed secret messages and showcasing that effective mapping increases text
security. They also proposed the patient-Huffman algorithm in such setting, which dynamically ad-
justs the embedding rate through the application of Kullback-Leibler divergence, enhancing both the
quality and imperceptibility of steganographic texts. Their approach achieved near-imperceptibility,
validated using total variation distance.

Recognizing the informal nature in the treatment of the security aspect of the methods in the studies
from natural language processing community Ziegler et al. (2019); Dai & Cai (2019); Shen et al.
(2020), the security research community further refined these methods to obtain provably secure
protocols (Kaptchuk et al., 2021; Zhang et al., 2021; Ding et al., 2023; de Witt et al., 2024). Zhang
et al. (2021) attempted to use grouping to match the granularity of probability to that of the secret
message distribution granularity, however, their method is only perfectly secure when the natural
language distribution allows such a grouping. Moreover, the grouping operation itelf also leads to
a loss of embedding utilization. Kaptchuk et al. (2021) replaced the repeated secret key in Ziegler
et al. (2019) with pseudo-random generators, and showed that the resulting protocol is provably
secure. However, the arithmetic coding component in Kaptchuk et al. (2021) is a reduced version
from the full version, resulting in a slight loss in the embedding utilization. Instead of encrypting
the original message and then using the generative model for steganography encoding, Ding et al.
(2023) combined the encryption step and the steganography encoding, resulting in another provably
secure protocol. The work de Witt et al. (2024) proposed a different approach to couple the message
and the stego-text than using arithmetic coding directly.
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In this paper, we present our encoding-decoding framework, drawing inspiration from Ziegler et al.
(2019) and Shen et al. (2020). We observed that truncating a significant portion of the conditional
probability from below leads to a reduction in bits embedded, which improves computational effi-
ciency but reduces capacity. In fact, their approach for embedding long secret messages requires
more computation in order to generate long stego-texts. To resolve this issue, we propose a novel
method for adjusting the conditional probability to maximize the information embedded while main-
taining near imperceptibility. Our results demonstrate that we can embed nearly 1.5 times the amount
of bits compared to the previous work.

B PROOF OF THEOREM 1

The Lagrangian function of the problem is

L =

Ni∑
j=1

Qi
j logQ

i
j + u

 Ni∑
j=1

Qi
j log(

Qi
j

P i
j

)− δ

+ λT (−Qi) + ω

 Ni∑
j=1

Qi
j − 1

 (13)

where u,λ, ω are the Lagrangian multipliers of constraint (2), (3) and (4), respectively. Then the
KKT condition can be derived as follows:

1. Stationarity:

∂L

∂Qi
j

= logQi
j + 1 + u

(
log

Qi
j

P i
j

+ 1

)
− λj + ω = 0, ∀j ∈ [1 : Ni] (14)

2. Primal feasibility: 
∑Ni

j=1 Q
i
j log

Qi
j

P i
j
− δ ≤ 0

Qi
j ≥ 0, ∀j ∈ [1 : Ni]∑Ni

j=1 Q
i
j − 1 = 0

(15)

3. Dual feasibility: {
u ≥ 0

λj ≥ 0, ∀j ∈ [1 : Ni]
(16)

4. Complementary slackness:
u
(∑Ni

j=1 Q
i
j log

Qi
j

P i
j
− δ
)
= 0

λjQ
i
j = 0, ∀j ∈ [1 : Ni]

ω
(∑Ni

j=1 Q
i
j − 1

)
= 0

(17)

Since the optimization problem is convex and clearly feasible, a solution to the KKT condition is
also a global optimal solution. We claim the following is a solution to the KKT conditions:

1. Primal variables:
In case δ ∈ [0, 1

Ni

∑Ni

j=1 log(
1

NiP i
j
)], from stationarity in (14),

Qi
j = 2

1
1+u (u logP i

j−1+λj−u−ω) (18)

= DP i
j

u
1+u , ∀j ∈ [1 : Ni] (19)

where D = 2
−1+λj−u−ω

1+u is a constant.
Since

∑Ni

j=1 Q
i
j = 1, we can simply rewrite Qi

j in the form:

Qi
j =

P i
j

u
1+u∑N

j=1 P
i
j

u
1+u

, ∀j ∈ [1 : Ni] (20)
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In case δ > 1
Ni

∑Ni

j=1 log(
1

NiP i
j
), we have

Qi
j =

1

Ni
, ∀j ∈ [1 : Ni] (21)

2. Dual variables: 
u

≥ 0, δ ∈ [0, 1
Ni

∑Ni

j=1 log(
1

NiP i
j
)]

= 0, δ > 1
Ni

∑Ni

j=1 log(
1

NiP i
j
)

λj = 0, ∀j ∈ [1 : Ni]

ω = 1
1+u

(
−1 + log(

∑Ni

j=1 P
i
j

u
1+u )

) (22)

It is straightforward to verify all the KKT conditions are satisfied, except the dual feasibility condi-
tion u ≥ 0, which we prove in Lemma 1 next.

