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A Proof of Claim 11

Claim 1. The proposed sequential credit assignment achieves additive advantage-decomposition.2

Proof. We discuss a multi-agent system with n agents identified by ai(i ∈ {1, ..., n}) under one3

specific sequence <a1, a2, ..., an>. Claim 1 can also be proved from the rest (n!− 1) orders in the4

same way. Here we denote uaia1 = [ua1 , ua2 , ..., uai ] (i = 1, 2, 3, ..., n).5

For better understanding, we analyze in the reverse order (from agent an to agent a1). As for the last6

agent an in the sequence, we evaluate its action based on all the preceding agents’ fixed behaviors, so7

there is no need to calculate the expectations on the others’ actions, and the advantage function for8

agent an is the same as in COMA:9

Aan (s,u) = Q (s,u)−
∑
u′an

πan (u′an |τan) ·Q
(
s,
(
u−an , u′an

))
. (A1)

When evaluating the second-to-last agent an−1, the actions of agent a1 to an−2 are fixed. We only10

consider the expectation on agent an’s action for the first term in Equ.(6) and the expectation on the11

actions of agent an−1 and an for the second term in Equ.(6) in our main paper:12

Aan−1 (s,u) =
∑
u′an

πan (u′an |τan) ·Q
(
s,
(
u−an , u′an

))
−
∑
u′an−1

∑
u′an

πan−1 (u′an−1 |τan−1) · πan (u′an |τan) ·Q
(
s,
(
uan−2
a1 , u′an−1 , u′an

))
.

(A2)
We can conclude the advantage function of each agent ai (i ∈ {2, ..., n}) as:13

Aai (s,u) =
∑
u′ai+1

· · ·
∑
u′an

πai+1 (u′ai+1 |τai+1)· · ·πan (u′an |τan)·Q
(
s,
(
uaia1 , u

′ai+1 ,· · ·, u′an
))

−
∑
u′ai

· · ·
∑
u′an

πai (u′ai |τai) · · ·πan (u′an |τan) ·Q
(
s,
(
uai−1
a1 , u′ai , · · · , u′an

))
,

(A3)
and the advantage of the first agent in the sequence a1 is:14

Aa1 (s,u) =
∑
u′a2

· · ·
∑
u′an

πa2 (u′a2 |τa2) · · ·πan (u′an |τan) ·Q (s, (ua1 , u′a2 , · · · , u′an))

−
∑
u′a1

· · ·
∑
u′an

πa1 (u′a1 |τa1) · · ·πan (u′an |τan) ·Q (s, (u′a1 , u′a2 , · · · , u′an))
(A4)
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The second term of the above equation, i.e., the expected Q value of all possible joint actions, is15

recognized as the value of the state V (s). We then rewrite Equ.(A4) as:16

Aa1 (s,u) =
∑
u′a2

· · ·
∑
u′an

πa2 (u′a2 |τa2) · · ·πan (u′an |τan) ·Q (s, (ua1 , u′a2 , · · · , u′an))− V (s)

(A5)
It can be seen from Equ.(A3) that the second term of Aai (s,u) is the same as Aai−1 (s,u)’s first term17

(i ∈ {2, 3, ..., n}). We can eliminate most of the terms by summing from Aa1 (s,u) to Aan (s,u),18

acquiring the following equation that only retains the first term of Aan and the second term of Aa1 .19

Therefore, we derive the following equation from Equ.(A1) and Equ.(A5):20

n∑
i=1

Aai (s,u) = Q (s,u)− V (s) = A (s,u) . (A6)

From Equ.(A6), we can see that our explicit credit assignment through the proposed sequential21

advantage function decomposes the total advantage function A (s,u) in an additive form.22

B Pseudocode23

We provide SeCA’s pseudocode below for a better understanding of its optimization procedure.24

Algorithm 1 Sequential Credit Assignment Optimization Procedure
1: Randomly initialize the policy network parameter θ and the critic network parameter φ.
2: Initialize target critic network parameter φ− ← φ.
3: while not terminated do
4: Sample b episodes {τ i} (i ∈ {1, 2, ..., b}) where τ i = {si0, zi0,ui0, ri0, ..., siT , ziT ,uiT , riT }.
5: for each episode i = 1 to b do
6: for timestep t = T to 0 do
7: Compute target yit = rit + γ

(
λyit+1 + (1− λ)fφ−(sit+1,uit+1)

)
.

