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ABSTRACT

The data-intensive nature of Diffusion models amplifies the risks of privacy in-
fringements and copyright disputes, particularly when training on extensive unau-
thorized data scraped from the Internet. Membership Inference Attacks (MIA)
aim to determine whether a data sample has been utilized by the target model dur-
ing training, thereby serving as a pivotal tool for privacy preservation. Current
MIA employs the prediction loss to distinguish between training member samples
and non-members. These methods assume that, compared to non-members, mem-
bers, having been encountered by the model during training result in a smaller
prediction loss. However, this assumption proves ineffective in diffusion models
due to the randomly noise sampled during the training process. Rather than es-
timating the loss, our approach examines this random noise and reformulate the
MIA as a noise search problem, assuming that members are more feasible to find
the noise used in the training process. We formulate this noise search process as
an optimization problem and employ the fixed-point iteration to solve it. We an-
alyze current MIA methods through the lens of the noise search framework and
reveal that they rely on the first residual as the discriminative metric to differenti-
ate members and non-members. Inspired by this observation, we introduce OMS,
which augments existing MIA methods by iterating One More fixed-point Step to
include a further residual, i.e., the second residual. We integrate our method into
various MIA methods across different diffusion models. The experimental results
validate the efficacy of our proposed approach.

1 INTRODUCTION

Recently, diffusion models (Ho et al., 2020; Song et al., 2020b) have been widely recognized for their
unparalleled capability to generate images of exceptional quality, which are increasingly becoming
indistinguishable from their real-world counterparts. Due to the high quality of images generated by
diffusion models, an increasing number of AI companies are developing generative tools predicated
on diffusion models for commercial art design.

Nonetheless, these advancements are accompanied by inherent challenges. The data-intensive nature
of diffusion models has amplified the risk of privacy infringements and copyright disputes. Trained
on extensive unauthorized data scraped from the Internet, these methods overlook the copyrights and
privacy of the original owners. A case in point is the recent lawsuit filed by Getty Images against
Stability AI, alleging unauthorized use of 12 million of Getty’s images for model training (Brittain,
2023). Thus, it is imperative to develop effective tools to detect diffusion models’ privacy infringe-
ments.

To audit these privacy risks, Membership Inference Attacks (MIA) (Shokri et al., 2017) have
emerged as a potential solution. The objective of MIA is to ascertain whether a data sample has
been utilized in the training process of a machine learning model. Existing MIA methods (Sablay-
rolles et al., 2019; Salem et al., 2019; Song & Mittal, 2021) typically operate under the assumption
that member records tend to exhibit lower prediction losses compared to non-member records. Con-
sequently, these methodologies compute the prediction losses and utilize this metric to differentiate
between member and non-member records.
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Although the utilization of prediction loss to differentiate between member and non-member records
has been empirically validated for numerous deterministic models, such as classification models and
Generative Adversarial Networks (GANs) (Chen et al., 2020; Hayes et al., 2019; Hilprecht et al.,
2019; Choquette-Choo et al., 2021; Hanzlik et al., 2021), its efficacy is diminished when applied to
diffusion models due to the intractability of the training loss. More precisely, during the training
process of the diffusion model, a random noise is sampled, serving not only as a component of
the model’s input but also as the target in the training loss. However, during the execution of the
membership inference, it is virtually impossible to replicate the exact noise sampled during the
training phase. The discrepancy between the noise used during training and membership inference
contributes to the inaccuracy of the loss estimation.

To address these issues, instead of the loss assumption, we propose an alternative hypothesis: it
is more feasible for members to find the noise counterpart used in the training process. This
assumption aligns more closely with the inherent stochastic characteristics of diffusion model train-
ing. Based on this assumption, we introduce a membership inference framework tailored to diffusion
models, leveraging a noise searching mechanism. We formalize the noise searching process as an
optimization problem with the training loss as the optimization objective.

Moreover, we propose to utilize the fixed-point iteration to solve the optimization problem. By it-
eratively applying a function to the initial guess, we strive to facilitate the convergence to the noise
encountered by the members during the training stage. We begin with an empirical analysis focuses
on the convergence properties of the fixed-point iteration. We discern a distinct attribute where
member samples exhibit faster convergence rate compared to non-member samples. This observa-
tion implies that the convergence rate can be employed as a discriminative feature to differentiate
between member and non-member samples.

This attribute provides further insights into current MIAs for diffusion models. Specifically, from
the perspective of the fixed-point iteration, we reinterpret current MIA methods as assessments
of convergence rate, primarily through the first residual. To refine this measurement and capture
the nuances of convergence dynamics more comprehensively, we introduce an augmentation to the
iteration process, incorporating an additional step that considers the second residual. We term this
extension the “One More Step” (OMS) approach.

We conduct experiments across various diffusion models, spanning CNN-based and Transformer-
based architectures, along with various datasets and MIA methods. Notably, to the best of our
knowledge, we are the first to evaluate MIA performance on Transformer-based diffusion models.
The experimental results demonstrate the effectiveness of the proposed OMS approach and the noise
searching-based MIA framework. In summary, our paper makes the following contributions:

• We reveal the noise inconsistency issues in current MIA methods for diffusion models. To
address this, we devise a novel framework in the perspective of noise searching. Formally,
we conceptualize the noise searching process as an optimization problem.

• We propose the fixed-point iteration to solve the noise searching optimization problem.
Moreover, we investigate its convergence properties in practice and find that members ex-
hibit faster convergence rate compared to non-members.

• We analyze existing MIA methods through the proposed framework, revealing that the
efficacy of existing methods is linked to the convergence rate, particularly as characterized
by the first residual. Motivated by this, we introduce a refinement strategy by iterating One
More Step (OMS) to include the second residual.

• We conduct experiments on various diffusion models, encompassing CNN-based and
Transformer-based architectures, using various datasets. The results not only confirm the
validity of our MIA framework but also underscore the efficacy of the OMS refinements.

2 RELATED WORK

Membership Inference Attack (MIA). The Membership Inference Attack (MIA), initially intro-
duced by Shokri et al. (2017), is a technique designed to extract privacy information from machine
learning models. Its primary objective is to predict the presence of a specific data record in the
training set of a given model. The effectiveness of MIA fundamentally relies on the hypothesis that
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machine learning models exhibit differential responses to member records versus unfamiliar non-
member records. Given the manner to exploit model’s reactions, existing methods can be divided
into two categories, model-based methods and metric-based methods. In the realm of model-based
methods (Shokri et al., 2017; Salem et al., 2019; Long et al., 2020; Chen et al., 2020; Truex et al.,
2019), a shadow model is trained to mimic the responses of the target machine learning model. Sub-
sequently, attack algorithms are formulated, predicated on the reactions of the shadow model, with
the ultimate objective of achieving generalization to the target model. For instance, Shokri et al.
(2017) employ multiple shadow models to augment the attack success rate of the MIA task. Salem
et al. (2019) discerns that the success of the shadow model is attributable to the transferability of
the target machine learning model’s output distribution. Long et al. (2020) initially select vulnera-
ble (outlier) samples and find that these outlier samples are subject to a heightened privacy risk by
shadow model-based attacks. Despite the significant advancements in the field, model-based meth-
ods are characterized by their computational intensity and exhibit susceptibility to alterations in the
model’s architecture.

