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Abstract

Recent research has observed that in machine learning optimization, gradient1

descent (GD) often operates at the edge of stability (EoS) [Cohen et al., 2021],2

where the stepsizes are set to be large, resulting in non-monotonic losses induced3

by the GD iterates. This paper studies the convergence and implicit bias of constant-4

stepsize GD for logistic regression on linearly separable data in the EoS regime.5

Despite the presence of local oscillations, we prove that the logistic loss can be6

minimized by GD with any constant stepsize over a long time scale. Furthermore,7

we prove that with any constant stepsize, the GD iterates tend to infinity when8

projected to a max-margin direction (the hard-margin SVM direction) and converge9

to a fixed vector that minimizes a strongly convex potential when projected to the10

orthogonal complement of the max-margin direction. In contrast, we also show that11

in the EoS regime, GD iterates may diverge catastrophically under the exponential12

loss, highlighting the superiority of the logistic loss. These theoretical findings13

are in line with numerical simulations and complement existing theories on the14

convergence and implicit bias of GD, which are only applicable when the stepsizes15

are sufficiently small.16

1 Introduction17

Gradient descent (GD) is a foundational algorithm for machine learning optimization that motivates18

many popular algorithms. Theoretically, the behavior of GD is well understood when the stepsize is19

small. In this regard, one of the most classic results is the descent lemma (see, e.g., Section 1.2.3 in20

Nesterov et al. [2018]):21

Lemma (Descent lemma, simplified version). Suppose that supw
∥∥∇2L(w)

∥∥
2
≤ β1, then22

L(w+) ≤ L(w)− η · (1− ηβ/2) · ∥∇L(w)∥22, where w+ := w − η · ∇L(w).

When the targeted function is smooth (such as logistic regression) and the stepsize is small (0 < η <23

β/2), the descent lemma ensures a monotonic decrease of the function value by performing each24

GD step. Building upon this, a sequence of iterates produced by GD with small stepsizes provably25

minimizes the function value in various settings (see, e.g., Lan [2020]).26

For a more modern example, a recent line of research has established the implicit bias of GD27

with small stepsizes (see Soudry et al. [2018], Ji and Telgarsky [2018b] and references thereafter).28

Specifically, they consider GD for optimizing logistic regression (besides other loss functions) on29

1The uniformly bounded Hessian norm condition is stated for simplicity and can be relaxed in many ways.
For example, it can be replaced by requiring L(·) to be β-smooth. For another example, it can also be replaced
with sup0≤λ≤1

∥∥∇2L(λ ·w + (1− λ) ·w+)
∥∥
2
≤ β.
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Figure 1: The behaviors of GD for optimizing a neural network. We randomly sample 1, 000 data from
the MNIST dataset and then use GD to train a 4-layer fully connected network to fit those data. We use the
cross-entropy loss, i.e., the multi-class version of the logistic loss. The sub-figures (a), (b), and (c) report the
training loss, test accuracy, and sharpness (i.e., ∥∇L(wt)∥2) along the GD trajectories, respectively. The red
curves correspond to GD with a large stepsize η = 0.1, where the training losses oscillate locally and the
sharpnesses can exceed 2/η = 20. The green curves correspond to GD with a small stepsize η = 0.01, where
the training losses decrease monotonically and the sharpnesses are always below 2/η = 200. Moreover, (c)
suggests that large-stepsize GD achieves better test accuracy than small-stepsize GD, consistent with larger-scale
deep learning experiments [Goyal et al., 2017]. More details of the experiments can be found in Appendix D.

linearly separable data. When the stepsizes are sufficiently small, the GD iterates are shown to30

decrease the risk monotonically (by a variant of the descent lemma); moreover, the GD iterates tend to31

align with a direction that maximizes the ℓ2-margin of the data [Soudry et al., 2018, Ji and Telgarsky,32

2018b]. The margin-maximization bias of small-stepsize GD sheds important light on understanding33

the statistical benefits of GD, as a large margin solution often generalizes well [Bartlett et al., 2017,34

Neyshabur et al., 2017].35

Nonetheless, in practical machine learning optimization, especially in deep learning, the empirical36

risk (or training loss) often varies non-monotonically (while being minimized in the long run) — the37

local risk oscillation is not only caused by the algorithmic randomness but is more an effect of using38

large stepsizes, as it happens for deterministic GD (with large stepsizes) as well [Wu et al., 2018,39

Xing et al., 2018, Lewkowycz et al., 2020, Cohen et al., 2021]. This phenomenon is showcased in40

Figures 1(a) and 2(a), and is referred to by Cohen et al. [2021] as the edge of stability (EoS). The41

observation sets a non-negligible gap between practical and theoretical GD setups, where in practice,42

GD is run with large stepsizes that lead to local risk oscillations, but in theory, GD is only considered43

with sufficiently small stepsizes, predicting a monotonic risk descent (with a few exceptions, which44

will be discussed later in Section 2). A tension remains to be resolved:45

Is the convergence of risk under local oscillation merely a “lucky” occurrence,46

or is it predictable based on theory?47

Contributions. In this work, we study the behaviors of GD in the EoS regime in arguably the48

simplest setting for machine learning optimization — logistic regression on linearly separable data.49

We show that with any constant stepsize, while the induced risks may oscillate locally, GD must50

minimize the risk in the long run at a rate ofO(1/t), where t is the number of iterates. In addition, we51

show that the direction of the GD iterates (with any constant stepsize) must align with a max-margin52

direction (the hard-margin SVM direction) at a rate of O(1/ log(t)). These results explain how GD53

minimizes a risk non-monotonically, and complement existing theories [Soudry et al., 2018, Ji and54