8: Compute critic loss Lt(φ)i =
(
yit − fφ(sit,uit)

)2
.

9: end for
10: for all agents a ∈ {1, 2, ..., n} do
11: Compute a’s contribution to τ i: cia =

∑
xj∈πa PathIG

τ i

j (πa) according to Equ.(1).
12: end for
13: Decide the sequence based on cia. Arrange agents with higher contributions in the front.
14: for all agents in the sequence do
15: Compute each agent a’s sequential advantage Aia(s,u) according to Equ.(7) and (8).
16: end for
17: end for
18: // Critic Learning:
19: Update the critic parameter φ by descending the gradient∇φ 1

bT

∑
i

∑
t Lt(φ)i.

20: // Policy Learning:
21: Update the policy parameter θ by by maximizing the following objective:

1

n

∑
a

[
log πa(ua|τa)

(
1

b

∑
i

(
1

T

∑
t
Aia(st,ut)

))
+H (πa(·|τa))

]
22: if at target update interval then
23: Update the target critic parameter φ− ← φ.
24: end if
25: end while

C Experiment Details on Multi-Agent Particle Environments25

We evaluate our proposed sequential advantage and COMA’s advantage in two multi-agent particle26

environments [3] in Section 3.3. The code for these experiment environments is available in the27

Codes folder in our Supplementary Material. Here we introduce these two environments and our28

settings in detail.29
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C.1 Environments Introduction30

Predator-Prey. Three slower predators cooperate to chase a faster prey that acts randomly in an31

area containing two obstacles impeding the way. The action space of the predators is [move_up,32

move_down, move_left, move_right, stay]. Each predator can observe its current position33

and velocity and the displacement to the prey, other predators, and the obstacles. The predators’34

goal is to capture the prey in as few steps as possible, and the shared reward is the negative minimal35

distance between any predator and the prey. When any predator captures the prey, an additional36

positive reward is given to the team, and the game terminates.37

Cooperative Navigation. This environment initializes three agents and three landmarks with random38

locations in an area. The agents aim to acquire a bigger shared reward and cooperate to cover all the39

landmarks with action space [move_up, move_down, move_left, move_right, stay]. Each40

agent observes its own position, velocity, and the displacement to the other agents and the targets.41

The global reward is the negative sum of the distance between each target and the nearest agent to it.42

If the agents collide, the team will receive a penalty, so agents must avoid collisions.43

C.2 Training Settings44

We train agents for 5000 episodes for these two environments. Each episode has a maximum of 20045

steps. We adapt the original open-source environment implementation1 and the training framework246

provided by [7]. We follow the pre-set environment hyperparameters, including the shared reward for47

capturing the prey in Predator-Prey, the collision penalty in Cooperative Navigation, and the spawn48

regions size of the agents and obstacles. The prey acts randomly in Predator-Prey is a random agent49

with a uniform action probability distribution.50

We utilize the default setting of the training framework. The policy networks and critic network51

implement one hidden layer MLPs, with 128 units and 32 units for Predator-Prey and Cooperative52

Navigation respectively. Agents share parameters in these environments. The number of transitions53

for each update is 128 and 32, and the discount factor is 0.99 and 0.9. We leverage target networks54

that update every 200 training iteration. Our models are trained by Adam Optimizer with a learning55

rate of 0.0002 for critic learning in Predator-Prey and 0.0001 in Cooperative Navigation, and 0.000156

for policy network in both environments.57

Note, we only compare our sequential advantage with COMA’s counterfactual advantage in Figure 258

in the main paper, so we do not implement SeCA’s whole architecture. The three agents’ advantages59

for policy learning here are directly calculated according to Equ.(5) or Equ.(7) in our main paper.60