Methods grounded in metrics (Sablayrolles et al., 2019; Yeom et al., 2018; Salem et al., 2020;
Bentley et al., 2020) primarily employ a metric (typically the loss value) as a representative measure
of the model’s response to each sample. The membership of a specific sample is subsequently
determined based on the numerical values of the selected metric. For example, Sablayrolles et al.
(2019) delve into the investigation of the metric within a white-box context, concluding that the most
effective metric is the training loss function. Yeom et al. (2018) leverage the average training loss
as their chosen metric and present a discussion on the interplay between model overfitting and the
performance of membership inference. Bentley et al. (2020) examine the relationship between the
generalization gap and membership inference, positing that a deficiency in generalization escalates
the risk of model privacy leakage.

MIA for diffusion models. Given the computational intensity of training a shadow model with
comparable parameters, model-based methods are deemed unsuitable for diffusion models. As a
result, most current MIA tailored for diffusion models (Duan et al., 2023; Matsumoto et al., 2023;
Kong et al., 2023) are metric-based methods. These methods share a core assumption with MIAs
applied to other models, which assumes that the loss value for members is smaller than that for non-
members. A significant contribution to this field is made by Matsumoto et al. (2023), who introduce
a pioneering MIA method for diffusion models. This approach utilizes the training loss of the
model and identifies a timestep at which the divergence of loss between members and non-members
is maximized, thereby optimizing the performance of membership inference. SecMI (Duan et al.,
2023) exploits the approximated posterior error as a proxy to estimate the training loss, which subse-
quently serves as the membership inference metric. PIA (Kong et al., 2023) endeavors to reconstruct
the training loss through the complete sampling path, thereby leveraging the training loss throughout
the entire diffusion process.

Despite achieving substantial performance, these methods still suffer from the inaccuracy of loss
estimation. During the training phase of the diffusion model, the loss value is dictated by the training
target (a random Gaussian noise). However, when executing the MIA, replicating the exact noise
sampled during the training process is virtually unattainable. Instead, we propose a novel MIA
framework predicated on noise searching. This innovative approach promises to enhance the overall
performance of MIA and provide insight into the principles of MIA methods for diffusion models.

3 METHOD

Given a data record x0, the goal of Membership Inference Attacks (MIA) is to identify whether x0

is in the training set of the target diffusion model ϵθ. Existing MIAs (Duan et al., 2023; Matsumoto
et al., 2023; Kong et al., 2023) tailored for diffusion models predominantly assume that the loss
values for members are lower than those for non-members. However, these loss-based approaches
are susceptible to inaccuracies in loss estimation, which are caused by noise inconsistency between
the training and inference stages (Section 3.2). In contrast, we propose a novel MIA framework that
employs noise searching, an approach we believe aligns more closely with the stochastic nature of
the model’s training process. We formulate the noise searching process as an optimization prob-
lem and propose to use the fixed-point iteration to solve this problem (Section 3.3). We posit that
members can retrieve the training noise with less effort compared to non-members. Subsequently,
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we analyze the convergence properties of the fixed-point iteration and further validate that it is more
feasible for members to search the noise than non-members (Section 3.4). Motivated by this insight,
we reinterpret the underlying mechanisms contributing to the efficacy of existing MIA methods and
propose an enhancement by incorporating One More iteration Step (OMS) (Section 3.5).

3.1 BACKGROUND AND NOTATIONS

We begin with a brief introduction of the background and notations of the diffusion models. De-
noising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020; Song et al., 2020a) consist of a
forward and a reverse process. The forward process, also named as the diffusion process, gradu-
ally adds Gaussian noise to the input image x0 in T time steps according to a predefined variance
schedule β1, ..., βT :

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

Let αt = 1− βt and ᾱt =
∏t

s=1 αs, this process can be simplified to:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

When t is large enough, the ᾱ is approaching 0, making xt an isotropic Gaussian noise. The reverse
process aims to recover the data distribution from the Gaussian noise. The reverse process in one
step can be represented as:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σt) (3)
where Σt is a constant depending on the variance schedule βt and µθ(xt, t) is determined by a neural
network:

µθ(xt, t) =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) (4)

By recursively leveraging the reverse step, Gaussian noise can be recovered to the original image.
To train the DDPM, an image x0, a timestep t and a random noise ϵ ∼ N (0, I) are first sampled.
A noisy image xt is then obtained by using the forward process (Equation 2). We then input both
the noisy image xt and the timestep t into a U-Net (Ronneberger et al., 2015) ϵθ to predict the noise
within xt. The optimization objective for the denoising U-Net can be written as:

L = Et,x0,ϵ[||ϵ− ϵθ(x0, t, ϵ)||22] (5)

3.2 NOISE INCONSISTENCY BETWEEN TRAINING AND INFERENCE

The diffusion model’s training procedure can be described by Equation 5. To elaborate, given the
input image x0 and a specific timestep t, a random noise ϵtrain is sampled from the standard nor-
mal distribution. This noise is then utilized to perturb x0 into a corrupted version xt, following the
schedule predefined in Equation 2. Subsequently, the diffusion model, parameterized by θ generates
a prediction of the noise within xt (denoted as ϵθ(x0, t, ϵtrain)). The training loss for the diffusion
model is computed as the distance between the predicted noise ϵθ(x0, t, ϵtrain) and the actual sam-
pled noise ϵtrain. During the inference phase, due to the infeasibility of the training noise ϵtrain,
an alternate noise ϵinf is sampled to estimate the loss value. However, it is important to note that
there exists no guarantee that ϵinf is identical or approximately similar to the noise ϵtrain. This
inconsistency in noise significantly impacts the accuracy of the loss values, consequently affecting
the effectiveness of existing Membership Inference Attacks (MIA) targeting diffusion models (Duan
et al., 2023; Matsumoto et al., 2023; Kong et al., 2023).

3.3 MIA BY NOISE SEARCHING

In contrast to existing MIA that rely on the randomly sampled inference noise as a surrogate for the
training noise ϵtrain to approximate the loss, thereby encountering the noise inconsistency issue,
we introduce a novel MIA framework for diffusion models, leveraging a noise search strategy. Our
approach aims to reconstruct, for a given record x0, the corresponding training noise ϵtrain that min-
imizes the training loss as defined in Equation 5. We assume that it is more feasible for members
to obtain the training noise ϵtrain. We formulate the process of noise searching as an optimization
problem:

min
ϵ

||ϵ− ϵθ(x0, t, ϵ)||p

s.t. ϵ ∼ N (0, I)
(6)
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This optimization framework directly addresses the noise inconsistency issue by focusing on iden-
tifying the true training noise ϵtrain. Compared with loss-based methods, the proposed approach
emphasizes the identification of ϵtrain. We argue this approach aligns more coherently with the
inherent stochastic nature of the diffusion model’s training process.