Telgarsky, 2018b] on the convergence and implicit bias of GD, which are only applicable when the55

stepsizes are sufficiently small.56

Some additional notable contributions are57

1. We also show that, when projected to the orthogonal complement of the max-margin direction,58

the GD iterates (with any constant stepsize) converge to a fixed vector that minimizes a strongly59

convex potential at a rate ofO(1/ log(t)). This characterization is conceptually more interpretable60

than an existing version [Soudry et al., 2018].61

2. We show that in the EoS regime, GD can diverge catastrophically if the logistic loss is replaced62

by the exponential loss. This is in stark contrast to the small-stepsize regime, where the behaviors63
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of GD are known to be similar under any exponentially-tailed losses including both the logistic64

and exponential losses [Soudry et al., 2018, Ji and Telgarsky, 2018b]. The difference in the EoS65

regime provides insights into why the logistic loss is preferable to the exponential loss in practice.66

3. From a technical perspective, we develop a new approach for analyzing GD with large stepsizes.67

Our approach views the GD iterates as a coupling of two orthogonal iterates, one along a max-68

margin direction and the other along the orthogonal complement of the max-margin direction.69

The former iterates tend to infinity and the latter iterates approximate “imaginary” GD iterates70

that minimize a strongly convex potential with a decaying stepsize scheduler, controlled by the71

former iterates. Our techniques for analyzing large-stepsize GD can be of independent interest.72

2 Related Works73

In this section, we discuss papers related to our work.74

Implicit bias. We first review a set of papers on the implicit bias of GD (with small stepsizes).75

Along this line, Soudry et al. [2018] are the very first to show that GD converges along a max-margin76

direction when minimizing the empirical risk of an exponentially-tailed loss function (such as the77

logistic and exponential losses), a linear model, and linearly separable data. Then, an alternative78

analysis is provided by Ji and Telgarsky [2018b], which also deals with non-separable data. These79

two works directly motivate us for considering GD for logistic regression on linearly separable data.80

However, there are at least three notable differences between our work and theirs. Firstly, their81

results only apply to GD with small stepsizes, while our results apply to GD with any constant82

stepsize. Secondly, their theories predict no difference between the logistic and exponential losses (as83

they are limited to the small-stepsize regime). Quite surprisingly, we prove that in the EoS regime,84

GD can diverge catastrophically under the exponential loss. Thirdly, from a technical viewpoint,85

their implicit bias analysis is built upon the risk convergence analysis, which further relies on a86

monotonic risk descent argument, hence only applies to small stepsizes. In comparison, we come up87

with a new approach that allows analyzing the implicit bias under risk oscillations; the long-term88

risk convergence is simply a consequence of the implicit bias results. Hence our techniques can89

accommodate any constant stepsize. See Section 5 for more discussions.90

Subsequent works have extended the results by Soudry et al. [2018], Ji and Telgarsky [2018b] to other91

algorithms such as momentum-based GD [Gunasekar et al., 2018a, Ji et al., 2021] and SGD [Nacson92

et al., 2019c], and homogenous but non-linear models [Gunasekar et al., 2017, Ji and Telgarsky,93

2018a, Gunasekar et al., 2018b, Nacson et al., 2019a, Lyu and Li, 2019] and non-homogenous models94

[Nacson et al., 2019a]. All these theories require the stepsizes to be small or even infinitesimal, in a95

regime away from our focus, the EoS regime.96

It is worth noting that Nacson et al. [2019b] consider GD with an increasing stepsize scheduler that97

achieves a faster margin-maximization rate than constant-stepsize GD. However, their stepsize at98

each iteration is still appropriately small, resulting in a monotonic risk descent by a variant of the99

descent lemma.100

Edge of stability. The risk oscillation phenomenon has been observed in several deep learning101

papers [Wu et al., 2018, Xing et al., 2018, Lewkowycz et al., 2020], and the work by Cohen et al.102

[2021] coins the term, edge of stability (EoS), that formally refers to it. In the remainder of this part,103

we focus on reviewing the current theoretical progress in understanding EoS.104

Zhu et al. [2022] rigorously characterize EoS for a two-dimensional function (u, v) 7→ (u2v2 − 1)2.105

Chen and Bruna [2022] study EoS for a one-dimensional function u 7→ (u2 − 1)2 and for a special106

two-layer single-neuron network. Ahn et al. [2022a] consider functions (u, v) 7→ ℓ(uv), where107

ℓ is assumed to be convex, even, and Lipschitz; notably, they show a statistical gap between the108

small-stepsize regime and the EoS regime. Compared to their settings, our problem, i.e., logistic109

regression, is a natural machine-learning problem with fewer artifacts (if any).110

EoS has also been theoretically investigated for general functions [Ma et al., 2022, Ahn et al., 2022b,111

Damian et al., 2022, Li et al., 2022], but these theories are often subject to subtle assumptions112

that are hard to interpret or verify. Specifically, Ma et al. [2022] require the function to grow113

“subquadratically”. Ahn et al. [2022b] assume the existence of a “forward invariant subset” near114

the set of minima of the function. Damian et al. [2022] assume a negative correlation between the115

gradient direction and the largest eigenvalue direction of the Hessian. Li et al. [2022] consider a116
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two-layer neural network but require the norm of the last layer parameter and the sharpness to change117

in the same direction along the GD trajectory. In comparison, our assumptions are more natural and118

interpretable.119

The unstable convergence has also been studied for normalized GD [Arora et al., 2022, Lyu et al.,120

2022] and regularized GD [Bartlett et al., 2022]. These algorithms are apart from our focus on the121

vanilla GD.122

3 Preliminaries123

We use x ∈ Rd to denote a feature vector and y ∈ {±1} to denote a binary label, respectively. Let124

(xi, yi)
n
i=1 be a set of training data. Throughout the paper, we assume that (xi, yi)

n
i=1 is linearly125

separable [Soudry et al., 2018].126

Assumption 1 (Linear separability). Assume there is w ∈ Rd such that yix⊤
i w > 0 for i = 1, . . . , n.127

Let w ∈ Rd be the parameter of a linear model. In logistic regression, we aim to minimize the128

following empirical risk129

L(w) :=

n∑
i=1

log
(
1 + exp(−yi · ⟨xi,w⟩)

)
, w ∈ Rd.

