
Under review as a conference paper at ICLR 2024

AUTOM3L: AUTOMATED MULTIMODAL MACHINE
LEARNING WITH LARGE LANGUAGE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Automated Machine Learning (AutoML) stands as a promising solution for au-
tomating machine learning (ML) training pipelines to reduce manual costs. How-
ever, most current AutoML frameworks are confined to unimodal scenarios and
exhibit limitations when extended to challenging and complex multimodal set-
tings. Recent advances show that large language models (LLMs) have exceptional
abilities in reasoning, interaction, and code generation, which shows promise in
automating the ML pipelines. Innovatively, we propose AutoM3L, an Automated
Multimodal Machine Learning framework, where LLMs act as controllers to auto-
mate training pipeline assembling. Specifically, AutoM3L offers automation and
interactivity by first comprehending data modalities and then automatically se-
lecting appropriate models to construct training pipelines in alignment with user
requirements. Furthermore, it streamlines user engagement and removes the need
for intensive manual feature engineering and hyperparameter optimization. At
each stage, users can customize the pipelines through directives, which are the ca-
pabilities lacking in previous rule-based AutoML approaches. We conduct quanti-
tative evaluations on four multimodal datasets spanning classification, regression,
and retrieval, which yields that AutoM3L can achieve competitive or even better
performance than traditional rule-based AutoML methods. We show the user-
friendliness and usability of AutoM3L in the user study. Code is available at:
https://anonymous.4open.science/r/anonymization_code

1 INTRODUCTION

Multimodal data holds paramount significance in machine learning tasks, offering the capability to
harness richer contextual insights. Yet, the inherent diversity of such modalities introduces com-
plexities, particularly in selecting ideal model architectures and ensuring seamless synchronization
of features across these modalities, resulting in a reliance on intensive manual involvement. Aspiring
to diminish manual hand-holding in the ML pipeline, Automated Machine Learning (AutoML) has
emerged (Hutter et al., 2019; Gijsbers et al., 2019; Vakhrushev et al., 2021; Weerts et al., 2020; Wang
et al., 2021; Elshawi et al., 2019). However, a gaping void persists as the lion’s share of AutoML
solutions remains tailored predominantly for uni-modal data. AutoGluon1 made the first attempt at
multimodal AutoML but is beset with shortcomings. Firstly, it falls short of fully automated feature
engineering, essential for adeptly managing multimodal data. Moreover, it imposes a pronounced
learning curve to get familiar with its configurations and settings. This complexity contradicts the
user-friendly automation ethos that AutoML initially epitomizes. Besides, its adaptability, con-
strained by preset settings like search space, model selection, and hyper-parameters, leaves much
to be desired manually. Furthermore, expanding AutoGluon’s capabilities by integrating new tech-
niques or models often necessitates intricate manual code modifications, thus hampering its agility
and potential for growth.

The scientific realm has been abuzz with the meteoric rise of large language models (LLMs), par-
ticularly due to their transformative potential in task automation (Brown et al., 2020; Chowdhery
et al., 2022; Touvron et al., 2023; Wei et al., 2022). Evolving beyond their foundational guise as
text generators, LLMs have metamorphosed into autonomous powerhouses, adept at self-initiated
planning and execution (Shen et al., 2023; Wang et al., 2023; Wu et al., 2023; Hong et al., 2023;

1https://github.com/autogluon/autogluon

1

https://anonymous.4open.science/r/anonymization_code
https://github.com/autogluon/autogluon


Under review as a conference paper at ICLR 2024

Yao et al., 2022). Such an evolution presents a tantalizing prospect, namely the opportunity to sig-
nificantly bolster the performance and adaptability of multimodal AutoML systems. Capitalizing on
this potential, we introduce AutoM3L, an innovative LLM framework for Automated Multimodal
Machine Learning. Distinct from platforms like AutoGluon, which are tethered to fixed, predeter-
mined pipelines, AutoM3L stands out with its dynamic user interactivity. Specifically, it seamlessly
weaves ML pipelines, tailoring them to user directives, achieving unparalleled scalability and adapt-
ability from data pre-processing to model selection and optimization.

The major contributions are four-fold, summarized as follows. (1) We introduce a novel LLM
framework, namely AutoM3Lwhich aims to automate the ML pipeline development for multimodal
data. It enables users to derive accurate models for each modality from a large pool of models
along with a self-generated executable script for cross-modality feature fusion using minimal natural
language instructions. (2) We further spearhead the automation of feature engineering. Concretely,
we leverage an LLM to filter out attributes that might hamper model performance and concurrently
impute missing data. (3) Finally, we automate hyperparameter optimization with LLM via self-
suggestions combined with the integration of external API calls. This can decisively negate the need
for labor-intensive manual explorations. (4) We embark on comprehensive evaluations, comparing
with conventional rule-based multimodal AutoML on a myriad of multimodal datasets. Moreover,
user studies further underscored the distinct advantages of AutoM3L in terms of its user-friendliness
and a significantly diminished learning curve.

2 RELATED WORKS

AutoML. AutoML has emerged as a transformative paradigm to streamline the design, training,
and optimization of ML models by minimizing the need for extensive human intervention. Cur-
rent AutoML solutions predominantly fall into three categories: (i) training pipeline automation,
(ii) automated feature engineering, (iii) hyperparameter optimization. Within the sphere of auto-
mated feature engineering, certain methodologies have carved a niche for themselves. For instance,
DSM (Kanter & Veeramachaneni, 2015) and OneBM (Lam et al., 2017) have revolutionized fea-
ture discovery by seamlessly integrating with databases, curating an exhaustive set of features. In
a complementary vein, AutoLearn (Kaul et al., 2017) adopts a regression-centric strategy, enhanc-
ing individual records by predicting and appending additional feature values. Concurrently, training
pipeline and hyperparameter optimization automation have also seen significant advancements. For
example, H2O AutoML (LeDell & Poirier, 2020) is particularly noteworthy for its proficiency in
rapidly navigating an expansive pipeline search space, leveraging its dual-stacked ensemble mod-
els. However, a recurring challenge across these AutoML solutions is their predominant focus on
uni-modal data, which limits their applicability to more complex multimodal data. Recognizing this
gap, we introduce a novel LLM framework tailored specifically for multimodal AutoML scenarios.

Large Language Models. The domain of Natural Language Processing has undergone a paradigm
shift with the introduction of LLMs (Brown et al., 2020; Chowdhery et al., 2022; Touvron et al.,
2023; Wei et al., 2022; Chung et al., 2022). With their staggering parameter counts reaching into
the hundreds of billions, LLMs have showcased unparalleled versatility across diverse tasks. A
testament to their evolving capabilities is Toolformer (Schick et al., 2023), which equips LLMs to
interact with external utilities via API calls, thereby expanding their functional horizons. AutoGPT
further exemplifies this evolution, segmenting broad objectives into tangible sub-goals, subsequently
executed through prevalent tool APIs, such as search engines or code executors. Yet, as we embrace
the potential of LLMs to manage AI tasks via API interactions, it’s crucial to navigate the inherent
intricacies. Model APIs, in particular, often require bespoke implementations, frequently involving
pre-training phases which highlights the pivotal role of AutoML in refining and optimizing these
intricate workflows. Our proposed AutoML framework aspires to bridge this gap, enabling fluid
user-AI engagements through lucid dialogues and proficient code generation.