Fixed-point iteration. We address the aforementioned optimization problem by the fixed-point
iteration. For a given record x0 and timestep t, the predicted noise ϵθ(x0, t, ϵ) is solely dependent on
ϵ. This dependency can be represented as an implicit function ϵ = f(ϵ). The optimal noise, which
pairs with the record x0 during the training process, is also identified as the solution to the implicit
function f . To address this, we employ the fixed-point iteration (Smart, 1980). The iterative process
can be represented as follows:

ϵn = f(ϵn−1), n = 1, 2, ... (7)

We assume that the fixed-point iteration process essentially satisfies the constraints embedded within
the optimization problem, given the fact that the model ϵθ is trained to generate noises adhering to
the distribution. Consequently, we hypothesize that the model’s outputs also conform to the standard
normal distribution. Note that we do not use more advanced methods for solving implicit functions
such as Newton-Raphson or Conjugate Gradient (Nocedal & Wright, 1999). This is because the
Newton-Raphson method needs to compute gradients while the Conjugate Gradients need to search
high dimension gradients, both of which are computationally intensive and potentially intractable.

3.4 CONVERGENCE OF THE FIXED-POINT ITERATION

The primary concern about the fixed-point iteration lies in its practical convergence properties. We
present an empirical analysis to address this concern. Given the initial ϵ0, our objective is to demon-
strate that the sequence {ϵn}, n → ∞ generated by Equation 7 converges. To achieve this, we aim
to prove that the residual δn = ϵn − ϵn−1 converges, which would imply that {ϵn} is the Cauchy
sequence. The residual can be expressed as follows:

||δn+1|| = ||ϵn+1 − ϵn|| = ||f(ϵn)− f(ϵn−1)||

= ||f(ϵn−1) +
∂f(ϵ)

∂ϵ
|ϵ=ϵn−1 · δn−1 +O(||δn−1||2)− f(ϵn−1)||

≤ ||∂f(ϵ)
∂ϵ

|ϵ=ϵn−1 || · ||δn||+O(||δn||2)

(8)

In a sufficiently confined domain, the term ||O(δ2)|| can be considered negligible, and the con-
vergence dynamics are primarily governed by the Jacobian norm ||∂f(ϵ)∂ϵ ||. If the Jacobian norm is
below 1, it indicates that the implicit function f is contractive, leading to an exponential decay in the
residuals, thereby affirming the convergence of the fixed-point iteration. We visualize this Jacobian
norm (the top row) along with the residuals (the bottom row) across various iterations and timesteps
in Figure 1. Notably, the Jacobian norm consistently remains below the threshold of 1, thereby em-
pirically validating the convergence of the fixed-point iteration. In the residual plots, the theoretical
distance (i.e., the distance between two random Gaussian noise) is depicted in green, whereas the
residuals for member and non-member sets are depicted in blue and red, respectively. Moreover,
it is observed that the residuals for both member and non-member sets exhibit rapid convergence,
with the member set residuals smaller than those of non-member set, further indicating that it is
more feasible for members to obtain the training noise. It is also important to highlight that the first
residual δ1, representing the divergence between ϵ0 and ϵ1, is frequently employed as an estimation
of the training loss in current MIA methods. More validation about the convergence property and
convergence speed can be found in Appendix B.

3.5 EXISTING MIAS AND ONE MORE STEP (OMS)

We re-assess the efficacy of prevailing MIA methods through the lens of the fixed-point iteration.
Current MIA methods approximate the training loss of diffusion models by measuring the diver-
gence between the initial noise ϵ0 and the noise after the first iteration ϵ1. In the context of the
fixed-point iteration, this divergence is equivalently characterized as the first residual δ1. As illus-
trated in the bottom row of Figure 1, this residual effectively discriminates between members and
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Figure 1: The top row is the Jacobian norm in different timesteps and iterations. The bottom row
shows the residuals δn, with the blue and red boxes representing the members and non-members.
The green line is the theoretical distance between two random Gaussian noise. We report the results
calculated over 1000 images of Cifar10 dataset (500 members and 500 non-members). The diffusion
model is also trained on the Cifar10 dataset.

non-members. However, it is also discernible that the second residual δ2 for members is smaller
than non-members, indicating its substantial potential for enhancing membership discrimination.
Motivated by this observation, we take One More Step (OMS) beyond ϵ1 to obtain ϵ2 and utilize the
distance between ϵ0 and ϵ2 as the discriminative metric. This metric can be interpreted as an ensem-
ble of the first and second residuals (δ1 and δ2). This approach not only preserves the discriminative
capability inherent in the traditional loss-based approach (i.e., δ1), but also incorporating the extra
information δ2 to augment the performance. The relationship is mathematically expressed as:

||ϵ0 − ϵ2|| = || (ϵ0 − ϵ1)︸ ︷︷ ︸
loss term

+ (ϵ1 − ϵ2)︸ ︷︷ ︸
extra term

|| = ||δ1 + δ2|| (9)

Note that we do not leverage further residuals such as δ3 and δ4, though they also seem potential
metric to distinguish the member and non-member records. This is because the marginal gain is
decreased. We also provide experiments utilizing different residuals in Section 4.5. A detailed
description of how the OMS is integrated with current MIA method is provided in the Appendix E
for further reference.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Diffusion Models and Datasets. We evaluate our proposed method across diverse diffusion mod-
els, specifically DDPM (Ho et al., 2020), Stable Diffusion (Rombach et al., 2022) and U-ViT (Bao
et al., 2023). DDPM represents a foundational approach in the realm of diffusion models, which
employs convolutional neural networks as the backbone. We train DDPM on four datasets: Cifar10,
Cifar100 (Krizhevsky et al., 2009), LFW (Huang et al., 2008) and Lsun-Cat (Yu et al., 2015). The
Stable Diffusion models, which are prominently recognized for their text-to-image synthesis capa-
bilities, have undergone numerous iterations. We selectively adopt SD1.5 and SD2.1 due to their
widespread usage and recognition within the research community. U-ViT, a recently introduced
diffusion model, incorporates transformers as its core architecture. Our investigation leverages the
open-source implementation of U-ViT which has been trained on the Cifar10 datasets. We also
provide more details about the diffusion models and datasets in Appendix C.

Evaluation Metrics. To evaluate the performance of our proposed method, we have adopted estab-
lished metrics in previous works (Carlini et al., 2022; 2023; Duan et al., 2023; Kong et al., 2023)
including Attack Success Rate (ASR), AUC and the True Positive Rate (TPR) at extremely low False
Positive Rate (FPR). Specifically, TPR@1%FPR and TPR@0.1%FPR refer to the True Positive Rate
(TPR) when the False Positive Rate (FPR) is constrained to 1% and 0.1%, respectively.
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Table 1: The ASR and AUC metrics for existing MIA methods on DDPM, both with and without
the integration of the One More Step (OMS). The symbol ∆ is employed to denote the improvement
in performance resulting from the integration of the OMS procedure.