We study a sequence of iterates (wt)t≥0 produced by constant-stepsize gradient descent (GD), where130

w0 denotes the initialization and the remaining iterates are sequentially generated by:131

wt = wt−1 − η · ∇L(wt−1), t ≥ 1, (GD)

where η > 0 is a constant stepsize. We are especially interested in a regime where η is very large132

such that L(wt) oscillates as a function of t. For the simplicity of presentation, we will assume that133

w0 = 0. Our results can be easily extended to allow general initialization.134

The following notations are useful for presenting our results.135

Definition 1 (Margins and support vectors). Under Assumption 1, define the following notations:136

(A) Let γ be the max-ℓ2-margin (or max-margin in short), i.e.,137

γ := max
∥w∥2=1

min
i∈[n]

yi · ⟨xi,w⟩.

(B) Let ŵ be the hard-margin support-vector-machine (SVM) soluion, i.e.,138

ŵ := arg min
w∈Rd

∥w∥2, s.t. yi · ⟨xi,w⟩ ≥ 1, i = 1, . . . , n.

It is clear that ŵ exists and is uniquely defined (see, e.g., Section 5.2 in Mohri et al. [2018]).139

Note that ∥ŵ∥2 = γ and ŵ/∥ŵ∥2 is a max-margin direction. Also note that by duality, ŵ can140

be written as (see, e.g., Section 5.2 in Mohri et al. [2018])141

ŵ =
∑
i∈S

αi · yixi, αi ≥ 0.

(C) Let S be the set of indexes of the support vectors, i.e.,142

S := {i ∈ [n] : yi · ⟨xi, ŵ/∥ŵ∥2⟩ = γ}.

(D) If there exists non-support vector (S ⊊ [n]), let θ be the second smallest margin, i.e.,143

θ := min
i/∈S

yi · ⟨xi, ŵ/∥ŵ∥2⟩.

It is clear from the definitions that θ > γ > 0.144

In addition to Assumption 1, we make the following two mild assumptions to facilitate our analysis.145

Assumption 2 (Regularity conditions). Assume that:146

(A) ∥xi∥2 ≤ 1, i = 1, . . . , n.147

(B) rank{xi, i = 1, . . . , n} = d.148
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Assumption 2 is only made for the convenience of presentation. In particular, Assumption 2(A)149

can be made true for any dataset by scaling the data vectors with a factor of maxi ∥xi∥2. Without150

Assumption 2(B), our theorems still hold under a minor revision by replacing all the vectors of151

interests with their projections to span{xi, i = 1, . . . , n}.152

Assumption 3 (Non-degenerate data). In addition to Assumption 1, assume that153

(A) rank{xi, i ∈ S} = rank{xi, i = 1, . . . , n}.154

(B) There exist αi > 0, i ∈ S such that ŵ =
∑

i∈S αi · yixi.155

Note that (B) implies that
∑

i∈S αi = 1 since γ = ∥ŵ∥2 =
∑

i∈S αi · yix⊤
i ŵ/∥ŵ∥2 =

∑
i∈S αi · γ.156

Assumption 3 requires that the support vectors span the dataset and are associated with strictly positive157

dual variables. The requirements are weak since they hold almost surely for every linearly separable158

dataset sampled from a continuous distribution according to Appendix B in Soudry et al. [2018].159

Assumption 3 provides convenience to our analysis, but we conjecture it might not be necessary.160

Removing/relaxing Assumption 3 is left as a future work.161

3.1 Space Decomposition162

Conceptually, our analysis is built on a novel space decomposition viewpoint, which relies on the163

following lemma.164

Lemma 3.1 (Non-separable subspace). Suppose that Assumptions 1, 2, and 3 hold. Then (xi, yi)i∈S165

is not linearly separable in the subspace orthogonal to the max-margin direction ŵ/∥ŵ∥2. That is,166

for every v such that ⟨v, ŵ⟩ = 0, there exist i, j ∈ S such that yi · ⟨xi,v⟩ < 0, yj · ⟨xj ,v⟩ > 0.

Proof of Lemma 3.1. By Assumption 3 and ⟨v, ŵ⟩ = 0, we have167

0 = ⟨v, ŵ⟩ =
∑
i∈S

αi · yix⊤
i v.

By Assumptions 2 and 3 we have168

rank{yixi, i ∈ S} = rank{xi, i ∈ S} = rank{xi, i = 1, . . . , n} = d,

so there must exist i ∈ S such that yix⊤
i v ̸= 0. Without loss of generality, assume that yix⊤

i v < 0.169

Then since αi > 0 for i ∈ S by Assumption 3, there must exist j ∈ S such that yjx⊤
j v > 0.170

Lemma 3.1 shows that, although the dataset can be (linearly) separated by ŵ, it cannot be separated171

by any vector orthogonal to ŵ. This motivates us to decompose the d-dimensional ambient space into172

a 1-dimensional “separable” subspace and a (d− 1)-dimensional “non-separable” subspace. This173

idea is formally realized as follows.174

Fix d− 1 orthogonal vectors f1, . . . , fd−1 ∈ Rd such that
(
ŵ/∥ŵ∥2, f1, . . . , fd−1

)
forms an orthog-175

onal basis of the ambient space Rd. Then define two projection operators:176

P : Rd → R given by v 7→ v⊤ŵ/∥ŵ∥2,
P̄ : Rd → Rd−1 given by v 7→ (v⊤f1, . . . ,v

⊤fd−1).

The two operators together define a natural space decomposition, i.e., Rd = P(Rd) ⊕ P(Rd).177

Moreover,
(
P(xi), yi

)n
i=1

are linearly separable with an max-ℓ2-margin γ according to Definition178

1, and
(
P̄(xi), yi

)
i∈S (hence

(
P̄(xi), yi

)n
i=1

) are non-separable according to Lemma 3.1. So the179

decomposition of space can also be understood as the decomposition of data features into “max-180

margin features” and “non-separable features”.181

In what follows, we will callP(Rd) the max-margin subspace and P̄(Rd) the non-separable subspace,182

respectively. In addition, we define a “margin offset” that quantifies to what extent the “non-separable183

features” are not separable.184

Definition 2 (Margin offset for the non-separable features). Under Assumptions 1, 2, and 3, it holds185

that
(
P̄(xi), yi

)
i∈S is non-separable. Let b be a margin offset such that186

−b := max
w̄∈Rd−1, ∥w̄∥2=1

min
i∈S

yi ·
〈
P̄(xi), w̄

〉
.