3 METHODS

We elaborate on the details of the five functional components in Automated Multi-Modal Machine
Learning (AutoM3L): (1) modality inference, (2) automated feature engineering, (3) model selec-
tion, (4) pipeline assembly, and (5) hyperparameter optimization, as illustrated in Fig. 1.

2



Under review as a conference paper at ICLR 2024

Figure 1: The overall framework of AutoM3L. It consists of five stages: 1⃝ Infer the modality of
each attribute in structured table data. 2⃝ Automate feature engineering for feature filtering and data
imputation. 3⃝ Select optimal models for each modality. 4⃝ Generates executable scripts for model
fusion and data processing to assemble the training pipeline. 5⃝ Search optimal hyperparameters.

Organization of Multimodal Dataset. The multifaceted nature of multimodal data allows it to be
represented in various formats, among which the JavaScript Object Notation (JSON) stands out as a
prevalent choice. In this work, however, we prioritize structured tables for their distinct advantages.
Not only do they offer a clear representation, capturing the interplay between different modalities,
but they also adeptly aggregate information from varied formats into a unified structure. Contained
within these tables is a diverse range of data modalities including images, text, and tabular data. For
a comprehensive understanding of structured tabular, we direct readers to Appendix B.

Modality Inference Module. AutoM3L begins with Modality Inference-LLM (MI-LLM) to
identify the modality associated with each column in the structured table. Simplifying its opera-
tion and avoiding extra training costs, MI-LLM taps into in-context learning. Correspondingly, the
guiding prompt to MI-LLM is tripartite, as showcased in Fig. 2(a): (1) An ensemble of curated ex-
amples is used for in-context learning. This ensemble assists MI-LLM in generating desired format
responses and firmly establishing correlations between column names and their modalities. (2) A
subset of the input structured table is included, containing randomly sampled data items paired with
their respective column names. The semantic richness of this subset serves as a guiding light, steer-
ing the MI-LLM towards accurate modality identification. (3) User-specified directives do more
than just instruct; they enrich the process with deeper context. Capitalizing on the LLM’s excep-
tional interactivity, these directives refine the modality inference further. For example, a directive
like “this dataset delves into the diverse factors influencing animal adoption rates” grants MI-LLM
a contextual perspective, facilitating a more astute interpretation of column descriptors.

Automated Feature Engineering Module. Feature engineering shines as a crucial preprocess-
ing phase, dedicated to tackling common data challenges, such as missing values. While many
conventional AutoML solutions heavily depend on rule-based feature engineering, our AutoM3L
framework embraces the unmatched capabilities of LLMs to elevate this process. Specifically, we
introduce the Automatic Feature Engineering-LLM (AFE-LLM), as depicted in Fig. 2(b). This
module employs two distinct prompts, resulting in two core components: AFE-LLMfilter and AFE-
LLMimputed. The former, AFE-LLMfilter, is adept at sifting through the data to eliminate irrelevant or
superfluous attributes. On the other hand, AFE-LLMimputed is dedicated to data imputation, ensuring
the completeness and reliability of vital data. Importantly, these components work in tandem, where
after AFE-LLMfilter refines the features, AFE-LLMimputed steps in to address any data gaps in the
streamlined dataset. To enhance feature filtering, AFE-LLMfilter’s prompt integrates: (1) An ensem-
ble of examples for in-context learning. More specifically, by strategically introducing attributes

3



Under review as a conference paper at ICLR 2024

Figure 2: (a) Modality Inference with MI-LLM. It displays MI-LLM’s capability to discern the
modality of each column in a dataset. Attributes are highlighted with red annotations to signify the
inferred modality. (b) Data Refinement with AFE-LLM. It emphasizes AFE-LLM’s dual role in
both feature filtering and data imputation. In the left part, attributes marked in red denote those that
are filtered out, while on the right, red annotations identify attributes that have been subjected to
imputation.

from various datasets and interlacing them with intentionally irrelevant ones, the AFE-LLMfilter is
oriented towards distinguishing and removing non-essential attributes. (2) Column names in the
structured table, brimming with semantic information about each feature component, augment the
LLM’s ability to distinguish between pivotal and disposable attributes. (3) Modality inference results
derived from MI-LLM, guiding the LLM to shed attributes of limited informational significance.
For instance, when juxtaposing a continuous attribute like age with a binarized attribute indicating
if someone is over 50, the latter, being somewhat redundant, can be identified for removal. (4)
When available, user-defined directives or task descriptions can be embedded which aims to forge a
connection between pertinent column names and the overarching task. Regarding data imputation,
AFE-LLMimputed exploits its profound inferential prowess to seamlessly detect and fill data voids.
The prompt for this facet encompasses: (1) Data points characterized by value omissions, enabling
AFE-LLMimputed to fill these gaps by discerning patterns and inter-attribute relationships. (2) A se-
lected subset of data instances that involve deliberately obfuscating attributes and juxtaposing them
in Q&A pairs, laying down an inferential groundwork. (3) Where available, user-defined directives
or task blueprints are incorporated, offering a richer context, and further refining the imputation
process.

Model Selection Module. Upon successfully navigating through the modality inference and fea-
ture engineering stages, AutoM3L moves to pinpoint the optimal model architecture for each of
the data modalities. For model organization, the collection of the model candidates is termed a
model zoo, where each model is stored as a model card. The model card captures a spectrum of
details, from the model’s name, type, the data modality it can be applied to, empirical performance
metrics, its hardware requirements, and etc. To streamline the generation of these cards, we utilize
LLM-enhanced tools such as ChatPaper (Yongle Luo, 2023) to obviate the need for tedious manual
processes. Utilizing text encoders, we generate embeddings for these model cards, thereby allowing
users to fluidly enhance the model zoo by appending new cards, as illustrated in Fig. 3(a). After-
ward, to adeptly match each modality with the suitable model, we propose the Model Selection-LLM
(MS-LLM). We interpret this task as a single-choice dilemma, where the context presents a palette
of models for selection. However, given the constraints on context length, parading a complete ar-
ray of model cards isn’t feasible. Therefore, we first filter the model cards based on their applicable
modality type, retaining only those that align with the specified data modality. Thereafter, a subset of
the top 5 models is identified via text-based similarity metrics between the user’s requirements and
the model cards’ descriptions. These top-tier model cards then become part of MS-LLM’s prompt,
which, when combined with user directives and data specifics, steers MS-LLM toward its ultimate
decision, leading to the identification of the best-suited model for the discerned modality, as depicted
in Fig. 3(b). In essence, the MS-LLM prompt fuses: (1) A selected subset of five model cards, offer-
ing a glimpse of potential model candidates. (2) An input context, blending data narratives and user
directives. The data narrative demystifies elements like data type, label type, and evaluation stan-

4



Under review as a conference paper at ICLR 2024

Figure 3: Illustration of the model zoo and MS-LLM. (a) Model addition process: This stage show-
cases how new models are incorporated into the model zoo, visualized as a vector database. The
model card’s embedding vector serves as the unique identifier or key, paired with its respective
model configuration as the value. (b) Model retrieval process: This segment represents the model
selection process. Given user directives, the system initiates a query, pinpointing the top 5 models
that align with each input modality. From this refined subset, MS-LLM then determines and selects
the most fitting model.

dards. Meanwhile, user directives can elucidate custom model requirements. For instance, a user
stipulation expressed as “deploy the model on the CPU device” would guide MS-LLM to models
primed for lightweight deployments.