C PROOF OF LEMMA 1

First, we note that limu→0 DKL(Q
i||P i) = 1

Ni

∑Ni

j=1 log(
1

NiP i
j
) and limu→∞ DKL(Q

i||P i) = 0,
because

lim
u→0

Qi
j =

1

Ni
⇒ lim

u→0
DKL(Q

i||P i) =

Ni∑
j=1

1

Ni
log

(
1
Ni

P i
j

)
=

1

Ni

Ni∑
j=1

log

(
1

NiP i
j

)
(23)

lim
u→∞

Qi
j = P i

j ⇒ lim
u→∞

DKL(Q
i||P i) =

Ni∑
j=1

P i
j log

(
P i
j

P i
j

)
= 0. (24)

Second, note that that DKL(Q
i||P i) is continuous in u ≥ 0. To see this, consider P i

j as the known
distribution value, Qi

j is continuous in u ≥ 0 because u
1+u is continuous in R \ {−1}. In addition,

Qi
j will not be zero for all j ∈ [1 : Ni], which indicates that log(

Qi
j

P i
j
) is continuous. Therefore,

DKL(Q
i||P i) is also continuous in u ≥ 0 since the function is a linear combination of continuous

functions.

Lemma 2, which is proved below, states that DKL(Q
i||P i) is non-increasing in u for u ≥ 0. By

the Intermediate-Value Theorem (IVT), it is clear that there exists a positive u such that the KL
divergence is equal to the given δ ∈ [0, 1

Ni

∑Ni

j=1 log(
1

NiP i
j
)].

D PROOF OF LEMMA 2

Here we show that DKL(Q
i||P i) is non-increasing in u for u ≥ 0, by analyzing the derivative as

follows:

∂DKL(Q
i||P i)

∂u
=

∂

∂u

 Ni∑
j=1

Qi
j log

Qi
j

P i
j

 =

Ni∑
j=1

∂

∂u

(
Qi

j log
Qi

j

P i
j

)
(25)

=

Ni∑
j=1

{
∂

∂u

(
P i
j

u
1+u∑Ni

k=1 P
i
k

u
1+u

)
log

 P i
j

−1
1+u∑Ni

k=1 P
i
k

u
1+u

+

(
P i
j

u
1+u∑Ni

k=1 P
i
k

u
1+u

)
∂

∂u
log

(
P i
k

−1
1+u∑Ni

k=1 P
i
k

u
1+u

)}
(26)

=

Ni∑
j=1

{[(
Ni∑
k=1

P i
j

u
1+u

)−2(
1

1 + u

)2

P i
j

u
1+u

(
Ni∑
k=1

P i
j

u
1+u log(

P i
j

P i
k

)

)]
log

 P i
j

−1
1+u∑Ni

k=1 P
i
k

u
1+u
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+

(
P i
j

u
1+u∑Ni

k=1 P
i
k

u
1+u

)

·

[∑Ni

k=1 P
i
k

u
1+u

P i
j

−1
1+u

( Ni∑
k=1

P i
j

u
1+u

)−2(
1

1 + u

)2

P i
j

−1
1+u

(
Ni∑
k=1

P i
k

u
1+u log(

P i
j

P i
k

)

)]}
(27)

=

Ni∑
j=1

(
Ni∑
k=1

P i
k

u
1+u log(

P i
j

P i
k

)

){
T−2

(
1

1 + u

)2

P i
j

u
1+u log

P i
j

−1
1+u

T

+

(
P i
j

u
1+u

T

) T

P i
j

−1
1+u

T−2

(
1

1 + u

)2

P i
j

−1
1+u

}
(28)

= T−2

(
1

1 + u

)2 Ni∑
j=1

{
P i
j

u
1+u

(
Ni∑
k=1

P i
k

u
1+u log(

P i
j

P i
k

)

)log

P i
j

−1
1+u

T

+ 1

} (29)

= T−2

(
1

1 + u

)2 Ni∑
j=1

{(
Ni∑
k=1

(P i
jP

i
k)

u
1+u log(

P i
j

P i
k

)

)
log

2P i
j

−1
1+u

T

} (30)

= T−2

(
1

1 + u

)2 Ni∑
j=1

Ni∑
k=1

Bjk log

2P i
j

−1
1+u

T

 (31)