Then b > 0 due to the non-separability. The definition immediately implies that:187

for every v̄ ∈ Rd−1, there exists i ∈ S such that yi ·
〈
P̄(xi), v̄

〉
≤ −b · ∥v̄∥2.
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Comparison to Ji and Telgarsky [2018b]. The work by Ji and Telgarsky [2018b] also conducts188

space decomposition (see their Section 2). However, our approach is completely different from theirs.189

Firstly, they consider a non-separable dataset but we consider a linearly separable dataset. Secondly,190

at a higher level, they decompose the “dataset” (into two subsets), while we decompose the “features”191

(into two kinds of features). More specifically, Ji and Telgarsky [2018b] first group the non-separable192

dataset into the “maximal linearly separable subset” and the complement, non-separable subset, then193

decompose the ambient space according to the subspace spanned by the non-separable subset and its194

orthogonal complement. In comparison, we consider a linearly separable dataset and decompose the195

ambient space according to a max-margin direction (i.e., P) and its orthogonal complement (i.e., P̄).196

4 Main Results197

We are now ready to present our main results. All proofs are deferred to Appendix C. To begin with,198

we provide the following theorem that captures the behaviors of constant-stepsize GD for logistic199

regression on linearly separable data.200

Theorem 4.1 (The implicit bias of GD for logistic regression). Suppose that Assumptions 1, 2,201

and 3 hold. Consider (wt)t≥0 produced by (GD) with initilization2 w0 = 0 and constant stepsize202

η > 0. Then there exist positive constants c1, c2, c3 > 0 that are upper bounded by a polynomial of203 {
eη, en, e1/b, 1/η, 1/(θ − γ), 1/γ, eθ/γ

}
but are independent of t, such that:204

(A) The risk is upper bounded by205

L(wt) ≤ c1/t, t ≥ 3.

(B) In the max-margin subspace,206

P(wt) ≥ log(t)/γ + log(ηγ2/2)/γ, t ≥ 1.

(C) In the non-separable subspace,207 ∥∥P̄(wt)
∥∥
2
≤ c2, t ≥ 0.

(D) In addition, in the non-separable subspace,208

G
(
P̄(wt)

)
−minG(·) ≤ c3/log(t), t ≥ 3,

where G(·) is a strongly convex potential defined by209

G(v) :=
∑
i∈S

exp
(
− yi ·

〈
P̄(xi), v

〉)
, v ∈ Rd−1.

Note that Theorem 4.1 applies to GD with any positive constant stepsize, therefore allowing GD to210

be in the EoS regime. We next discuss the implications of Theorem 4.1 in detail.211

Risk minimization. Theorem 4.1(A) guarantees that the GD iterates minimize the logistic loss212

at a rate of O(1/t) for any constant stepsize, even for those large stepsizes that cause local risk213

oscillations. This result explains the risk convergence of GD in the EoS regime, as illustrated in214

Figure 2, and is also consistent with the observations in neural network experiments (see Figure 1).215

Margin maximization. Theorem 4.1(B) shows that the GD iterates, when projected to the max-216

margin direction, tend to infinity at a rate of O(log(t)). Moreover, Theorem 4.1(C) shows that the217

GD iterates, when projected to the non-separable subspace, are uniformly bounded. These two218

results together imply that the direction of the GD iterates will tend to a max-margin direction, i.e.,219

the hard-margin SVM direction, at a rate of O(1/ log(t)). Therefore, the implicit bias of GD that220

maximizes the ℓ2-margin is consistent in both the EoS regime and the small-stepsize regime [Soudry221

et al., 2018, Ji and Telgarsky, 2018b].222

Iterate convergence in the non-separable subspace. Theorem 4.1(D) shows that the GD iterates,223

when projected to the non-separable subspace, converge to the minimizer of a strongly convex224

potential G(·). Here, G(·) measures the exponential loss of a parameter on the support vectors with225

their non-separable features. This provides a more precise characterization of the implicit bias of GD:226

the direction of the GD iterates converges to the hard-margin SVM direction, moreover, the limit of227

2The theorem can be easily extended to allow any w0 that has a bounded ℓ2-norm.
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Figure 2: The behaviors of GD for logistic regression. We randomly sample 1, 000 data with labels “0” and “8”
from the MNIST dataset and then use GD to perform logistic regression on those data. The sub-figures (a) and
(b) report the risk (i.e., the logistic loss) and sharpness (i.e., ∥∇L(wt)∥2) along the GD trajectories, respectively.
The blue and red curves correspond to GD with large stepsizes η = 10 and η = 0.1, respectively, where the
training losses oscillate locally and the sharpnesses can exceed 2/η = 0.2 and 2/η = 20, respectively. The
green curves correspond to GD with a small stepsize η = 0.01, where the training losses decrease monotonically
and the sharpnesses are always below 2/η = 200. More details of the experiments can be found in Appendix D.

the projections of the GD iterates to the orthogonal complement to the hard-margin SVM direction228

minimizes the exponential loss on the non-separable features of the support vectors.229

Comparison to Theorem 9 in Soudry et al. [2018]. Theorem 9, in particular, equation (18), in230

Soudry et al. [2018] indirectly characterizes the convergence of GD iterates in the non-separable231

subspace. It reads in our notations that: w̃ := limt→∞
(
wt − ŵ log(t)

)
exists and satisfies232

for every i ∈ S, η · exp(−yi · ⟨xi, w̃⟩) = αi, where αi is defined in Assumption 3. (1)