Pipeline Assembly Module. Following the retrieval of uni-modal models, there’s a crucial step of
fusing these models We employ a late fusion strategy to integrate the multimodal data, where this
process can be mathematically expressed as:

featurei = feature adapteri(modeli(xi)),

logitsfuse = fusion head(fusion model(concat(feature1, ...,featuren))),
(1)

where concat denotes concatenation, xi writes for the input data of modality i (i = 1, · · · , n),
feature adaptern functions to adapt the output of modeln to a consistent dimension. Notably,
both the fusion head and fusion model are the target models to be identified. However,
determining the architectures for fusion head and fusion model is not practical to rely on
rule-based methods, since these architectures depend on the number of input modalities. hence we
formulate this process as a code generation task. Instead, we reframe this as a code generation
challenge, wherein the Pipeline Assembly-LLM (PA-LLM) is tasked with generating the necessary
fusion model architecture, integrating features produced by each uni-modal model. Concretely, PA-
LLM leverages the code generation capabilities of LLMs to produce executable code for both model
fusion and data processors, as depicted in Fig. 4(a). This is achieved by supplying the module with
model configuration files within the prompt. Similarly, data processors are synthesized based on the
data preprocessing parameters detailed in the configuration file. PA-LLM allows us to automate the
creation of programs that traditionally demanded manual scripting, simply by providing the requisite
configuration files. A point of emphasis is our prioritization of integrating pre-trained models for
text and visual data, primarily sourced from HuggingFace and Timm. This involves adapting
the code to facilitate model loading. By establishing ties with the broader ML community, we’ve
substantially amplified the versatility and applicability of our model zoo.

Automated Hyperparameter Optimization Module. Hyperparameters such as learning rate,
batch size, hidden layer size within a neural network, loss weight and etc are commonly man-
ually adjusted in conventional ML pipelines, which is thus labor intensive and time-consuming.
While external tools like ray.tune have been invaluable, allowing practitioners to define hyper-
parameters and their search intervals for optimization, there remains a compelling case for greater
automation. To bridge this gap, we propose the HyperParameter Optimization-LLM (HPO-LLM),

5



Under review as a conference paper at ICLR 2024

Figure 4: (a) The PA-LLM is responsible for generating executable code, ensuring seamless model
training and data processing. (b) On the other hand, the HPO-LLM deduces optimal hyperparame-
ters and defines appropriate search intervals for hyperparameter optimization.

building upon the foundational capabilities of ray.tune. The essence of HPO-LLM is its ability
to ascertain optimal hyperparameters and their search intervals by meticulously analyzing a pro-
vided training configuration file, as visualized in Fig. 4(b). Harnessing the deep knowledge base of
LLMs concerning ML training, we employ the HPO-LLM to generate comprehensive descriptions
for each hyperparameter found within the configuration file. These descriptions, paired with the
original configuration file, form the foundation of the prompt context for HPO-LLM. The module
then embarks on identifying the hyperparameters primed for optimization, basing its proposals on
preset values cataloged within the hyperparameter list. Delving into the specifics, the input prompt
fed to HPO-LLM is multi-faceted: (1) It incorporates the training configuration file, brimming with
the hyperparameter set, aiding HPO-LLM in cherry-picking hyperparameters ripe for optimization.
(2) LLM-generated text descriptions for each hyperparameter, furnishing HPO-LLM with a nuanced
understanding of each hyperparameter’s implications. (3) Optional user directives, offering a per-
sonalized touch. Users can weave in additional instructions, guiding HPO-LLM’s decision-making.
This could encompass emphasizing certain hyperparameters based on unique requirements. By in-
tertwining the capabilities of ray.tune with our HPO-LLM, we’ve pioneered an approach that
takes hyperparameter optimization to new heights, marrying automation with enhanced acumen.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. To evaluate the efficacy of the AutoM3L system, we conducted experiments on four
multimodal datasets, all sourced from the Kaggle competition platform. These datasets encompass
a range of tasks, namely classification, regression, and retrieval. For classification, we use two
datasets, each characterized by distinct modalities: (1) PetFinder.my-Adoption Prediction (PAP):
This dataset aims to predict pet adoptability, leveraging image, text, and tabular modalities. (2)
Google Maps Restaurant Reviews (GMRR): It is curated to discern the nature of restaurant re-
views on Google Maps, making use of image, text, and tabular modalities. Turning our attention
to regression, we utilized the PetFinder.my-Pawpularity Contest dataset (PPC). This dataset’s pri-
mary objective is to forecast the popularity of shelter pets, drawing insights from text and tabular
modalities. For the retrieval-based tasks, we employed the Shopee-Price Match Guarantee dataset
(SPMG), which aims to determine if two products are identical, hinging on data from image and
text modalities. Our performance metrics include accuracy for classification tasks, the coefficient of

6



Under review as a conference paper at ICLR 2024

Table 1: Evaluation for modality inference.
AutoM3L can effectively determine the data
modality, even on data that AutoGluon mis-
classifies.

Method AutoGluon AutoM3L
PAP↑ 0.4121 0.4080
PPC↓ 1.0129 1.0129
GMRR↑ 0.3727 0.4091
SPMG↑ 0.9851 0.9851

Table 2: Evaluation for feature engineering.
AutoM3L filters out noisy features and per-
forms data imputation, effectively mitigating
the adverse effects of noisy data.

Method AutoGluon AutoM3L
PAP↑ 0.4022 0.4071
PPC↓ 1.0131 1.0130
GMRR↑ 0.3773 0.3893
SPMG↑ 0.9837 0.9851

determination (R2) for regression tasks, and the area under the ROC curve (AUC) for retrieval tasks.
See Appendix B for more details.

Baseline. Given the scarcity of specialized multimodal AutoML frameworks, our experimen-
tal evaluations were exclusively performed using the AutoGluon framework. Setting up training
pipelines in AutoGluon necessitated detailed manual configurations. This involved specifying which
models to train and conducting a thorough pre-exploration to determine the parameters suitable for
hyperparameter optimization and their respective search ranges. It’s crucial to highlight that the au-
tomation and intelligence levels of AutoGluon remain challenging to quantify, and in this research,
we innovatively measure them through the user study from the human perspective.

IRB Approval for User Study. The user study conducted in this research has received full ap-
proval from the Institutional Review Board (IRB). All methodologies, protocols, and procedures
pertaining to human participants were carefully reviewed to ensure they align with ethical standards.

4.2 QUANTITATIVE EVALUATION

We first carried out quantitative evaluations, drawing direct comparisons with AutoGluon with focus
on the modality inference, automated feature engineering, and the automated hyperparameter opti-
mization modules. For modality inference evaluation, apart from the modality inference component,
all other aspects of the frameworks are kept consistent. For feature engineering and hyperparame-
ter optimization, we aligned the modality inference from AutoGluon with the results of AutoM3L
to analyze their respective impacts on performance. Afterwards, we evaluate the pipeline assem-
bly module in terms of intelligence and usability through user study in the next section, due to its
inherent difficulty in quantitative assessment.