= T−2

(
1

1 + u

)2 Ni∑
j,k=1
j ̸=k

P i
j≥P i

k

Bjk

log

2P i
j

−1
1+u

T

− log

(
2P i

k

−1
1+u

T

) (32)

= T−2

(
1

1 + u

)2 Ni∑
j,k=1
j ̸=k

P i
j≥P i

k

Bjk

(
−1

1 + u

)
log

(
P i
j

P i
k

)
≤ 0 (33)

where T =
∑Ni

k=1 P
i
k

u
1+u and Bjk = (P i

jP
i
k)

u
1+u log

(
P i

j

P i
k

)
. Eq. (32) follows from Bjk =

−Bkj , ∀j ̸= k and Bjk = 0, ∀j = k. The only negative term in (33) is −1
1+u , since Bjk and

log(
P i

j

P i
k

) are both positive in the case P i
j ≥ P i

k. This proves the inequality. It follows that that

DKL(Q
i||P i) is non-increasing in u for u ≥ 0.

E PROOF OF THEOREM 2

The result in Theorem 1 shows that the solution to the optimization problem with constraint
DKL(Q

i||P̂ i(ϵ)) ≤ δ̂(ϵ) is:

Qi
j =


P̂ i

j (ϵ)
û(ϵ)

1+û(ϵ)∑Nϵ
j=1 P̂ i

j (ϵ)
û(ϵ)

1+û(ϵ)

,∀ δ̂(ϵ) ∈ [0, 1
Nϵ

∑Nϵ

j=1 log(
1

NϵP̂ i
j

)]

1
Nϵ

, otherwise

(34)

=


P i

j

û(ϵ)
1+û(ϵ)∑Nϵ

j=1 P i
j

û(ϵ)
1+û(ϵ)

,∀ δ̂(ϵ) ∈ [0, 1
Nϵ

∑Nϵ

j=1 log(
1−ϵ
NϵP i

j
)]

1
Nϵ

, otherwise

(35)

for all j ∈ [1 : Nϵ] and for some positive û(ϵ). In addition, Lemma 1 states that when δ̂(ϵ) ∈
[0, 1

Nϵ

∑Nϵ

j=1 log(
1

NϵP̂ i
j

)], the obtained solution ensures that the KL divergence DKL(Q
i||P̂ i(ϵ)) is
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equal to the given constraint δ̂(ϵ). In the following, we show that in this case, the KL divergence is
additive, which means that the divergence between Qi and P i is the sum of the divergence between
Qi and P̂ i(ϵ) and between P̂ i(ϵ) and P i.

δ̂(ϵ) =

Nϵ∑
j=1

P i
j log

(
P i
j

P̂ i
j (ϵ)

)
(36)

=

Nϵ∑
j=1

 P̂ i
j (ϵ)

û(ϵ)
1+û(ϵ)∑Nϵ

j=1 P̂
i
j (ϵ)

û(ϵ)
1+û(ϵ)

 log

 P̂ i
j (ϵ)

û(ϵ)
1+û(ϵ)

P̂ i
j (ϵ)

∑Nϵ

j=1 P̂
i
j (ϵ)

û(ϵ)
1+û(ϵ)

 (37)

=

Nϵ∑
j=1

 P i
j

û(ϵ)
1+û(ϵ)∑Nϵ

j=1 P
i
j

û(ϵ)
1+û(ϵ)

 log

 P i
j

û(ϵ)
1+û(ϵ)

1
1−ϵP

i
j

∑Nϵ

j=1 P
i
j

û(ϵ)
1+û(ϵ)

 (38)

=

Nϵ∑
j=1

P i
j

û(ϵ)
1+û(ϵ)

T̂ (ϵ)

 log

 (1− ϵ)P i
j

−1
1+û(ϵ)

T̂ (ϵ)

 (39)

=

Nϵ∑
j=1

P i
j

û(ϵ)
1+û(ϵ)

T̂ (ϵ)

log(1− ϵ) + log

P i
j

−1
1+û(ϵ)

T̂ (ϵ)

 (40)

=

Nϵ∑
j=1

P i
j

û(ϵ)
1+û(ϵ)

T̂ (ϵ)

 log

P i
j

−1
1+û(ϵ)

T̂ (ϵ)

+
log(1− ϵ)

T̂ (ϵ)

Nϵ∑
j=1

P i
j

û(ϵ)
1+û(ϵ) (41)

= DKL(Q
i||P i) + log(1− ϵ) (42)

= DKL(Q
i||P i)−DKL(P̂

i(ϵ)||P i) (43)

⇒ DKL(Q
i||P i) = DKL(P̂

i(ϵ)||P i) +DKL(Q
i||P̂ i(ϵ)) (44)

where T̂ (ϵ) =
∑Nϵ

j=1 P
i
j

û(ϵ)
1+û(ϵ) in (39).