In Appendix A, we show that Theorem 4.1(D) is equivalent to condition (1) in terms of describing233

P̄(w∞). Despite their equivalence, (1) is less interpretable than Theorem 4.1(D), as (1) entangles234

an effect of P(w∞) with P̄(w∞), while Theorem 4.1 completely decouples P(w∞) and P̄(w∞).235

In particular, (1) seems to suggest P̄(w∞) to be a function of stepsize η since w̃ depends on η.236

However, this is only an illusion brought by the lack of interpretability of (1); it is clear that P̄(w∞)237

is independent of η according to Theorem 4.1(D).238

Exponential loss. Until now, our theory for GD is consistent for large and small stepsizes. However,239

this is a particular benefit thanks to the design of the logistic loss, and may not hold for other losses.240

Our next result suggests that, in the EoS regime where the stepsizes are large, GD can diverge241

catastrophically under the exponential loss.242

Theorem 4.2 (The catastrophic divergence of GD under the exponential loss). Consider a dataset of243

two samples, where244

x1 = (γ, 1), y1 = 1; x2 = (γ, −1), y2 = 1.

It is clear that (xi, yi)i=1,2 is linearly separable and (1, 0) is the max-margin direction. Consider a245

risk defined by the exponential loss:246

L(w, w̄) := exp(−y1⟨x1,w⟩) + exp(−y2⟨x2,w⟩) = e−γw ·
(
e−w̄ + ew̄

)
, where w = (w, w̄).

Let (wt, w̄t)t≥0 be the iterates produced by GD with constant stepsize η for optimizing L(w, w̄). If247

0 ≤ w0 ≤ 2, |w̄0| ≥ 1, 0 < γ < 1/4, η ≥ 4,

then:248

(A) L(wt, w̄t)→∞.249

(B) wt →∞.250

(C) For every t ≥ 0, |w̄t| ≥ 2γwt.251

(D) Moreover, the sign of w̄t flips every iteration.252

As a consequence, (wt, w̄t)t≥0 diverge in terms of either magnitude or direction; in particular, the253

direction of (wt, w̄t)t≥0 cannot converge to the max-margin direction (which is (1, 0)).254
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Theorem 4.2 shows that with a large constant stepsize, the GD iterates no longer minimize the risk255

defined by the exponential loss and no longer converge along the max-margin direction. In fact, the256

directions of the GD iterates flip every step, thus the direction of the GD iterates necessarily diverges,257

resulting in no meaningful implicit bias at all.258

In the EoS regime, large-stepsize GD still behaves nicely under the logistic loss (Theorem 4.1) but can259

behave catastrophically under the exponential loss (Theorem 4.2). From a mathematical standpoint,260

this difference is rooted in the fact that the gradient of the logistic loss is uniformly bounded while261

the gradient of the exponential loss could be extremely large. From a practical standpoint, it provides262

insights into why the logistics loss (and its multi-class version, the cross-entropy loss) is preferable to263

the exponential loss in practice.264

The different behaviors of large-stepsize GD under the logistic and exponential losses also sharply265

contrast the EoS regime with the small-stepsize regime. Because in the small-stepsize regime, the266

convergence and implicit bias of GD are known to be similar under any exponentially-tailed losses,267

including the logistic and exponential losses [Soudry et al., 2018, Ji and Telgarsky, 2018b].268

5 Techniques Overview269

The proofs of Theorems 4.1 and 4.2 are deferred to Appendix C. In this section, we explain the proof270

ideas of Theorem 4.1 by analyzing a simple dataset considered in Theorem 4.2 (the treatment to the271

general datasets can be found in Appendix B). But this time we work with the logistic loss instead of272

the exponential loss, that is,273

L(w, w̄) = log(1 + e−γw−w̄) + log(1 + e−γw+w̄).

Then the GD iterates can be written as274

wt+1 = wt − η · gt, w̄t+1 = w̄t − η · ḡt,
where275

gt := −γ ·
(

1

1 + eγwt+w̄t
+

1

1 + eγwt−w̄t

)
, ḡt := −

(
1

1 + eγwt+w̄t
− 1

1 + eγwt−w̄t

)
.

For simplicity, assume that276

w0 = 0, |w̄0| > 0.

Different from Soudry et al. [2018], Ji and Telgarsky [2018b], our approach begins with showing the277

implicit bias (despite that the risk may oscillate). The long-term risk convergence is then simply a278

consequence of the implicit bias results.279

Step 1: (w̄t)t≥0 is uniformly bounded. Observe that ḡt and w̄t always share the same sign and280

that |ḡt| ≤ 1, so we have281

|w̄t+1| =
∣∣|w̄t| − η · |ḡt|

∣∣ ≤ max
{
|w̄t|, η · |ḡt|

}
≤ max

{
|w̄t|, η

}
.

By induction, we get that
(
|w̄t|

)
t≥0

is uniformly bounded by max{|w̄0|, η} = Θ(1).282

Step 2: wt ≈ log(t)/γ. We turn to study the max-margin subspace. It is clear that gt ≤ 0 for every283

t ≥ 0. So we have wt ≥ 0 by induction. Moreover, we have284

−gt
γ

=
e−γwt−w̄t

1 + e−γwt−w̄t
+

e−γwt+w̄t

1 + e−γwt+w̄t
≤ e−γwt · e−w̄t + e−γwt · ew̄t ≤ e−γwt ·Θ(1),

where the last inequality is because |w̄t| is uniformly bounded. We also have285

−gt
γ

=
e−γwt−w̄t

1 + e−γwt−w̄t
+

e−γwt+w̄t

1 + e−γwt+w̄t
≥ 0.5 ·min{1, e−γwte−w̄t}+ 0.5 ·min{1, e−γwtew̄t}

≥ 0.5 ·min{1, e−γwte−w̄t + e−γwtew̄t} ≥ 0.5 ·min{1, e−γwt} = 0.5 · e−γwt ,

where the third inequality is because e−w̄t + ew̄t ≥ 1 and the last equality is because wt ≥ 0. Putting286

these together, we have287

gt ≈ −γ · e−γwt ·Θ(1) ⇒ wt+1 ≈ wt − ηγ · e−γwt ·Θ(1) ⇒ wt = log(t)/γ ±Θ(1). (2)
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Step 3: ḡt ≈ exp(−γwt) · ∇G(w̄t). We turn back to the non-separable subspace. Note that ḡt is288

an odd function of w̄t. Without loss of generality, let us assume w̄t ≥ 0 in this part. Notice that289

for every fixed a > 1, f(t) :=
1

t+ 1/a
− 1

t+ a
is a decreasing function of t ≥ 0. (3)