Evaluation for Modality Inference. Table 1 depicts the comparative performance analysis be-
tween AutoGluon’s modality inference module and our LLM-based modality inference approach
across various multimodal datasets. Within AutoGluon, modality inference operates based on a set
of manually defined rules. For instance, an attribute might be classified as a categorical modality
if the count of its unique elements is below a certain threshold. When we observe the results, it’s
evident that AutoM3L offers accuracy on par with AutoGluon for most datasets. This similarity
in performance can be primarily attributed to the congruence in their modality inference outcomes.
However, a notable divergence is observed with the GMRR dataset, where AutoM3L obtains 0.4091
accuracy, significantly outperforming AutoGluon’s 0.3727. Upon closer inspection, we identified
that AutoGluon misclassified the ’image path’ attribute as categorical, thereby neglecting to acti-
vate the visual model. Such an oversight underscores the robustness of our LLM-based modality
inference approach, which adeptly deduces modality specifics from both column names and their
associated data.

Evaluation for Feature Engineering. Table 2 illustrates the comparisons utilizing AutoGluon’s
data preprocessing module and our LLM-based automated feature engineering module on multi-
modal datasets. Given the completeness of these datasets, we randomly masked portions of the data
and manually introduced noisy features from unrelated datasets to assess the effectiveness of au-
tomated feature engineering. Note that, AutoGluon lacks a dedicated feature engineering module
for multimodal data, making this experiment a direct assessment of our automated feature engineer-

7



Under review as a conference paper at ICLR 2024

Table 3: Evaluation on the hyperparameter optimization. AutoM3L’s self-recommended search
space rivals, and in some cases surpasses, manually tuned search spaces.

Method PAP↑ PPC↓ GMRR↑ SPMG↑
AutoGluon w/o HPO 0.4121 1.0129 0.4091 0.9851
AutoGluon w/ HPO 0.4455 1.0128 0.4272 0.9894
AutoM3L 0.4435 1.0118 0.4499 0.9903

ing. We observed that automated feature engineering, which implements feature filtering and data
imputation, effectively mitigates the impact of noisy data. Across all test datasets, automated fea-
ture engineering showed improvements, with a notable 1.2% performance increase observed in the
GMRR dataset.

Evaluation for Hyperparameter Optimization. We also conduct experiments to assess the ca-
pabilities of tje automated hyperparameter optimization module within AutoM3L. Contrasting with
AutoGluon, where users typically grapple with manually defining the hyperparameter search space,
AutoM3L streamlines this process. From Table 3, it’s evident that the integration of hyperparam-
eter optimization during the training phase contributes positively to model performance. Impres-
sively, AutoM3L matches AutoGluon’s accuracy across all datasets. However, the standout advan-
tage of AutoM3L lies in its automation; while AutoGluon demands a manual, often tedious setup,
AutoM3L markedly reduces human intervention, offering a more seamless, automated experience.

4.3 USER STUDY

Hypothesis Formulation and Testing. To assess AutoM3L’s effectiveness, we conducted a user
study focused on whether the LLM controller can enhance the degree of automation within the
multimodal AutoML framework. We formulated null hypotheses:

• H1: AutoM3L does not reduce time required for learning and using the framework.
• H2: AutoM3L does not improve user action accuracy.
• H3: AutoM3L does not enhance overall framework usability.
• H4: AutoM3L does not decrease user workload.

We performed single-sided t-tests to evaluate statistical significance. Specifically, we compared
AutoM3L and AutoGluon on the following variables: task execution time, the number of attempts,
system usability, and perceived workload. See Appendix C.3 for details about the variables.

User Study Design. As depicted in Fig. 5, our user study’s workflow unfolds in structured phases.
Note that the user study has been reviewed by IRB and granted full approval. The study begins with
the orientation phase where voluntary participants are acquainted with the objectives, underlying
motivations, and procedural details of the user study. This phase is followed by a user background
survey, which gleans insights into participants’ professional roles, their prior exposure to technolo-
gies such as LLM and AutoML, and other pertinent details. The core segment of the study involves
hands-on tasks that participants undertake in two distinct conditions: perform multimodal task Au-
toML with AutoGluon and with AutoM3L. These tasks center around exploring the automation
capabilities of the AutoML frameworks, as well as gauging the user-friendliness of their features

Figure 5: The workflow of the user study to measure the user-friendliness of the AutoM3L.

8



Under review as a conference paper at ICLR 2024

Figure 6: Boxplots displaying the distribution of the four variables collected in the user study.

such as hyperparameter optimization. Participants, guided by clear instructions, are tasked with
constructing multimodal training pipelines employing certain models and defining specific hyperpa-
rameter optimization domains. To ensure a balanced perspective, participants are randomly split into
two groups: the first interacts with AutoGluon, while the second delves into AutoM3L. Upon task
completion, the groups swap platforms. For a holistic understanding of user interactions, we metic-
ulously track both the time taken by each participant for task execution and the number of attempts
before the successful execution. The study culminates with a feedback session, where participants
articulate their impressions regarding the usability and perceived workload of both AutoGluon and
AutoM3L via questionnaire. Their feedback and responses to the questionnaire, captured using
Google Forms, form a crucial dataset for the subsequent hypothesis testing and analysis.

Results and Analysis of Hypothesis Testing. Our study cohort consisted of 20 diverse partici-
pants: 6 software developers, 10 AI researchers, and 4 students, which ensured a rich blend of per-
spectives of the involved users. The data we gathered spanned four variables, visualized in Fig. 6.
To validate our hypotheses, we performed paired two-sample t-tests (essentially one-sample, one-
sided t-tests on differences) for the aforementioned variables across two experimental conditions:
AutoGluon and AutoM3L. These tests were conducted at a significance level of 5%. The outcomes
in Table 4 empower us to reject all the null hypotheses, underscoring the superior efficacy and
user-friendliness of AutoM3L. The success of AutoM3L can be largely attributed to the interac-
tive capabilities endowed by LLMs, which significantly reduce the learning curve and usage costs.
Please refer to Appendix C.3 for detailed analysis.

Table 4: Hypothesis testing results from paired two-sample one-sided t-tests.

Hypothesis T Test Statistic P-value Reject Hypothesis
H1 12.321 8.2× 10−11 Yes
H2 10.655 9.3× 10−10 Yes
H3 -5.780 1.0× 10−5 Yes
H4 3.949 4.3× 10−4 Yes

5 CONCLUSION

In this work, we introduce AutoM3L, a novel LLM-powered Automated Multimodal Machine
Learning framework. AutoM3L explores automated pipeline construction, automated feature en-
gineering, and automated hyperparameter optimization. This enables the realization of an end-to-
end multimodal AutoML framework. Leveraging the exceptional capabilities of LLMs, AutoM3L
provides adaptable and accessible solutions for multimodal data tasks. It offers automation, inter-
activity, and user customization. Through extensive experiments and user studies, we demonstrate
AutoM3L’s generality, effectiveness, and user-friendliness. This highlights its potential to transform
multimodal AutoML. AutoM3L marks a significant advance, offering enhanced multimodal ma-
chine learning across domains. One future direction is to encompass a diverse range of data modal-
ities, spanning video, audio, and point clouds, among others. While we have currently addressed
data imputation for tabular and textual formats, another future endeavors will integrate sophisticated
image generation techniques to manage missing data in visual datasets. Such advancements will
further solidify our standing in multimodal data analysis.