Method
Cifar10 Cifar100 LFW LSUN-Cat Ave

ASR AUC ASR AUC ASR AUC ASR AUC ASR AUC

NA 71.86 78.28 75.97 82.18 72.40 79.54 62.60 67.02 70.71 76.75
+OMS 78.21 85.71 81.49 88.27 83.02 90.73 68.89 75.10 77.90 84.95
∆ ↑ +6.35 +7.43 +5.52 +6.09 +10.62 +11.20 +6.29 +8.09 +7.19 +8.20

SecMI 84.01 90.68 79.83 86.77 61.49 64.90 73.13 79.36 74.62 80.43
+OMS 86.48 92.82 83.32 90.62 77.80 85.67 84.59 91.20 83.05 90.08
∆ ↑ +2.47 +2.14 +3.49 +3.85 +16.31 +20.77 +11.46 +11.84 +8.43 +9.65
PIA 88.75 94.89 85.20 92.21 82.10 90.17 77.61 84.87 83.42 90.54

+OMS 91.78 97.26 89.68 96.08 84.49 92.27 82.58 89.65 87.13 93.82
∆ ↑ +3.03 +2.37 +4.49 +3.86 +2.39 +2.11 +4.96 +4.78 +3.72 +3.28

Table 2: The TPR at extremely low FPR for existing MIA methods on DDPM, both with and without
the integration of the One More Step (OMS). The symbol ∆ is employed to denote the improvement
in performance resulting from the integration of the OMS procedure.

Method
TPR@1%FPR TPR@0.1%FPR

Cifar10 Cifar100 LFW LSUN-Cat Cifar10 Cifar100 LFW LSUN-Cat

NA 6.42 3.66 10.86 3.40 0.88 0.23 1.12 0.36
+OMS 12.12 8.03 30.01 6.37 2.34 0.66 5.66 0.79
∆ ↑ +5.70

(+89%)
+4.37

(+119%)
+19.15

(+176%)
+2.98

(+88%)
+1.46

(+166%)
+0.44

(+191%)
+4.54

(+405%)
+0.43

(+119%)

SecMI 9.15 7.19 3.65 3.10 0.49 0.22 0.42 0.12
+OMS 15.87 17.33 28.05 11.24 0.99 1.33 7.64 0.56
∆ ↑ +6.72

(+73%)
+10.14

(+141%)
+24.41

(+668%)
+8.14

(+262%)
+0.50

(+102%)
+1.11

(+505%)
+7.21

(+1717%)
+0.44

(+367%)

PIA 28.86 19.41 25.74 8.90 1.05 2.31 7.00 0.42
+OMS 60.11 48.30 29.72 13.59 13.24 10.66 9.22 0.94
∆ ↑ +31.25

(+108%)
+28.89

(+148%)
+3.99

(+15%)
+4.69

(+52%)
+12.19

(+393%)
+8.35

(+361%)
+2.22

(+32%)
+0.52

(+124%)

Implementation Details. To evaluate the effectiveness of the proposed OMS, we systematically
conduct a series of experiments, aligning our benchmarks with state-of-the-art MIA methods de-
signed for diffusion models, which include the Naive Attack (NA) (Matsumoto et al., 2023),
SecMI (Duan et al., 2023), PIA (Kong et al., 2023), GSA (Pang et al., 2023) and Quantile (Bertran
et al., 2024; Tang et al., 2023). We strictly follow the prescribed settings of these methods, and
exclusively introduce a further fix-point iteration. Notably, our approach not only seamlessly inte-
grates with these established MIA methods but also augments their performance. More details about
these MIA methods can be found in Appendix E.

4.2 EVALUATION RESULTS

Performance on DDPM. The comparative results on DDPM, with and without OMS, are presented
in Table 1. It can be observed that the OMS confers substantial improvements in performance, with
increases of 8.20%, 9.65% and 3.28% in the Average AUC across the four datasets, compared to
those baselines (NA, SecMI, PIA) without OMS. The improvements demonstrate the advantage of
executing multiple fixed-point iterations over the conventional single-iteration approaches. We also
observe that our method is particularly effective for weak attackers: an AUC increase from 64.90 to
85.67 for SecMI, from 79.54 to 90.73 for NA on the LFW dataset. Besides, we also note our method
can further boost strong attackers with an average 3.72% AUC improvement for PIA. There results
demonstrate the broad applicability of our proposed OMS. Furthermore, we provide the results of
TPR at extremely low FPR in Table 2. These results demonstrate that the OMS notably enhances
the prediction confidence, thereby amplifying the practical applicability in scenarios requiring high
prediction certainty. Additionally, to provide a comprehensive visualization of the performance
with and without the inclusion of OMS, we present the ROC and the log-scaled ROC curves in the
Appendix D.

Performance on text-to-image diffusion models. Distinct from unconditional diffusion models,
text-to-image diffusion models require dual inputs: the image itself and an accompanying text. How-
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Table 3: Performance of existing MIA methods on text-to-image diffusion models, both with and
without the integration of the One More Step (OMS). The symbol ∆ is employed to denote the
improvement in performance resulting from the integration of the OMS procedure.

Method
SD1.5 SD2.1

ASR AUC TPR@1% TPR@0.1% ASR AUC TPR@1% TPR@0.1%

NA 71.04 76.67 19.64 4.62 69.58 74.99 18.76 4.42
+OMS 73.34 79.00 24.40 8.89 71.45 77.40 23.14 8.47
∆ ↑ +2.30 +2.33 +4.76 +4.26 +1.86 +2.41 +4.38 +4.04

SecMI 57.20 57.60 6.29 2.04 57.24 56.61 3.98 0.78
+OMS 60.62 61.38 13.21 5.47 61.84 62.29 10.97 3.24
∆ ↑ +3.42 +3.77 +6.93 +3.42 +4.60 +5.69 +6.99 +2.46
PIA 63.17 67.59 12.71 3.76 71.15 78.38 18.56 3.36

+OMS 72.08 78.89 25.33 4.26 77.59 85.45 30.47 9.61
∆ ↑ +8.90 +11.30 +12.61 +0.50 +6.44 +7.07 +11.91 +6.25

Table 4: Performance of existing MIA methods on U-ViT, both with and without the integration of
the One More Step (OMS). The symbol ∆ is employed to denote the improvement in performance
resulting from the integration of the OMS procedure.

Method
Without OMS With OMS

ASR AUC TPR@1%FPR ASR(∆) AUC(∆) TPR@1%FPR(∆)

NA 61.47 63.66 2.62 68.51(+7.04) 74.31(+10.65) 8.65(+6.03)
SecMI 68.21 74.44 12.88 74.95(+6.74) 82.31(+7.87) 24.35(+11.47)

PIA 54.60 52.91 1.80 - - -
PIAN 59.36 61.13 3.42 69.11(+9.75) 75.42(+14.29) 9.86(+6.44)

ever, in real-world scenario, images are seldom annotated by texts. It is a common case that users
do not have access to the text employed during the training phase. To replicate this real-world sce-
nario, we leverage BLIP (Li et al., 2022) to generate text captions for the input images. The results
on text-to-image diffusion models are detailed in Table 3. These evaluation further corroborate the
substantial performance improvements that can be achieved by incorporating the OMS into current
MIA methods. Additionally, we provide ROC curves and their log-scaled variants in Figure D.3.