Then we have290

ḡt = e−γwt ·
(

1

e−γwt + e−w̄t
− 1

e−γwt + ew̄t

)
≤ e−γwt ·

(
1

e−w̄t
− 1

ew̄t

)
=: e−γwt · ∇G(w̄t),

where the inequality is by (3), and G(w̄) := ew̄ + e−w̄ is defined as in Theorem 4.1(D). On the other291

hand, since |w̄t| is bounded and wt is increasing (and tends to infinity), there must exist a time t0292

such that e−γwt ≤ e−|w̄t| for every t ≥ t0. Then for t ≥ t0 we have293

ḡt = e−γwt ·
(

1

e−γwt + e−w̄t
− 1

e−γwt + ew̄t

)
≥ e−γwt ·

(
1

2e−w̄t
− 1

e−w̄t + ew̄t

)
= e−γwt · e

w̄t − e−w̄t

2e−2w̄t + 2
≥ e−γwt · e

w̄t − e−w̄t

4
=:

1

4
· e−γwt · ∇G(w̄t),

where the first inequality is by (3) and e−γwt ≤ e−w̄t , and the last inequality is because we assume294

w̄t ≥ 0. Putting these together, and using (2), we obtain that295

for every t ≥ t0, w̄t+1 = w̄t − ηt · ∇G(w̄t), where ηt ≈ η · e−γwt ·Θ(1) ≈ Θ(1)/t. (4)

Step 4: a modified descent lemma. Using (4) and Taylor’s expansion, we have296

for every t ≥ t0, G(w̄t+1) ≤ G(w̄t)− ηt · ∥∇G(w̄t)∥2 +
β

2
· η2t · ∥∇G(w̄t)∥2 ≤ G(w̄t) +

Θ(1)

t2
,

where β := sup|v̄|≤max{|w̄0|,η} ∥∇
2G(v̄)∥2 = Θ(1). Taking a telescoping sum from t to T , we have297

for every T ≥ t ≥ t0, G(w̄T ) ≤ G(w̄t) + Θ(1)/t. (5)

Step 5: the convergence of w̄t. What remains is adapted from classic convergence arguments.298

Choose w̄∗ = argminG(·), then299

∥w̄t+1 − w̄∗∥22 = ∥w̄t − w̄∗∥22 − 2ηt · ⟨w̄t − w̄∗, G(w̄t)⟩+ η2t · ∥∇G(w̄t)∥22
≤ ∥w̄t − w̄∗∥22 − 2ηt · (G(w̄t)−G(w̄∗)) + Θ(1)/t2, t ≥ t0,

where the equality is by (4), and the inequality is because of the convexity of G(·), |w̄t| ≤ Θ(1), and300

(4). Taking a telescoping sum, we have301

T∑
t=t0

2ηt · (G(w̄t)−G(w̄∗)) ≤ ∥w̄t0 − w̄∗∥22 − ∥w̄T+1 − w̄∗∥22 +
T∑

t=t0

Θ(1)/t2 ≤ Θ(1).

Combing the above with (5) and using ηt ≈ Θ(1)/t from (4), we get302

T∑
t=t0

ηt · (G(w̄T )−G(w̄∗)) ≤
T∑

t=t0

ηt · (G(w̄t)−G(w̄∗)) +

T∑
t=t0

ηt ·Θ(1)/t ≤ Θ(1).

Finally, since
∑T

t=t0
ηt ≥ Θ(1) · (log(T )− log(t0)) according to (4), we get that G(w̄T )−G(w̄∗) ≤303

Θ(1)/(log(T )− log(t0)).304

Step 6: risk convergence. The long-term risk convergence result can be easily established by305

making use of the implicit bias results we have obtained so far.306

6 Conclusion307

We consider constant-stepsize GD for logistic regression on linearly separable data. We show that308

with any constant stepsize, GD minimizes the logistic loss; moreover, the GD iterates tend to infinity309

when projected to a max-margin direction and tend to a fixed minimizer of a strongly convex potential310

when projected to the orthogonal complement of the max-margin direction. We also show that GD311

with a large stepsize may diverge catastrophically if the logistic loss is replaced by the exponential312

loss. Our theory explains how GD minimizes a risk non-monotonically.313
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A On the Equivalence between Theorem 4.1(D) and (1)386

Note that w̃ in (1) contains components in both the max-margin and non-separable subspaces, and387

we need to disentangle those two components.388

Under the coordinate system that defines P and P̄ , we can represent a vector v ∈ Rd as389

v :=
(
P(v), P̄(v)

)
.

Then for i ∈ S, we have390

yi · ⟨xi, w̃⟩ = yi ·
〈(
P(xi), P̄(xi)

)
,
(
P(w̃), P̄(w̃)

)〉
= yi · P(xi) · P(w̃) + yi ·

〈
P̄(xi), P̄(w̃)

〉
since P and P̄ are orthogonal

= γP(w̃) + yi ·
〈
P̄(xi), P̄(w̃)

〉
. since yiP(xi) = γ for i ∈ S

So (1) is equivalent to391

for every i ∈ S, η exp
(
− γP̄(w̃)

)
· exp

(
− yi ·

〈
P̄(xi), P̄(w̃)

〉)
= αi.