9



Under review as a conference paper at ICLR 2024

REFERENCES

John Brooke. Sus: a “quick and dirty’usability. Usability evaluation in industry, 189(3):189–194,
1996.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Radwa Elshawi, Mohamed Maher, and Sherif Sakr. Automated machine learning: State-of-the-art
and open challenges. arXiv preprint arXiv:1906.02287, 2019.

William A Falcon. Pytorch lightning. GitHub, 3, 2019.

Pieter Gijsbers, Erin LeDell, Janek Thomas, Sébastien Poirier, Bernd Bischl, and Joaquin Van-
schoren. An open source automl benchmark. arXiv preprint arXiv:1907.00909, 2019.

Sandra G Hart and Lowell E Staveland. Development of nasa-tlx (task load index): Results of
empirical and theoretical research. In Advances in psychology, volume 52, pp. 139–183. Elsevier,
1988.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Ceyao Zhang, Zili Wang, Steven
Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, et al. Metagpt: Meta programming for
multi-agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine learning: methods, sys-
tems, challenges. Springer Nature, 2019.

James Max Kanter and Kalyan Veeramachaneni. Deep feature synthesis: Towards automating data
science endeavors. In 2015 IEEE international conference on data science and advanced analyt-
ics (DSAA), pp. 1–10. IEEE, 2015.

Ambika Kaul, Saket Maheshwary, and Vikram Pudi. Autolearn—automated feature generation and
selection. In 2017 IEEE International Conference on data mining (ICDM), pp. 217–226. IEEE,
2017.

Hoang Thanh Lam, Johann-Michael Thiebaut, Mathieu Sinn, Bei Chen, Tiep Mai, and Oznur Alkan.
One button machine for automating feature engineering in relational databases. arXiv preprint
arXiv:1706.00327, 2017.

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. In Proceed-
ings of the AutoML Workshop at ICML, volume 2020. ICML, 2020.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed frame-
work for emerging {AI} applications. In 13th USENIX symposium on operating systems design
and implementation (OSDI 18), pp. 561–577, 2018.

OpenAI. Introducing chatgpt, 2022a. URL https://openai.com/blog/chatgpt.

OpenAI. New and improved embedding model, 2022b. URL https://openai.com/blog/
new-and-improved-embedding-model.

OpenAI. Gpt-4 technical report, 2023.

10

https://openai.com/blog/chatgpt
https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model


Under review as a conference paper at ICLR 2024

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. arXiv preprint arXiv:2302.04761, 2023.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Anton Vakhrushev, Alexander Ryzhkov, Maxim Savchenko, Dmitry Simakov, Rinchin Damdinov,
and Alexander Tuzhilin. Lightautoml: Automl solution for a large financial services ecosystem.
arXiv preprint arXiv:2109.01528, 2021.

Chi Wang, Qingyun Wu, Markus Weimer, and Erkang Zhu. Flaml: A fast and lightweight automl
library. Proceedings of Machine Learning and Systems, 3:434–447, 2021.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Hilde JP Weerts, Andreas C Mueller, and Joaquin Vanschoren. Importance of tuning hyperparame-
ters of machine learning algorithms. arXiv preprint arXiv:2007.07588, 2020.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Peter Gam Jiaxi Cui circlestarzero Shiwen Ni Jaseon Quanta Qingxu Fu Siyuan Hou Yongle Luo,
Rongsheng Wang. Chatpaper: Use llm to summarize papers. https://github.com/
kaixindelele/ChatPaper, 2023.

11

https://github.com/kaixindelele/ChatPaper
https://github.com/kaixindelele/ChatPaper


Under review as a conference paper at ICLR 2024

A PROMPTS

Prompt 1: Full System Prompt For MI-LLM.

You are a helpful assistant that analyze data modalities in multimodal Auto-Machine learn-
ing task.
Your task is to analyze the data type of each column of the pandas.DataFrame tabular data.
Your answer must be in a strict JSON format: {“column name”: “data type”}.
You can analyze the data type based on the corresponding column name,column data and
the user instructions, which may contain the context of tasks/datasets, etc..
You should not omit any column of data in your answer.

Here are some examples for your reference:
Input: instructions:{data1 desc},Date:{data1 input}
Output: {data1 output}
Input: instructions:{data2 desc},Date:{data2 input}
Output: {data2 output}
Input: instructions:{data3 desc},Date:{data3 input}
Output: {data3 output}
Input: instructions:{data0 desc},Date:{data0 input}
Output:

Prompt 2: Full System Prompt For AFE-LLMfilter.

You are a helpful assistant that apply feature engineering, especially feature selection.
Given a set of features, you task is to filter out some features that are not relevant to a specific
task.
You should filter out the features based on the feature names, feature type and user instru-
cions, which may contain the context of tasks/datasets, etc..
You cannot forge features that are not in the Input.
In particular, image features should be preserved.

Here are some examples for your reference:
Input: instructions:{data1 task}, features type:{data1 type1}, features:{data1 feat1}
Output: {data1 feat2}
Input: instructions:{data2 task}, features type:{data2 type1}, features:{data2 feat1}
Output: {data2 feat2}
Input: instructions:{data0 task}, features type:{data0 type1}, features:{data0 feat1}
Output:

Prompt 3: Full System Prompt For AFE-LLMimputed.

12



Under review as a conference paper at ICLR 2024

You are a helpful assistant that apply feature engineering, especially data imputation.
Given a feature sequence, your task is to predict missing values in it. Missing values are
represented by ”???”.
You should predict missing values based on other feature values in the sequence, and you
can refer to user instructions, which may contrain context of the task/dataset, etc...
Your output format must be a certain element value, don’t reply the reasoning process.

Here are some examples for your reference:
Input: instructions:{data1 task}, feature sequence:{data1 sequence}
Output: {data1 miss}
Input: instructions:{data2 task}, feature sequence:{data2 sequence}
Output: {data2 miss}
Input: instructions:{data3 task}, feature sequence:{data3 sequence}
Output: {data3 miss}
Input: instructions:{data0 task}, feature sequence:{data0 sequence}
Output:

Prompt 4: Full System Prompt For MS-LLM.

I am a deep learning software develop engineer, you’re the code compiler, and we’re working
together on a multimodal Auto-Machine learning task.
Given the dataset description and user request ,Your task is to helps the user to select a
suitable model.
You should focus more on the description of the model and find the model that has the most
potential to solve requests and tasks.
Your answer must be in a strict JSON format: {“name”: “model name”, “reason”: “your
reasons to select the model”}. Please choose the most suitable model from: {model cards}

User: Assume we have a dataset:{data desc} and user request: {user request},please select
the most suitable model.
Answer is:

Prompt 5: Full System Prompt For PA-LLM(Data Processors Generation).

13



Under review as a conference paper at ICLR 2024

You are a helpful assistant that writes data processors code to load different types of data for
multimodal Auto-Machine learning task.
Since different types of models need different data preprocessing, you task is to writes a
function to return the corresponding data processors based on models’ config.
Specifically, you do not need to define a data processor for the fusion model, and the label
data processor is also required to provide label data for each model.
The function return must be in a strict dict format: {“data type”: “data processor”}.
Please specify the library you imported in the code.