The credit assignment sequence is fixed and initialized as <Agent 1, Agent 2, Agent 3>.61

D Details of StarCraft Multi-Agent Challenge Experiments62

We mainly evaluate methods on StarCraft II micromanagement in Section 4 and follow the default63

setup of the StarCraft Multi-Agent Challenge (SMAC) [5].3 We utilize the open-source implementa-64

tions of the baseline algorithms, including COMA, QMIX, QTRAN4, and LICA5. All these methods65

are all based on the PyMARL framework [5]. The code for SeCA in SMAC is available in the Codes66

folder in Supplementary Material.67

D.1 Detailed Information about SMAC and Scenarios68

A group of units controlled by decentralized agents cooperates to defeat the enemy agent system69

controlled by handcrafted heuristics in each SMAC micromanagement problem. Each agent’s70

partial observation comprises of the attributes (such as health, location, unit_type) of all units71

shown up in its view range. The global state information includes all agents’ positions and health,72

and allied units’ last actions and cooldown, which is only available to agents during centralized73

1https://github.com/openai/multiagent-particle-envs
2https://github.com/hsvgbkhgbv/SQDDPG
3https://github.com/oxwhirl/smac
4https://github.com/oxwhirl/pymarl
5https://github.com/mzho7212/LICA
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training. The agents’ discrete action space consists of attack[enemy_id], move[direction],74

stop, and no-op for the dead agents only. Particular unit Medivac has no action attack[enemy_id]75

but has heal[enemy_id]. Agents can only attack enemies within their shooting range. Proper76

micromanagement requires agents to maximize the damage to the enemies and take as little damage77

as possible in combat, so they need to cooperate with each other or even sacrifice themselves. We78

follow the default setup of SMAC in our experiments, and more settings, including rewards and79

detailed observation/state information, can be acquired from the original paper or implementation.80

Based on baseline algorithms’ performances, the scenarios in SMAC are broadly grouped into three81

categories: Easy, Hard, and Super Hard. The key point to win some Hard or Super Hard battles is82

mastering specific micro techniques, such as focus fire, avoid overkill, kiting, et cetera. The battles83

can be both symmetric or asymmetric, and the group of agents can be homogeneous or heteroge-84

neous. We consider six scenarios with different difficulties and characteristics: 2s3z, 1c3s5z (Easy,85

heterogeneous, symmetric); 2c_vs_64zg, 3s_vs_5z (Hard, homogeneous, asymmetric); and MMM2,86

3s5z_vs_3s6z (Super Hard, heterogeneous, asymmetric). Here we provide some characteristics of87

each scenario to help gain insights into the good or poor performance of the methods:88

• Both 2s3z and 1c3s5z are symmetric combats where two heterogeneous teams battle89

against each other. s represents Stalkers that can attack enemies at a distance. z represents90

Zealots, melee units with a short attack range. c for Colossus. It is a ranged and endurable91

unit that can harm an area instead of a single agent. These two Easy scenarios that do not92

need to cooperate too much can be solved easily by most of the recognized methods.93

• 2c_vs_64zg is a Hard asymmetric scenario where two Colossi battle against 64 Zerglings,94

which are melee units with low health and low attack damage. The number of the enemy95

units in this map is the largest in the SMAC benchmark, making the agents’ action space96

much larger than other maps. It can be utilized as an example to test methods’ performance97

on large action spaces.98

• 3s_vs_5z is also a Hard asymmetric battle between two different homogeneous teams. The99

allied Stalkers have to master the kiting technique and disperse in the area to kill the Zealots100

that chase them one after another. This map faces the delayed reward problem; however, it101

is not very strict about micro-cooperation between agents because of their scattering.102