Recall that
∑

i∈S αi = 1 according to Assumption 3(B). So focusing on P̄ , the above is equivalent392

to the following condition on P̄(w̃):393

αi ∝ exp
(
− yi ·

〈
P̄(xi), P̄(w̃)

〉)
, i ∈ S. (6)

Here we ignore a shared normalization factor.394

Now, recall from Assumption 3(B) that (αi)i∈S are such that395

ŵ =
∑
i∈S

αi · yixi.

Note that as long as
∑

i∈S αi = 1, we have P(ŵ) =
∑

i∈S αi · yiP(xi) = γ by Assumption 3.396

Now consider P̄ . Note that P̄(ŵ) = 0 by the choice of P̄ , then apply P̄ on both sides of the above397

equation, we get398

0 = P̄(ŵ) =
∑
i∈S

αi · yiP̄(xi). (7)

Under (7), (6) is equivalent to the following condition on P̄(w̃):399

0 =
∑
i∈S

exp
(
− yi ·

〈
P̄(xi), P̄(w̃)

〉)
· yiP̄(xi),

which is precisely the first-order condition of400

P̄(w̃) ∈ argminG(·), where G(v) :=
∑
i∈S

exp
(
− yi ·

〈
P̄(xi), v

〉)
.

Hence we have shown that: the condition that w̃ satisfies (1) is equivalent to the condition that P̄(w̃)401

minimizes the strongly convex potential G(·).402
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B The Behaviors of Constant-Stepsize GD403

B.1 Notation Simplifications404

Without loss of generality, we assume that405

yi = 1, i = 1, . . . , n.

Otherwise, we replace yi with 1 and xi with yi · xi, respectively, and the following analysis does not406

change.407

Then the risk becomes408

L(w) :=

n∑
i=1

log(1 + e−w⊤xi).

Rotating the hard-margin SVM solution. Note that the (GD) iterates (under linear models) are409

rotation equivariant. Specifically, let R be an orthogonal matrix, then applying R on both sides of410

(GD), we obtain411

Rwt+1 = Rwt + η

n∑
i=1

(
1− s(x⊤

i wt)
)
·Rxi

= Rwt + η

n∑
i=1

(
1− s((Rxi)

⊤(Rwt))
)
·Rxi,

which is equivalent to the GD iterates under changes of variables, w← Rw and x← Rx.412

Therefore, without loss of generality, we can apply a rotation to the dataset such that ŵ ∥ e1. Then413

for v ∈ Rd,414

Pv = v[1] ∈ R, P̄v = v[2 : d] ∈ Rd−1.

Slightly abusing notations, in what follows we will write415

xi = (xi, x̄i)
⊤ ∈ R⊕ Rd−1, i = 1, . . . , n,

where416

xi := xi[1] ∈ R, x̄i := xi[2 : d] ∈ Rd−1.

Similarly, we define417

w = (w, w̄)⊤ ∈ R⊕ Rd−1.

Then we have418

x⊤
i w = xiwi + x̄⊤

i w̄.

So the loss can be written as:419

L(w, w̄) :=

n∑
i=1

log(1 + e−wxi−w̄⊤x̄i).

So (GD) can be written as:420

w0 = 0, wt = wt−1 − η · ∇wL(wt−1, w̄t−1), t ≥ 1;

w̄0 = 0, w̄t = w̄t−1 − η · ∇w̄L(wt−1, w̄t−1), t ≥ 1.
(8)

The above two recursions capture the GD iterates projecting to the max-margin and non-separable421

subspaces, respectively.422
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B.2 Boundedness of GD in the Non-Separable Subspace423

We first show that (w̄t)t≥0 stay bounded for every fixed stepsize η.424

Lemma B.1 (Positiveness of wt). Suppose that Assumption1 holds. Consider (wt)t≥0 defined by (8)425

with constant stepsize η > 0. Then for every t ≥ 0, it holds that wt ≥ 0.426

Proof. Recall that427

w0 = 0, wt = wt−1 − η · ∇wL(wt−1, w̄t−1), t ≥ 1.

We only need to show that∇wL(w, w̄) ≤ 0. This is because428

∇wL(w, w̄) = −
n∑

i=1

1

1 + ewxi+w̄⊤x̄i
· xi

< 0. since xi ≥ γ > 0 by Definition 1

429

Lemma B.2 (A recursion of ∥w̄t∥2). Suppose that Assumptions 1, 2, and 3 hold. Consider (w̄t)t≥0430

defined by (8) with constant stepsize η > 0. Then for every t ≥ 0, there exists j ∈ [n] such that431

∥w̄t+1∥22 ≤ ∥w̄t∥22 + 2ηe−wtγ ·
(
n− b · ∥w̄t∥2

4

)
+

η

1 + ewtxj+w̄⊤
t x̄j
·
(
ηn2 − b · ∥w̄t∥2

)
.

As a direct consequence,432

∥w̄t∥2 ≥ max{4n/b, ηn2/b} implies that ∥w̄t+1∥2 ≤ ∥w̄t∥2.

Proof. We first make a few useful notations. Fix a time index t.433

• Let k be the index of the “most negatively classified” support sample, i.e.,434

k := argmin
i∈S
{⟨w̄t, x̄i⟩},

then by Definition 2 it holds that435

⟨w̄t, x̄k⟩ ≤ −b · ∥w̄t∥2. (9)

• Let j be the index of the “most negatively classified” sample, i.e.,436

j := arg min
1≤i≤n

{wtxi + ⟨w̄t, x̄i⟩}.

Then437

wtxj + ⟨w̄t, x̄j⟩ ≤ wtxi + ⟨w̄t, x̄i⟩ for every i ∈ [n]. (10)

In particular, we must have438

⟨w̄t, x̄j⟩ ≤ −b∥w̄t∥2, (11)

since439

wtγ + ⟨w̄t, x̄j⟩ ≤ wtxj + ⟨w̄t, x̄j⟩ by Definition 1
≤ min

i∈S
{wtxi + ⟨w̄t, x̄i⟩} by (10)

= wtγ +min
i∈S
{⟨w̄t, x̄i⟩} by Definition 1

≤ wtγ − b∥w̄t∥2. by Definition 2

We remark that it is possible that k = j.440
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Step 0: an iterate norm recursion. Recall that441

w̄t+1 = w̄t − η∇w̄L(wt, w̄t), ∇w̄L(wt, w̄t) = −
n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i
· x̄i.