Here are some data processors code for you reference:

from multimodal.data import ImageProcessor
class ImageProcessor:

def init (self,model config):
...

from multimodal.data import TextProcessor
class TextProcessor:

def init (self,model config):
...

from multimodal.data import CategoricalProcessor
class CategoricalProcessor:

def init (self,model config):
...

from multimodal.data import NumericalProcessor
class NumericalProcessor:

def init (self,model config):
...

from multimodal.data import LabelProcessor
class LabelProcessor:

def init (self,model config):
...

...

Given some models’ config as follow:
{configs}

Prompt 6: Full System Prompt For PA-LLM(Pipeline Assembly).

14



Under review as a conference paper at ICLR 2024

You are a helpful assistant that writes the Deep learning model code.
You task is to write a fusion model to fuse different base models’ features.
Use # before every line except the python code.

Here are some model code for you reference:

from multimodal.models import CategoricalTransformer
class CategoricalTransformer(nn.Module):

def init (self,model config):
...

from multimodal.models import NumericalTransformer
class NumericalTransformer(nn.Module):

def init (self,model config):
...

from multimodal.models import TimmAutoModelForImagePrediction
class TimmAutoModelForImagePrediction(nn.Module):

def init (self,model config):
...

from multimodal.models import HFAutoModelForTextPrediction
class HFAutoModelForTextPrediction(nn.Module):

def init (self,model config):
...

...
Given some base models’ config as follow:
{base configs}
Give the fusion model config as follow:
{fusion config}

You should then respond to me the code with:
1). Fusion technique should be learnable, MLP is recommended.
2). The fusion model structure should be defined as fusion model and fusion head,which
output features and logits, respectively.
3). Base models instance should be defined in Fusion model Class.You should not change
the value of the output of base model instances.
4). All base models have a uniform variable(self.out features dim) to represent the output
features dimension.
5). Finding the maximum dimension of all base models’ output features, and define learnable
linear layers to adapt all base models’ output features to the maximum dimension as the input
of fusion model. For example, if three models have feature dimensions are [512, 768, 64],
it will linearly map all the features to dimension 768.
6). Output the logits,features,loss weights of fusion model and base models.The return must
be in a JSON format: {model name:{“logits”:...,“features”:...,“weight”:...}}.
7). All the network layers and variable self.model name,self.loss weight should be defined
in function init , not in function forward.
8). Some variables are not present in each model’s config,you cannot use a variable that does
not exist in the corresponding model config.
9). you should import the tools you used.

You should only respond in the format as described below :
Class Fusion:

def init (self,...)
...
def forward(self,batch)
...
fusion features = self.fusion model(...)
fusion logits = self.fusion head(fusion features)
...

15



Under review as a conference paper at ICLR 2024

Prompt 7: Full System Prompt For Hyperparameter Description Generation.

You are a helpful assistant that adds descriptions for the parameters in the training config for
machine learning task.
Your answer must be in a strict JSON format: {“hyperparameter name”:“descriptions”}.
You should not mention the specific values in config in the description.

Given the model configs as follow: {configs}
Your answer:

Prompt 7: Full System Prompt For HPO-LLM.

You are a helpful assistant that infers the hyperparameters and their search ranges for hyper-
parameter optimization in machine learning task.
You can use the format:[value1,value2,value3,...,] to represent a discrete search range.
Your answer must be in a strict JSON format: {“hyperparameter name”:“search range”}.
Here are some comments to help you understand the parameters better:
{self desc}

Here are some things you need to focus on:
1).If the values in the search space are of type INT or FLOAT, then the search space needs
to have at least 3 values.
2).The search ranges should refer to the original value of the config. The search ranges
should include the original value of the config.
3).You should not output the hyperparameters don’t need to optimize.
4).You cannot forge parameters that are not in the configuration file.
5).If the “checkpoint name” is in config, only the “loss weight” is taken.

Given the config as follow:
{config}
Given the user requirements:
{user}
Your answer:

B STRUCTURED TABLE DATASETS

B.1 DATASET DETAILS

Dataset Downloading Links. For the purpose of reproducibility, we provide the downloading link
for each of the datasets used in this work.

• PetFinder.my-Adoption Prediction dataset (PAP):
https://www.kaggle.com/competitions/petfinder-adoption-prediction

• PetFinder.my-Pawpularity Contest dataset (PPC)
https://www.kaggle.com/competitions/petfinder-pawpularity-score

• Google Maps Restaurant Reviews dataset (GMRR):
https://www.kaggle.com/datasets/denizbilginn/
google-maps-restaurant-reviews

• Shopee-Price Match Guarantee dataset (SPMG):
https://www.kaggle.com/competitions/shopee-product-matching

16

https://www.kaggle.com/competitions/petfinder-adoption-prediction
https://www.kaggle.com/competitions/petfinder-pawpularity-score
https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews
https://www.kaggle.com/datasets/denizbilginn/google-maps-restaurant-reviews
https://www.kaggle.com/competitions/shopee-product-matching


Under review as a conference paper at ICLR 2024

Table 5: Task and structure of each dataset

Dataset
Name #Train #Test Task Metric Prediction

Target

PAP 11721 2931 multiclass accuray category of
adoption speed

PPC 7929 1983 regression R2 appeal’rate

GMRR 880 220 multiclass accuracy rating category
of restaurant

SPMG 5000 1000 retrieval roc-acc whether data pair
is in same class

Table 6: Example of data in multimodal structured table dataset with text (name, description), nu-
merical (age), categorical (gender), and image paths (images) columns. With these attributes, we
want to predict how quickly the pet will be adopted (adoption speed). We only display the partial
columns for brevity.

name age gender description images adoption

Coco 13 2
Hi, Coco is a
rescued puppy from
xthe streets, ...

images/640683dd9-1.jpg 0

Muffin 1 2
This is the puppy
we adopted from
Crystal, ...

images/e3935c62d-1.jpg 0

Usyang 4 1
Both of my kitten
is so active and
spoilt, ...

images/d33f713d0-1.jpg 1

... ... ... ... ... ...

Table 7: Example of data in multimodal structured table dataset with categorical attribute (Eyes,
Face, Near, Blur) and corresponding photo paths (Images) of pets. With these attributes, we want to
determine a pet photo’s appeal (Pawpularity). We only display the partial columns for brevity.

Eyes Face Near Blur images Pawpularity

1 1 1 0 train images/
0007de18844b0dbbb5e1f607da0606e0.jpg 63

1 1 0 0 train images/
0009c66b9439883ba2750fb825e1d7db.jpg 42

1 1 1 0 train images/
0013fd999caf9a3efe1352ca1b0d937e.jpg 28

... ... ... ... ... ...

C QUESTIONNAIRE AND VARIABLES IN USER STUDY

C.1 USER BACKGROUND SURVEY QUESTIONNAIRE

1. Age? Single-choice question.

⃝ <18
⃝ 18-24
⃝ 25-34
⃝ 35-44
⃝ >44

2. Gender? Single-choice question.

⃝ Male

17



Under review as a conference paper at ICLR 2024

Table 8: Example of data in multimodal structured table dataset with image (photo),
text (business name, author name, text), numerical(rating). we want to predict which
category(ratingcategory)theauthorisrating.

business
name

author
name text photo rating rating

category

Haci’nin Yeri -
Yigit Lokantasi Gulsum Akar

We went to
Marmaris

with ...

dataset/
taste/

hacinin yeri
gulsum akar.png

5 taste

Haci’nin Yeri -
Yigit Lokantasi Oguzhan Cetin

During my
holiday

in Marmaris
we ate ...

dataset/
menu/

hacinin yeri
oguzhan cetin.png

4 menu

Pizza Fellas Kadir Tasci
The ambiance
of the place

is ...

dataset/
indoor atmosphere/

pizza fellas
kadir tasci.png

5 indoor
atmosphere

... ... ... ... ... ...