• MMM2 is a representative Super Hard asymmetric battle between two heterogeneous teams103

with three kinds of units. One Medivac, two Marauders, and seven Marines have to battle104

against a team with one more Marine. Marauder has greater attack damage and health105

than Marine but with a longer attack cooldown. Medivac has no damage but can heal any106

other agent in the team. This map with three kinds of units and many agents requires more107

cooperation between agents, so we picked this map for our ablation studies.108

• 3s5z_vs_3s6z is another Super Hard map that requires breaking the bottleneck of explo-109

ration, where three Stalkers and five Zealots battle against three Stalkers and six Zealots.110

D.2 Training Settings111

We follow most of the training hyperparameters in the original PyMARL implementation. Figure112

3 in the main paper illustrates SeCA’s network structure. The policy network consists of two FC113

layers and a GRU layer between them. The critic network maps the state into two weight matrices114

and biases, which, in turn, maps the concatenated action-policy vector into the Q estimate. We follow115

existing methods [1, 9] where all methods align on the batch size, the number of batch updates, and116

the total number of environment steps. We train all the methods for 32 million steps in Easy scenarios117

and 64 million steps in Hard and Super Hard scenarios. We use 32 actors to generate the trajectories118

in parallel and use one NVIDIA Titan V GPU for training. More training details of our method119

utilized in SMAC are shown in Table A1 and can be found in our code.120

D.3 Additional Results on SMAC121

We do not compare QPD’s learning curves with other methods in Figure 5 of our main paper, as122

QPD modifies the original SMAC’s implementation, and it is unfair to compare QPD’s learning123

speed with other methods that trained in the original environment. Here we follow the original paper124

of QPD, providing a test win percentage table of median and mean performance at the end of the125
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Table A1: Hyperparameters of SeCA in SMAC.

Hyperparameters # Description

hidden units 64 Hidden units number for policy and critic network
batch size b 32 The number of transitions for each update
parallel runners 32 Number of environments to run in parallel
discount factor γ 0.99 The importance of future rewards
λ in TD(λ) 0.8 TD(λ) parameter for critic training
entropy regularization ξ 0.005 Weight or regularization for exploration
policy network’s initial lr 0.0025 Initial learning rate for policy network
critic network’s initial lr 0.0005 Initial learning rate for critic network
each IG step number 5 Summation of # intervals to approximate integrated gradients
target critic update frequency 200 Target network updates every # gradient steps
test interval 320000 Test the model every # steps
test episode number 32 Number of episodes to test for

training period. We use results from the SMAC paper [5] and the original QPD paper [8] because126

these reports show higher performance than the original works [6, 2, 4] and our implementation on127

QPD. Table A2 shows the evaluation results, where m̃ is the median win percentage and m is the128

mean win percentage. In general, the median performance is more persuasive as it avoids the effect129

of any outliers [5]. We could see from Table A2 that our method SeCA achieves state-of-the-art130

performances on all these scenarios that mentioned in the original QPD paper, demonstrating our131

improvement on QPD that also utilizes integrated gradients for the credit assignment problem.132

Table A2: Median and mean performance of the test win percentage.

Map IQL COMA QMIX QTRAN QPD SeCA (Ours)
m̃ m m̃ m m̃ m m̃ m m̃ m m̃ m

3m 100 97 91 92 100 99 100 100 95 92 100 100
8m 91 90 95 94 100 96 100 97 94 93 100 100

2s3z 39 42 66 64 100 97 77 80 95 94 100 99
3s5z 0 3 0 0 16 25 0 4 85 81 98 97

1c3s5z 7 8 30 30 89 89 31 33 92 92 100 100

E Visualization133

We visualize two 3s_vs_5z battles and show the learned sequences to provide insights into our134

sequence adjustment result. We focus on this map because it contains only three agents, and its135

sequence analysis would be clear and illuminating. The allied Stalkers must master kiting technique136

and disperse in the map to kill the Zealots that chase them one after another. We number these three137

agents as Agent 1, Agent 2, and Agent 3 and print their positions at every step to follow their moves.138