F MORE EXAMPLES

The example presented in Figure 8 illustrates the generated stego-text by fixing the parameter C =
0.025 and comparing the results between an extremely small cutoff value and a typical cutoff value
of ϵ = 0.05. In this instance, the green text, corresponding to the normal cutoff, appears logical
and coherent, whereas the red text exhibits uncommon word choices after the generation of 10
tokens. This example strengthens our conclusion in Section 5.3, where the cloud plot illustrated
that extremely low cutoff values resulted in lower GPT evaluation scores. This occurs because such
tokens are not truncated, and the likelihood of being chosen increases after optimization.

In Figure 9 we show more examples of generated stego-texts using the proposed OD-Stega approach
with various parameters. It can be seen that as the (C, ϵ) parameters increase, the embedding capa-
bility increases. The generated stego-texts mostly remain fluent in this parameter range.
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S : 
000110111001110110
010000110101100111
111101100011001010
001000110111111011
010011001010101100
111011100001100100
001011001111011011
000101000111100101
100111010111001011
1100101111…

Secret Message

Prompt : In the recent Tokyo 2024 Olympics, the most notable event was 

the 100-meter run won by Grenada's Everard Spicer with 
a time of 20.61 to narrowly beat first-place qualifier 
Hariша турнина … 

C = 0.025
ϵ = 0.05

ϵ = 0.005
C = 0.025

the 10-meter shooting range part of… Page 3, line 21, 
[Schedule 1], leave out paragraph (c) and add ““to whose 
ill-health””, after “maintenance-mental”. Remove out-of-
date references to the North Shore City Council led … 

Figure 8: Stego-text examples in different cutoffs. The green text illustrates more fluent and logically
consistent output, while the red text shows incoherent and less natural results.

Bytes 
Embedded

Parameters Prompt + Stego-text

11 Bytes (0.005, 0.005) In the recent Tokyo 2024 Olympics, the most notable event was the 100 meter men’s 
final between two former WORLD youth medallists. There was a semi-final …

13 Bytes (0.005, 0.005) There are many species of animals living in the Amazon rainforest, including species 
such as iguanas and tree puff-legs, 11 of which are classified as Critically Endangered…

9 Bytes (0.005, 0.025)
In this blog post, I would like to recount an event that happened to me the other day. I 
was leaving my house when 14 year-old Hannah spotted me and said: ‘Hey, have you 
got a minute?’ …

11 Bytes (0.005, 0.030) I went to this restraunt the other day, and I would rate its food 10 out of 10. The meals 
are fantastic and the response in service is awesome. Staff and students…

11 Bytes (0.005, 0.040) Over the next few days, the weather will be 1 to 5 degrees C above average for the 
northern hemisphere over its 20-year period. But could…

11 Bytes (0.005, 0.040) Over the next few days, the weather will be icy. Daytime temperature will reach 35 °c 
and the rail gauge will remain the same as existing lines so international …

12 Bytes (0.005, 0.045)
In this blog post, I would like to recount an event that happened to me the other day. I 
was leaving my house when 150 feet away an old man carrying a wheel barrow. He 
turned and stopped in front of me and exclaimed …

11 Bytes (0.005, 0.045)
In this blog post, I would like to recount an event that happened to me the other day. I 
was leaving my house when 2 CMPD motorcycle officers came out and asked if I had 
any alcohol on me and then told me that they …

10 Bytes (0.015, 0.045)
In the recent Tokyo 2024 Olympics, the most notable event was the 100 metres final. 
The United States did not send track star Tommie Smith and his silver medal to 
represent their…

13 Bytes (0.015, 0.010) BREAKING NEWS: Yesterday in Pennsylvania, 190 Colorado immigrant detainees had 
been released pending federal reviews of their cases but many had returned to…

10 Bytes (0.025, 0.045)
There are many species of animals living in the Amazon rainforest, including species 
such as iguanas, arapas and manakins. The landscape also includes wonderful beaches 
like Manzanillo, Punta …

12 Bytes (0.025, 0.010) BREAKING NEWS: Yesterday in Pennsylvania, 120 residents were evacuated after fuel 
started leaking from the site. “Those are crimes and …

14 Bytes (0.035, 0.045) Due to recent advances in technology, 2.9 million African households now enjoy access 
to electricity after the Millennium. One day in future…

15 Bytes (0.035, 0.010) Over the next few days, the weather will be icy again... Crazy it's so hot here today, it 
doesn't seem reasonable to just spend a day at …

(C, ϵ)

Figure 9: Stego-text examples in different pair of parameters (C, ϵ) and length of secret message
embedded.
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