Table 9: Example of data in multimodal structured table dataset with image paths (image1, image2)
and texts (title1, title2). we want to determine whether the image-text and image-text pair is in same
class(p=1) or not. the original data give a image path, it’s text description and corresponding class.
For each item, we choose other item from same or different class with equal probability to form
positive or negative pair.

image1 title1 image2 title2 p

f28094791c585c3f
1f7c0662e2cbecee

.jpg

YANG YY 001
Air pump

aerator baterai
Yang

a4e379e2da3947ce
d71630fbdda70c4b

.jpg

Paket Super
Kinclong Lengkap 0

1267eb326c6ad70a
32fb942b4834f818

.jpg

Promag Tablet
1 Box

2d8ca235317a263c
aeb5432e57aeeff8

.jpg

Promag 1 Box isi
3 lembar 1

2d8ca235317a263c
aeb5432e57aeeff8

.jpg

Promag 1 Box isi
3 lembar

088fec7809a7d809
73606507b123c66d

.jpg

PAKET SHAMPO
KUNTZE 0

... ... ... ... ...

⃝ Female

3. What is your highest level of education? Single-choice question.

⃝ High School or Below
⃝ Bachelor’s Degree
⃝ Master’s Degree
⃝ Ph.D.
⃝ Other:

4. What is your occupation? Single-choice question.

⃝ Student
⃝ Engineer
⃝ Data Scientist/Analyst
⃝ AI Algorithm Engineer
⃝ Educator
⃝ Doctor/Medical Professional

18



Under review as a conference paper at ICLR 2024

⃝ Other:
5. Are you familiar with Python? Single-choice question.

⃝ Yes
⃝ No

6. Are you familiar with terminal operation? Select only one bullet point.

⃝ Yes
⃝ No

7. Do you have any experience with machine learning? Select only one bullet point.

⃝ Yes, experienced
⃝ Yes, some experience
⃝ No, no experience

8. Have you used any AutoML tools or platforms before? Select only one bullet point.

⃝ Yes, very familiar
⃝ Yes, somewhat familiar
⃝ No, not familiar

9. Are you familiar with the AutoGluon used in this experiment? Select only one bullet point.

⃝ Yes
⃝ No

10. Are you familiar with the Large language model? Select only one bullet point.

⃝ Yes, very familiar
⃝ Yes, somewhat familiar
⃝ No, not familiar

11. Would you be willing to participate in this experiment? Select only one bullet point.

⃝ Yes, I am willing to participate
⃝ No, I am not willing to participate

12. What are your expectations for automated machine learning methods? Select only one bullet
point.

(a)

C.2 QUESTIONNAIRE AFTER TASK EXECUTION

1. How much time did it take in total to complete all the tasks? (in seconds)
2. How many script execution attempts did you make in total to complete the tasks?
3. I think that I would like to use this system frequently. Select only one bullet point.

1 2 3 4 5
Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

4. I found the system unnecessarily complex. Select only one bullet point.
1 2 3 4 5

Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

5. I thought the system was easy to use. Select only one bullet point.
1 2 3 4 5

Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

19



Under review as a conference paper at ICLR 2024

6. I think that I would need the support of a technical person to be able to use this system. Select
only one bullet point.

1 2 3 4 5
Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

7. I found the various functions in this system were well integrated. Select only one bullet point.
1 2 3 4 5

Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

8. I thought there was too much inconsistency in this system. Select only one bullet point.
1 2 3 4 5

Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

9. I would imagine that most people would learn to use this system very quickly. Select only one
bullet point.

1 2 3 4 5
Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

10. I found the system very cumbersome to use. Select only one bullet point.
1 2 3 4 5

Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

11. I felt very confident using the system. Select only one bullet point.
1 2 3 4 5

Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

12. I needed to learn a lot of things before I could get going with this system. Select only one bullet
point.

1 2 3 4 5
Strongly Disagree ⃝ ⃝ ⃝ ⃝ ⃝ Strongly Agree

13. Mental Demand:How mentally demanding was the task? Please assign a score between 1 and
20, where 1 = very low, and 20 = very high.

14. Physical Demand:How physically demanding was the task? Please assign a score between 1 and
20, where 1 = very low, and 20 = very high.

15. Temporal Demand:How hurried or rushed was the pace of the task? Please assign a score be-
tween 1 and 20, where 1 = very low, and 20 = very high.

16. Performance: How successful were you in accomplishing what you were asked to do? Please
assign a score between 1 and 20, where 1 = very low, and 20 = very high.

17. Effort:How hard did you have to work to accomplish your level of performance? Please assign
a score between 1 and 20, where 1 = very low, and 20 = very high.

18. Frustration:How insecure, discouraged, irritated, stressed and annoyed wereyou? Please assign
a score between 1 and 20, where 1 = very low, and 20 = very high.

19. Main source of workload? Select only one bullet point.
⃝ Mental Demand ⃝ Physical Demand

20. Main source of workload? Select only one bullet point.
⃝ Temporal Demand ⃝ Performance

21. Main source of workload? Select only one bullet point.
⃝ Effort ⃝ Frustration

22. Main source of workload? Select only one bullet point.
⃝ Mental Demand ⃝ Temporal Demand

23. Main source of workload? Select only one bullet point.
⃝ Effort ⃝ Physical Demand

20



Under review as a conference paper at ICLR 2024

24. Main source of workload? Select only one bullet point.
⃝ Performance ⃝ Frustration

25. Main source of workload? Select only one bullet point.
⃝ Effort ⃝ Mental Demand

26. Main source of workload? Select only one bullet point.
⃝ Temporal Demand ⃝ Frustration

27. Main source of workload? Select only one bullet point.
⃝ Physical Demand ⃝ Performance

28. Main source of workload? Select only one bullet point.
⃝ Mental Demand ⃝ Performance

29. Main source of workload? Select only one bullet point.
⃝ Temporal Demand ⃝ Effort

30. Main source of workload? Select only one bullet point.
⃝ Frustration ⃝ Physical Demand

31. Main source of workload? Select only one bullet point.
⃝ Frustration ⃝ Mental Demand

32. Main source of workload? Select only one bullet point.
⃝ Frustration ⃝ Temporal Demand

33. Main source of workload? Select only one bullet point.
⃝ Performance ⃝ Effort

C.3 USER STUDY DETAILS

C.3.1 DEFINITION AND CALCULATION OF VARIABLES

We denote participant responses to the ith question in questionnaire C.2 as si. Questions 1-18 are
numerical variables, while the remaining are categorical.

Dependent Variables.