The replays are available in the Visualization folder in our Supplementary Material.139

Figure A1 shows the mini-maps of representative moments in one testing episode. Agent 3 only140

attracts one Zealot in this battle and kills it quickly, while Agent 1 and Agent 2 kite two enemies.141

After defeating the following Zealot, Agent 3 goes supporting alliances and observes Agent 1 in142

danger. Agent 3 blocks the enemies’ way to shelter Agent 1, and they kill the following two Zealots143

together. Agent 2, who fights alone, defeats both of the following enemies and does not show in its144

alliances’ field of view. The learned sequence of this episode is <Agent 3, Agent 2, Agent 1>.145

We visualize another testing episode of 3s_vs_5z in Figure A2. Agent 3 also kites only one Zealot,146

and both Agent 1 and Agent 2 attract two enemies. When going to rescue alliances, Agent 3 misses147

Agent 1 this time and observes Agent 2 afterward. Then Agent 3 support Agent 2, who already killed148

a Zealot but has low health. However, Agent 1, who fights alone, only defeats one enemy and is149

killed by another Zealot. This survived Zealot is defeated by Agent 3, who protects Agent 2 at death’s150

door at last. The credit assignment sequence learned for this episode is <Agent 3, Agent 1, Agent 2>.151
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Figure A1: Some critical moments in a 3s_vs_5z battle. The big red squares represent Stalkers
controlled by the agents, and each small blue square is an enemy Zealot. Agents win this battle by
scattering and kiting the melee enemy units. Agent 3 kites only one Zealot and kills it quickly, and
then it goes to the top of the map, protecting Agent 1 nearby. Agent 3 supports Agent 1 in defeating
two following Zealots, while Agent 2 kites and kills two enemies by itself.

Although winning these two battles similarly, SeCA learns two different sequences in this map,152

illustrating that our dynamic adjustment algorithm (IG-episode) decides the sequence based on the153

battle’s real-time circumstances. We find some similarities in these two learned sequences: Agent154

3 that supports and protects alliances in both battles, is arranged at the front, while the agent who155

receives backup and flees to keep alive is always the last in the sequence. These similarities are156

consistent with our common understanding of team contribution. Thus, these two visualizations157

demonstrate the rationality of our methods in practice.158
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Figure A2: Another episode in 3s_vs_5z. Similar to Figure A1, Agent 3 in this map still kites only
one Zealot and kills it quickly. However, Agent 3 misses Agent 1 this time and supports Agent 2 in
defeating the following Zealot. Agent 1 kills one enemy and does not survive from the other one,
which is killed by Agent 3 later. Agent 2, with low health, choose to run away to keep alive.

F Additional Statement159

We are very sorry for a typo in our main paper that may affect reviewers’ understanding of our work160

and correct it here. We intended to show the objective to maximize when updating the policy network161

parameter θ in Equ.(11) in line 209 but gave a gradient form. Here we provide the correct version:162

Policy Learning. We optimize each agent a’s policy parameter θa by maximizing the following163

objective, which contains our proposed advantage function and an entropy regularization termH:164

Ja(θ) = Eτ∼π [log πa(ua|τa)Aa(s,u) +H (πa(·|τa))] , (A7)
where the derivative of the adaptive entropy regularization termH(πa(·|τa)) [9] with respect to the165

i-th action probability pai is given by:166

dHi := −ξ · (log pai + 1)/H(πa(·|τa)), and H(πa(·|τa)) = Eua∼πa [− log πa(ua|τa)] . (A8)
We share parameters among agents, and the gradient we use to train the actor shared by all agents is:167

g = Eτ∼π [Ea [∇θa (log πa(ua|τa)Aa(s,u) +H (πa(·|τa)))]] . (A9)
We sincerely apologize to the reviewers. Sorry for the inconvenience caused by this careless slip-up.168
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