Performance on Transformer-based diffusion models. The traditional diffusion models predom-
inantly leverage CNNs as their backbone. However, recent advancements have seen an increasing
trend towards the adoption of Transformers as the foundational architecture (Bao et al., 2023; Chen
et al.; Peebles & Xie, 2023; Esser et al., 2024). To assess the efficacy of existing MIA methods on
Transformer-based diffusion models and substantiate the effectiveness of our approach, we conduct
experiments utilizing the U-ViT model, a continuous time diffusion model based on Transformers.
Notably, the majority of existing MIA methods are specifically designed for discrete time diffusion
models, posing a challenge for direct application to the U-ViT model. To address this, we imple-
ment a simple mapping strategy, converting the discrete timestep within the range [0, 1000] to the
continuous range [0, 1]. Additionally, we observe that the performance of PIA approximates ran-
dom guessing, mainly because its output distribution deviates the standard normal distribution. To
mitigate this issue, we leverage a regularization technique (Kong et al., 2023), hereby referred to as
PIAN. The results, presented in Table 4, reveal that the incorporation of an additional fixed-point
iteration, as proposed in our method, led to performance improvements in existing methods, suggest-
ing the robustness and efficacy of OMS approach across diffusion models with diverse architectures.

4.3 INTEGRATION WITH QUANTILE REGRESSION

Quantile Regression (Tang et al., 2023) incorporates the t-error metric (proposed by SecMI (Duan
et al., 2023)) to learn a quantile regression model that predicts the α-quantile of the t-error for each
individual sample. This approach enables the estimation of a sample-specific α-quantile as a re-
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Table 5: Performance of OMS in Quantile Regression (QR).

Method
DDPM-Cifar10 U-ViT-Cifar10

TPR@5% TPR@1% TPR@0.1% TPR@5% TPR@1% TPR@0.1%

QR (t-error) 27.76 6.10 0.38 17.15 3.13 0.54
QR (t-error+OMS) 44.66 17.14 1.38 31.97 8.62 1.20

∆ ↑ +16.90 +11.04 +1.00 +14.82 +5.49 +0.66

Table 6: Performance of OMS in Gradient-Based Method (GSA).

Method
SD1.5 SD2.1

ASR AUC TPR@1% TPR@0.1% ASR AUC TPR@1% TPR@0.1%

GSA 87.56 94.19 55.33 21.85 87.94 94.50 55.86 21.37
GSA+OMS 88.12 94.53 56.17 22.18 88.64 95.11 58.82 22.53

∆ ↑ +0.56 +0.34 +0.84 +0.33 +0.70 +0.61 +2.96 +1.16

(a) The results of OMS for different training epochs. (b) The results of OMS for different timesteps.

Figure 2: The results of AUC and TPR@1%FPR metrics of OMS for different training epochs and
different timesteps.

fined per-sample threshold for identifying membership status. While t-error serves as a fundamental
confidence metric for quantile regression, we have shown that the t-error can be augmented through
OMS (Table 1- 3). Similarly, we refine quantile regression by incorporating an additional fixed-point
iteration to current confidence metric (t-error). This refinement leads to improved performance, as
evidenced in Table 5.

4.4 INTEGRATION WITH GRADIENT-BASED METHOD

GSA (Pang et al., 2023) constitutes a gradient-based MIA method which posits that the gradients
inherently convey a more direct indication of how the target model responds to member and non-
member samples. As a white-box attacker, GSA demonstrates significant efficacy against diffusion
models compared to other attackers. We concentrate on the back-propagation GSA, which harnesses
the backward pass of gradient computation during loss optimization to execute MIA. We refine this
back-propagation GSA by backwarding the loss after OMS (Equation 7). Notably, as evidenced in
Table 6, the OMS is also capable of enhancing the efficacy of gradient-based methods.

4.5 ABLATION STUDY

The Training Steps. Previous researches (Yeom et al., 2018; Leino & Fredrikson, 2020; Salem
et al., 2019) have highlighted the tendency of machine learning models to memorize training data

9
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as the training procedure progresses. In response to these insights, we have conducted an evalua-
tion of our method throughout the training process. The results are presented in Figure 2(a). We
observe that all these examined MIA methods exhibit enhanced performance as the training epochs
increase, which corroborates the phenomenon of model memorization. Another notable observation
is the consistent efficiency of our method throughout the entire training process. Furthermore, we
identify that PIA begins to saturate in terms of AUC after 1500 training epochs. Our method further
boosts PIA’s performance on TPR@1%FPR, providing compelling evidence for the superiority and
robustness of our approach.

The Timesteps. The timestep serves as a crucial parameter for the level of noise incorporated into
the input of the denoising U-Net, significantly impacting the performance of the diffusion mod-
els. Consequently, we execute MIA across a range of timesteps, specifically from 50 to 250. The
performance enhancements attributed to OMS are presented in Figure 2(b). Our observations indi-
cate that the OMS exhibits robust performance across timesteps but the improvements diminishes
as the timestep increases. This observed decline can be attributed to the increasing prominence of
noise in the model’s input. Specifically, as the timestep increases, the noise component becomes the
dominant factor, potentially disrupting the stability of the fixed-point iteration process.

0 10040 806020

AUC [%]

||𝝐𝟑 − 𝝐𝟐||

||𝝐𝟐 − 𝝐𝟏||

||𝝐𝟏 − 𝝐𝟎||

||𝝐𝟐 − 𝝐𝟎||

||𝝐𝟑 − 𝝐𝟎||

64.66

70.31

78.28

85.71

87.06

Figure 3: The results (AUC) utilizing different
number of fixed-point iteration in Cifar10 dataset.

The number of iteration. We incorporate
an additional fixed-point iteration for compu-
tational efficiency, which is also validated by
previous experimental results. In this experi-
ment, we explore varying fixed-point iterations
and harness the distance to execute MIA. The
results are depicted in Figure 3. Specifically,
||ϵ1− ϵ0|| represents the NA approach, whereas
||ϵ2 − ϵ0|| represents NA with OMS in previ-
ous experiments. It is evident that increasing
the number of iterations leads to improved per-
formance, with ||ϵ3−ϵ0|| demonstrating the op-
timal results. While residuals (||ϵ2 − ϵ1|| and ||ϵ3 − ϵ2||) exhibit some level of effectiveness, their
performance diminishes as the iteration count increases. It is also noteworthy that while additional
fixed-point iterations hold the potential for superior performance, the marginal gains diminish pro-
gressively. This phenomenon can be attributed to the decreasing efficacy of residuals, as ||ϵn − ϵ0||
can be viewed as an ensemble of these residuals. For instance, ϵ2 − ϵ0 can be interpreted as an
aggregate of ϵ2 − ϵ1 and ϵ1 − ϵ0.