• Task Execution Time: Objective, continuous variable measuring the total time taken by
participants to successfully complete the task. Derived directly from the response to ques-
tion 1 in questionnaire C.2:

Time = s1. (2)

• Number of Attempts: Objective, continuous variable recording the total script execution
attempts by participants to successfully complete the task. Derived directly from the re-
sponse to question 2 in questionnaire C.2:

Attempts = s2. (3)

• Usability Score: The Usability Score is a subjective, continuous metric gauging the sys-
tem’s perceived usability. It is sourced from the System Usability Scale (SUS) survey ques-
tionnaire(Brooke, 1996), which comprises 10 questions. Each question offers five response
choices from “Strongly Disagree” to “Strongly Agree”, which are numerically scored from
1 to 5. Formally, the usability score is based on the responses to questions 3 through 12 in
questionnaire C.2. To quantify usability, we apply the standard scoring system of the SUS
to convert the scores for each participant on these questions into a new numerical format.
Subsequently, we calculate the sum of these scores and multiply the result by 2.5. This
step serves to reposition the original scores, which originally ranged from 0 to 40, into a
revised scale spanning from 0 to 100. Although interpreted like percentiles, they aren’t per-
centages. Higher scores signify better-perceived usability, which is mathematically defined
as

Usability = 2.5×
5∑

i=1

(s1+2i − 1) + (5− s2+2i). (4)

21



Under review as a conference paper at ICLR 2024

• Workload Index: This subjective, continuous variable assesses perceived mental workload
and is derived from the NASA Task Load Index (NASA TLX) questionnaire (Hart & Stave-
land, 1988). Recognized for its comprehensive evaluation of mental workload, the NASA
TLX divides workload into six categories: Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration. Participants rate each category on a scale
of 1 to 20 (questions 13 to 18). They also evaluate the significance of 15 pairs of these
categories in shaping the overall workload (questions 19 to 33). The scale score for each
dimension is calculated as si × 5. The weighted score wi is determined based on the fre-
quency of selection for each dimension as more important in questions 19 to 33, divided by
15. The overall workload score, ranging from 0 to 100, is then computed by summing the
products of the scale score and weighted score for each dimension as follows:

Workload =

18∑
i=13

wi · (5 · si). (5)

Independent Variables. The most direct independent variables stem from the differences in ap-
proaches between participants using AutoM3L and AutoGluon when performing tasks. Further-
more, various independent variables have the potential to impact user outcomes, including:

• Participant Background: These categorical variables encompass background information
about the participants, such as their professional roles, providing deeper insights into poten-
tial background knowledge, biases, or preferences that users may bring to task execution.

• Familiarity with Technology: These numerical variables represent each participant’s fa-
miliarity with terminal operations, the Python programming language, LLM, and AutoML
methods. Familiarity levels can potentially impact the ease with which participants com-
plete AutoML tasks, thus influencing the final measurement outcomes.

C.3.2 PARTICIPANT RECRUITMENT.

We strategically recruited volunteers to participate in our user study, encompassing potential users
of AutoML frameworks, including software developers, AI researchers, and students. Among AI
researchers, we included individuals both familiar and unfamiliar with AutoML frameworks. We
believe that this diverse group of participants provides a comprehensive evaluation of our AutoM3L,
considering a range of backgrounds and expertise levels in AutoML methods.

C.3.3 USER STUDY ANALYSIS PROCESS.

Collected Data. We collected both objective and subjective evaluations from each user regarding
the systems, including task execution time, number of attempts, usability scores, and workload
indices. Box plots for these four variables are presented individually in Fig 6. Each box plot displays
the minimum value, first quartile (Q1), median (Q2), third quartile (Q3), and maximum value for
these variables. The box represents the interquartile range (IQR) from Q1 to Q3, with a line inside
indicating the median.

Normality Testing. To ensure the validity of our subsequent statistical analyses, we conducted a
normality test on our data using Q-Q plots, as depicted in Fig 7 and Fig 8. The proximity of our data
points to the theoretical quantile lines, along with the bell-shaped curve observed in the histograms,
suggests that task completion time, the number of attempts, usability score and workload reasonably
adhere to the assumption of normality.

Hypothesis Testing. We employed hypothesis testing to assess the statistical significance of the
observed performance differences between the AutoGluon and AutoM3L conditions. The differ-
ences we are analyzing, denoted as di, were calculated by taking the AutoGluon measurements and
subtracting the corresponding AutoM3L measurements. Assuming the null hypothesis, both Auto-
Gluon and AutoM3L exert an equivalent impact. Consequently, these differences are expected to
adhere to a distribution centered around zero, denoted as µd = 0. Our dataset for hypothesis testing
comprises 20 samples, and we express the null and alternative hypotheses as follows:

22



Under review as a conference paper at ICLR 2024

Figure 7: Normality Testing for task completion time and the number of attempts. The top row
of panels present the Q-Q plot and histogram for task completion time, respectively. Similarly, the
lower row of panels illustrate the Q-Q plot and histogram for the number of attempts.

Figure 8: Normality Testing for system usability and workload. The top row of panels present the
Q-Q plot and histogram for the usability, respectively. Similarly, the lower row of panels illustrate
the Q-Q plot and histogram for the workload.

H0 : µd = 0 against H1 : µd>0 (6)

23



Under review as a conference paper at ICLR 2024

This applies to the testing of hypotheses H1, H2, and H4. In the case of testing H3, the alternative
hypothesis is that µd<0. Here, d and sd denote the sample mean and sample standard deviation of
the observed differences, respectively. With these parameters in mind, the sampling distribution of
the test statistic follows a t-distribution with degrees of freedom equal to n 1. Consequently, under
the null hypothesis H0,

τ =
d

sd/
√
n
∼ tn-1 (7)

D EXPERIMENT IMPLEMENTATION

Implementations for Quantitative Evaluations. In our quantitative assessment,
we primarily relied on OpenAI’s APIs: gpt-4-0314(OpenAI, 2023) for code
generation, gpt-3.5-turbo-0301(OpenAI, 2022a) for text completion, and
text-embedding-ada-002(OpenAI, 2022b) for text embedding. For all APIs, we set
the temperature parameter to 0 to maximize determinism. The experiments utilized the PyTorch
Lightning framework(Falcon, 2019) for model training, and Ray(Moritz et al., 2018) served as our
tool for hyperparameter search. Given that the competition datasets’ test sets were unlabeled, we
opted for a stratified sampling approach, reserving 20% of the training set as a validation set for
performance assessment. For the retrieval dataset, 20% of the IDs were randomly chosen, and we
created matching pairs of positive and negative samples for validation. While we consistently used
the same models in our experiments as those in the AutoGluon assessments for the same modality
data, our emphasis on the model selection module was not solely on accuracy. Instead, we were
driven by the goal of intelligently choosing models based on data modality and user-specific needs.

Implementations in User Study. For the user study, given the advanced capabilities of GPT-3.5,
we chose to employ the gpt-3.5-turbo-0301 API as the LLM backbone of AutoM3L. Par-
ticipants in the study were provided execution scripts for both AutoGluon and AutoM3L, allowing
them a comparative experience.

24


	INTRODUCTION
	RELATED WORKS
	METHODS
	EXPERIMENTS
	Experimental Settings
	Quantitative Evaluation
	User Study

	CONCLUSION
	Prompts
	Structured Table Datasets
	Dataset Details

	Questionnaire and Variables in User Study
	User Background Survey Questionnaire
	Questionnaire After Task Execution
	User study Details
	Definition and Calculation of Variables
	Participant Recruitment.
	User Study Analysis Process.


	Experiment Implementation