5 CONCLUSION

In this paper, we explore the MIA for diffusion models in a novel perspective, i.e., the noise search-
ing. We first analyze the noise inconsistency issue between the training and membership inference
stage. To address this issue, we introduce a noise searching framework that formulates the search
for optimal training noise as an optimization problem. Utilizing the fixed-point iteration, we solve
the optimization problem and conduct a thorough examination of its convergence properties, reveal-
ing distinct convergence rates between member and non-member data. Inspired by this insight, we
rethink the effectiveness of current MIA methods and propose an enhancement through one more
iteration step, resulting in a substantial performance boost for existing MIA methods. The noise
searching framework provides a unique and unified perspective for comprehending the fundamental
principles of MIA tasks for diffusion models. We anticipate that our contributions will foster fur-
ther research into the privacy risks associated with diffusion models and contribute to the ongoing
research in this field.
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box vs black-box: Bayes optimal strategies for membership inference. In International Confer-
ence on Machine Learning, pp. 5558–5567. PMLR, 2019.

Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael Backes. Ml-leaks: Model
and data independent membership inference attacks and defenses on machine learning models. In
Network and Distributed Systems Security Symposium 2019. Internet Society, 2019.

Ahmed Salem, Apratim Bhattacharya, Michael Backes, Mario Fritz, and Yang Zhang. {Updates-
Leak}: Data set inference and reconstruction attacks in online learning. In 29th USENIX security
symposium (USENIX Security 20), pp. 1291–1308, 2020.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in Neural
Information Processing Systems, 35:25278–25294, 2022.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference at-
tacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP),
pp. 3–18. IEEE, 2017.

David Roger Smart. Fixed point theorems, volume 66. Cup Archive, 1980.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2020a.

Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine learning models.
In 30th USENIX Security Symposium (USENIX Security 21), pp. 2615–2632, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020b.

Shuai Tang, Zhiwei Steven Wu, Sergul Aydore, Michael Kearns, and Aaron Roth. Membership
inference attacks on diffusion models via quantile regression. arXiv preprint arXiv:2312.05140,
2023.

Stacey Truex, Ling Liu, Mehmet Emre Gursoy, Lei Yu, and Wenqi Wei. Demystifying membership
inference attacks in machine learning as a service. IEEE Transactions on Services Computing, 14
(6):2073–2089, 2019.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
ing: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), pp. 268–282. IEEE, 2018.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

A PRELIMINARIES ON FIXED-POINT ITERATION

Fixed-point iteration is a fundamental technique employed to find the roots of equations, particularly
those that are difficult to solve analytically. This method involves transforming the original equation
into an equivalent fixed-point problem, x = g(x). The process begins with an initial guess x0

and generates a sequence of approximations {xn} using the iterative formula xn+1 = g(xn). The

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

(a) Estimated contraction constant k 

with various timesteps (b) Error analysis in different timesteps

Figure B.1: (a) We estimate the contraction constant k in different timesteps. The k is continuously
below 1, which further demonstrates the convergence of the fixed-point iteration. (b) We analyze the
convergence speed from the lens of error ||ϵn − ϵ∗|| (members in blue and nonmembers in red). The
error upper bound of members is significantly lower than nonmembers, demonstrating that members
converge faster than nonmembers.

convergence of this sequence is the fixed point x∗ where x∗ = g(x∗). In this paper, we formulate
the noise search problem as ϵ = ϵθ(x0, t, ϵ) where x0, t are predefined. This formulation is further
simplified to a canonical fixed-point problem, represented as ϵ = f(ϵ).

The Convergence Property. The theoretical foundation for fixed-point iteration is grounded in
the contraction mapping theorem (Berinde & Takens, 2007; Berinde, 2004b). This theorem states
that if g is a contraction mapping on a complete metric space, then g possesses a unique fixed
point, and the sequence generated by the iteration will converge to this fixed point for any initial
guess. Specifically, a contraction mapping is defined as a function for which there exists a constant
0 ≤ k < 1 such that for any x, y in the space, d(g(x), g(y)) ≤ k · d(x, y), where d is a metric.

B MORE ANALYSIS ON CONVERGENCE PROPERTY

B.1 EMPIRICAL ANALYSIS ON CONTRACTION CONSTANT

According to the contraction mapping theorem, the convergence of fixed-point iteration is guaran-
teed when the objective function f satisfies the contraction property. While prior research (Davydov
et al., 2024; Kozachkov et al., 2022; Fazlyab et al., 2019) has investigated the contraction of neural
networks, these efforts predominantly have primarily concentrated on simple networks with limited
layers. To the best of our knowledge, no existing work has provided effective methods for evaluat-
ing the contraction of diffusion models which possess large-scale parameters, complex architectures,
and highly non-linear properties.

B.2 THE CONVERGENCE SPEED BY ERROR ANALYSIS

In the main text, we utilize the residual δ as a metric for assessing the convergence speed, as it
represents a straightforward index to evaluate the convergence of the sequence {ϵn}. In this section,
we introduce another measurement of convergence speed based on the work of Berinde & Takens
(2007) from the lens of error analysis. Suppose that for two fixed-point iterations {xn} and {yn},
the following error estimates are available:

||xn − x∗| ≤ an, n = 0, 1, 2... (B.1)
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Figure B.2: The convergence speed of U-ViT measured by residual (left) and error (right). The
member samples are in blue while nonmember samples in red.

and
||yn − y∗| ≤ bn, n = 0, 1, 2... (B.2)

where {an} and {bn} are two sequences of positive real numbers converging to zero. Then, we state
the following theorem:

Theorem B.1 If {an} converges faster than {bn}, then the fixed-point iteration {xn} converges
faster to x∗ than the fixed point iteration {yn}.

To estimate the error ||ϵn − ϵ∗|| for both members and nonmembers, we compute the error over
1000 images (500 members and 500 nonmembers) from the Cifar10 dataset. Since the optimal ϵ∗
(where ϵ∗ = f(ϵ∗)) is not accessible, we use ϵ20 where ϵ20 ≈ f(ϵ20) as a proxy for ϵ∗. The results
are shown in Figure B.1(b). The blue boxes represents errors for members while the red box for
nonmembers. The results indicate that member errors are significantly smaller than nonmember
errors, exhibiting a lower upper bound. This experimental evidence further supports the claim that
members exhibit a faster convergence speed than nonmembers. We note that the error ||ϵn − ϵ∗||
seems a potential metric to distinguish members and nonmembers. However, leveraging the error as
a metric is not efficient due to the need for numerous iterations to estimate ϵ∗. Therefore, we utilize
the residual, as in the main text, to measure convergence speed.

B.3 CONVERGENCE ANALYSIS ON VIT-BASED DIFFUSION MODELS

We supplement our convergence analysis with results on ViT-based diffusion models. We compute
the error and the residual and present the results in Figure B.2. The blue boxes represent for members
while the red boxes for nonmembers. The experimental results demonstrate that the assumption
that members converge faster than nonmembers also holds for ViT-based diffusion models, which
reinforces the theoretical foundation of our approach.

C MORE DETAILS ON EXPERIMENTAL SETUPS

Table C.1: The diffusion models, resolutions, member sets and non-member sets utilized in the
evaluation process.

Diffusion Model Resolution Member Set Number Nonmember Set Number

DDPM-Cifar10 32 Cifar10 25,000 Cifar10 25,000
DDPM-Cifar100 32 Cifar100 25,000 Cifar100 25,000

DDPM-LFW 128 LFW 7,072 LFW 6,161
DDPM-LSUN-Cat 128 LSUN-Cat 20,000 LSUN-Cat 20,000

SD1.5 256 LAION 5,000 CoCo2017-Val 5,000
SD2.1 512 LAION 5,000 CoCo2017-Val 5,000

U-ViT-Cifar10 32 Cifar10 10,000 Cifar10 10,000
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Figure D.1: The ROC curves of DDPM with and without the OMS. We employ the same color with
solid/dotted line to represent methods with/without the proposed OMS.

Diffusion Models and Datasets. We utilize three diverse diffusion model in the evaluation process:
DDPM (Ho et al., 2020), Stable Diffusion (Rombach et al., 2022) and U-ViT (Bao et al., 2023).
We train DDPM on four datasets: Cifar10, Cifar100 (Krizhevsky et al., 2009), LFW (Huang et al.,
2008) and LSUN-Cat (Yu et al., 2015). Both Cifar10 and Cifar100 consist of 60,000 images, seg-
mented into a training subset of 50,000 images and a testing subset of 10,000 images. We randomly
select half of the training subset (i.e. 25000 images), meanwhile ensuring an equal distribution of
images across each class, to train our DDPM. For the LFW dataset, which contains approximately
13,000 images of 5,749 identities, we utilize half of the identities for training (7072 images), with
the remaining identities designated as non-members. For the LSUN-Cat dataset, containing approx-
imately 446,000 images, we select 20,000 images for training and randomly sample an additional
20,000 images from the remaining images to maintain a balanced ratio between member and non-
member sets. The architecture of the DDPM follows the structure described in (Ho et al., 2020).
The training epoch is set to 500 for Cifar10 and Cifar100 datasets, whereas for LFW and LSUN-Cat
datasets, we train for 200 epochs. In the case of Stable Diffusion, we employ pretrained versions
(SD1.5 1 and SD2.1 2) trained on the LAION dataset (Schuhmann et al., 2022). We randomly sample
5,000 images for the member set and select the COCO2017-Val (Lin et al., 2014) dataset for the non-
member set. For the U-ViT, we leverage open-source implementations 3. For the Cifar10 dataset,
the entire training set is appointed as the member set, with the test set serving as the non-member
set.

D MORE EXPERIMENTAL RESULTS

To provide a comprehensive visualization of the performance with and without the inclusion of
OMS, we present the ROC and the log-scaled ROC curves. Specifically, we utilize curves with
dotted lines to represent MIA method without the OMS. The corresponding one with the OMS are
represented with solid lines. We provide ROC curves and log-scaled ROC curves of the DDPM
in Figure D.1 and Figure D.2. The ROC curves and log-scaled ROC curves of the Stable Diffusion
is depicted in Figure D.3.

E INTEGRATION OMS WITH CURRENT MIA METHODS

E.1 INTEGRATION WITH LOSS-BASED METHODS

We provide a comprehensive analysis of loss-based MIA methods in the context of diffusion mod-
els (Matsumoto et al., 2023; Duan et al., 2023; Kong et al., 2023). We first present the threat model
of these methods. Subsequently, we present a detailed description of each method, including how
these methods estimate the training loss (Equation 5) of the diffusion models. To integrate OMS
with loss-based approaches, we interpret the training loss as the initial residual δ1 from the lens of

1https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
2https://huggingface.co/stabilityai/stable-diffusion-2-1-base
3https://github.com/baofff/U-ViT
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Figure D.2: The log-scaled ROC curves of ddpm with and without the OMS. We employ the same
color with solid/dotted line to represent methods with/without the proposed OMS.

(a) ROC Curves of SD1.5 and SD2.1 (b) Log-scaled ROC Curves of SD1.5 and SD2.1

Figure D.3: The ROC (a) and log-scaled ROC (b) curves of text-to-image diffusion models with
and without the OMS. We employ the same color with solid/dotted line to represent methods
with/without the proposed OMS.

the noise searching framework. We introduce an additional iteration step to capitalize on the second
residual (Equation 9).

Threat Model. Consider a target diffusion model ϵθ trained on a dataset Dmem comprising member
images. The set of images not utilized during training constitutes the non-member set Dnon. Given
a data record x and the target diffusion model ϵθ, the objective is to devise a method M to determine
whether x belongs to the training set Dmem. Loss-based methods assume that the loss for members
is lower than that for non-members. For a specific record x, if the loss term l falls below a predefined
threshold τ , x is categorized as a member of the training set, labeled as ’1’. Conversely, x is labeled
as a non-member if the loss exceeds τ . This process can be expressed as:

M(x, ϵθ) = 1[l(ϵθ, x0) ≤ τ ] (E.1)
Since loss-based methods require the estimation of the training loss, which corresponds to the in-
termediate outpu of the U-Net, they are classified as gray-box attackers. In the gray-box setting,
attacker has the access to the intermediate outputs while the model’s weight remain restricted.

Naive Attack. Naive Attack (Matsumoto et al., 2023) represents the most straightforward approach
among attackers targeting diffusion models. This attack assumes that membes exhibit lower loss
values compared to non-members. The loss is estimated by utilizing a randomly sampled noise
drawn from a standard normal distribution ϵ ∼ N (0, I):

l = |ϵ− ϵθ(x0, t, ϵ)| ϵ ∼ N (0, I) (E.2)
where the timestep t is set to 350.

PIA. PIA (Kong et al., 2023) leverages the divergence between sampling trajectories. This diver-
gence is ultimately reduced to a metric based on the loss term. In DDIM (Song et al., 2020a)
framework, given two points x0 and xk, intermediate points xt can be derived by:

xt =
√
ᾱtx0 +

√
1− ᾱt ·

xk −
√
ᾱkx0√

1− ᾱk
(E.3)

The authors compute the initial noise when t = 0:
ϵ̄0 ≈ ϵθ(

√
ᾱ0x0 +

√
1− ᾱ0ϵ̄0, 0) = ϵθ(x0, 0) (E.4)
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Then, they utilize the distance of the initial point as a proxy for trajectory distance and further
simplify this to:

l = ||ϵ̄0 − ϵθ(x0, t, ϵ̄0)||p (E.5)
where p = 4 and t = 0. Compared to NA, PIA employs the l4 norm and uses the initial noise
estimate ϵ̄0 to replace the randomly sampled noise ϵ ∼ N (0, I).

SecMI. SecMI (Duan et al., 2023) leverages the t-error, which is defined as the distance between the
authentic DDIM sampling outcomes xt and their reconstructed approximations x̃t. This distance
between xt and x̃t can be reduced as a scaled loss term. Initially, the xt undergoes a diffusion
process to the subsequent timestep k:

xt −
√
1− ᾱtϵ√
αt

=
xk −

√
1− ᾱkϵ√
αk

xk =

√
ᾱk√
ᾱt

xt +

√
ᾱtβ̄k −

√
ᾱkβ̄t√

ᾱt
ϵ (E.6)

Subsequently, xk is denoised back to the original timestep t, resulting in the reconstructed x̃t. The
denoising process from k to t mirrors Equation E.6, yet the noise is estimated by the neural network
ϵθ(x0, tb, ϵ):

x̃t =

√
ᾱt√
ᾱk

xk +

√
ᾱkβ̄t −

√
ᾱtβ̄k√

ᾱk
ϵθ(x0, k, ϵ) (E.7)

By substituting Equation E.6 into Equation E.7, the divergence between xt and x̃t can be simplified
as a scaled loss term:

l = ||xt − x̃t||p =

√
ᾱtβ̄k −

√
ᾱkβ̄t√

ᾱk
||ϵ− ϵθ(x0, k, ϵ)||p (E.8)

where p = 2, t = 100, k = 110.

The threshold τ . The threshold τ exhibits a close correlation with the attack success rate (ASR).
We randomly select a small fraction (10%) of samples to obtain an optimal threshold, which is then
used to classify the remaining samples. This process is repeated 10 times, and the average ASR is
reported.

E.2 INTEGRATION WITH QUANTILE REGRESSION

Quantile Regression (Bertran et al., 2024; Tang et al., 2023) computes distinct thresholds for indi-
vidual samples by constructing a dataset {(xi, li)}ni=1, where xi represents samples excluded from
the training process and li denotes the corresponding t-error proposed by SecMI (Duan et al., 2023).
Utilizing this dataset, a quantile regression model q is trained to predict q(x), which is the 1 − α
quantile of the conditional distribution on t-error. Intuitively, for a given record x0, if the t-error is
less than the predicted 1− α quantile q(x), it indicates that the x0 belongs to the training set with a
confidence level exceeding 1−α. Adhering to the method outlined in the original paper, we leverage
a CNN-based neural network as the backbone of the regression model and establish three distinct
prediction heads, each corresponding to an α value of 0.05, 0.01, 0.001, respectively. To integrate
the OMS with Quantile Regression, we leverage the t-error after one more fixed-point iteration as
the li in the dataset.

E.3 INTEGRATION WITH GRADIENT-BASED METHOD

GSA (Pang et al., 2023) is a gradient-based MIA method which hypothesizes that the gradients
inherently provide a more direct indication of how the target model responds to member and non-
member samples. As a white-box attacker, GSA demonstrates significant efficacy against diffusion
models compared to gray-box attackers. GSA accumulates gradients through the backpropagation
of the training loss (Equation 5), across timesteps ranging from 0 to 1000, with an interval of 100.
Subsequently, the gradients, collected from every component within the U-net, are subjected to
their l2 norm and then flattened into a tensor of 6860 dimensions. This tensor serves as input to a
pretrained machine learning model (a XGBoost (Chen & Guestrin, 2016) classifier) to predict its
membership status. The XGBoost model is trained on a subset of the gradients derived from both
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(a) Scores distribution with/without OMS (b) Class-wise analysis on vulnerable members

Figure F.1: (a) The score distribution without/with OMS of Cifar10 dataset. (b) The label distribu-
tion of misclassified members.

member and non-member samples. To integrate the OMS with GSA, we extend the backpropagation
process of the Equation 9.

F FURTHER ANALYSIS ON VULNERABLE MEMBERS

In this section, we endeavor to examine the effects of the OMS takes on different samples. We de-
pict the score distribution before and after applying OMS of Cifar10 dataset in Figure F.1(a). The
experimental setups are the same as those in Table 1, where there are 25,000 members and 25,000
nonmembers. The results indicate that our method significantly enhances the separability between
members and nonmembers. Among all the 50,000 tested samples (25,000 members and 25,000
nonmembers), 1795 (3.59%) samples incorrectly classified as nonmembers are correctly classified
as members while 1510 (3.02%) samples incorrectly classified as members are correctly classified as
nonmembers, resulting in an overall 6.61% improvement. Besides, we present those 1795 misclas-
sified members and depict their labels in Figure F.1(b). We observe that these members are nearly
uniformly distributed across various class, suggesting that no significant subset of members benefits
disproportionately from the additional step.

G LIMITATION AND FUTURE WORK

Our proposed framework suffers from two primary limitations. First, taking a high-dimensional
nonlinear complex neural networks (i.e., the diffusion model) as the implicit function, there exists
an absence of rigorous mathematical proofs to ensure the convergence of the fixed-point iteration
process. Though we validate its convergence in practical use, this gap in theoretical understanding
poses a challenge for the stability of our framework. Second, while OMS shows promise in en-
hancing existing MIA methods, the introduction of an additional iteration step necessitates an extra
query to the target diffusion model and an increase in computational resources. This trade-off be-
tween performance enhancement and computational cost underscores the need for future research to
explore more efficient iteration strategies, such as Krasnoselkij, Mann and Ishikawa iterations (Babu
& Vara Prasad, 2006; Berinde, 2004a;b). We leave it for our future work.

H IMPLICATIONS OF MIA FOR DIFFUSION MODEL

This section presents a discussion on the practical applications of MIAs in the context of diffusion
models. The implications of MIA vary depending on the stakeholders involved, namely individuals
and organizations. For individuals, MIA poses a threat to data privacy as they allow attackers to
deduce whether a particular data sample has been used to train a specific machine learning model.
This can lead to the leakage or exposure of training data privacy, which is particularly alarming when
the data used in model training is sensitive (e.g., medical data). Consequently, understanding MIA
raises awareness about the protection of personal data privacy. Conversely, MIA can also serve as a
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tool for individuals to ascertain whether their data (such as their portrait or artwork) has been used
without authorization. Given that diffusion models are utilized in various applications, the detection
of data abuse has become an urgent necessity. By determining whether an individual’s identity
is included in the training set of the target diffusion model, one can infer unauthorized usage and
thereby protecting individual rights. For organizations, MIA can be leveraged to assess potential
risks and serve as a privacy measurement. Additionally, MIA can be employed for auditing and
regulatory purposes. For instance, designing an auditing model to detect the inclusion of a user’s
personal image in the training set of the target model enables auditing and regulation of the target
system model.

I ETHICAL STATEMENT

The primary objective of our research is to devise a method capable of discerning whether a particu-
lar sample was included in the training dataset. The proposed method offers a multitude of beneficial
applications, encompassing the detection of privacy violations and the assessment of model privacy.
While acknowledging the potential for malevolent entities to misuse our method for privacy attacks,
we underscore the capacity of privacy protection techniques, such as differential privacy, to coun-
teract such threats. It is crucial to note that the development of these techniques is not intended to
facilitate malicious activities, but rather to advance the field of privacy protection. We trust that our
contributions will be used responsibly to enhance privacy protection measures and promote ethical
practices in machine learning research.
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