Then442

∥w̄t+1∥22 = ∥w̄t∥22 − 2η · ⟨w̄t,∇w̄L(wt, w̄t)⟩+ η2 ·
∥∥∇w̄L(wt, w̄t)

∥∥2
2
.

Step 1: gradient norm bounds. By definition, we have443 ∥∥∇w̄L(wt, w̄t)
∥∥
2
=
∥∥∥ n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i
· x̄i

∥∥∥
2

≤
n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i
· ∥x̄i∥2

≤
n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i

by Assumption 2

≤ n

1 + ewtxj+w̄⊤
t x̄j

by (10) (12)

≤ n. (13)

Therefore, we have444 ∥∥∇w̄tL(wt, w̄t)
∥∥2
2
≤
(

n

1 + ewtxj+w̄⊤
t x̄j

)
·
∥∥∇w̄tL(wt, w̄t)

∥∥
2

by (12)

≤ n2

1 + ewtxj+w̄⊤
t x̄j

. by (13) (14)

Step 2: cross-term bounds. We aim to show that the negative parts in the cross-term can cancel445

both the positve parts in the cross-term and the squared gradient norm term.446

Note that the following holds for either j = k or j ̸= k:447

− ⟨w̄t,∇w̄tL(wt, w̄t)⟩

=

n∑
i=1

1

1 + ewtxi+w̄⊤
t x̄i
· w̄⊤

t x̄i

≤
∑

w̄⊤
t x̄i>0

1

1 + ewtxi+w̄⊤
t x̄i
· w̄⊤

t x̄i

+
1

2
· 1

1 + ewtxj+w̄⊤
t x̄j
· w̄⊤

t x̄j +
1

2
· 1

1 + ewtxk+w̄⊤
t x̄k
· w̄⊤

t x̄k.

(15)

The first term in (15) can be bounded by448 ∑
w̄⊤

t x̄i>0

1

1 + ewtxi+w̄⊤
t x̄i
· w̄⊤

t x̄i

=
∑

w̄⊤
t x̄i>0

e−wtxi

1 + e−wtxi−w̄⊤
t x̄i
· e−w̄⊤

t x̄i · w̄⊤
t x̄i

≤
∑

w̄⊤
t x̄i>0

e−wtxi

1 + e−wtxi−w̄⊤
t x̄i

since e−t · t ≤ 1

≤
∑

w̄⊤
t x̄i>0

e−wtxi

≤ ne−γwt . since xi ≥ γ for i ∈ [n] (16)
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The second term in (15) can be bounded by449

1

2
· 1

1 + ewtxj+w̄⊤
t x̄j
· w̄⊤

t x̄j ≤
1

2
· −b · ∥w̄t∥2
1 + ewtxj+w̄⊤

t x̄j
. by (11) (17)

The third term in (15) can be bounded by450

1

2
· 1

1 + ewtxk+w̄⊤
t x̄k
· w̄⊤

t x̄k ≤
1

2
· −b · ∥w̄t∥2
1 + ewtγ+w̄⊤

t x̄k
by (9) and the choice of k

=
−b · ∥w̄t∥2

2
· e−wtγ

e−wtγ + ew̄
⊤
t x̄k

≤ −b · ∥w̄t∥2
2

· e
−wtγ

2
, since e−wtγ , ew̄

⊤
t x̄k ≤ 1 (18)

since451

wtγ ≥ 0, by Lemma B.1

w̄⊤
t x̄k ≤ 0. by the choice of k

Now, bringing (16), (17), and (18) into (15), we obtain452

−⟨w̄t,∇w̄tL(wt, w̄t)⟩ ≤ e−wtγ ·
(
n− b · ∥w̄t∥2

4

)
− b · ∥w̄t∥2

2
· 1

1 + ewtxj+w̄⊤
t x̄j

. (19)

Step 3: iterate norm recursion bounds. Using (14) and (19), we can obtain453

∥w̄t+1∥22 = ∥w̄t∥22 − 2η · ⟨w̄t,∇w̄L(wt, w̄t)⟩+ η2 ·
∥∥∇w̄L(wt, w̄t)

∥∥2
2

≤ ∥w̄t∥22 + 2ηe−wtγ ·
(
n− b · ∥w̄t∥2

4

)
− ηb · ∥w̄t∥2 ·

1

1 + ewtxj+w̄⊤
t x̄j

+ η2 · n2

1 + ewtxj+w̄⊤
t x̄j

= ∥w̄t∥22 + 2ηe−wtγ ·
(
n− b · ∥w̄t∥2

4

)
+

η

1 + ewtxj+w̄⊤
t x̄j
·
(
ηn2 − b · ∥w̄t∥2

)
.

We have completed the proof.454

Lemma B.3 (Boundedness of w̄). Suppose that Assumptions 1, 2, and 3 hold. Consider (w̄t)t≥0455

defined by (8) with constant stepsize η > 0. Then for every t ≥ 0, it holds that456

∥w̄t∥2 ≤Wmax := max{4n/b, ηn2/b}+ ηn.

Proof. We prove the claim by induction. Clearly, ∥w̄0∥2 = 0 ≤ max{4n/b, ηn2/b} + ηn. Now457

suppose that458

∥w̄t∥2 ≤ max{4n/b, ηn2/b}+ ηn,

and discuss the following two cases:459

1. If ∥w̄t∥2 ≤ max{4n/b, ηn2/b}, then460

∥w̄t+1∥2 ≤ ∥w̄t∥2 + ∥η · ∇w̄L(wt, w̄t)∥2 by triangle inequality
≤ ∥w̄t∥2 + ηn by (13)

≤ max{4n/b, ηn2/b}+ ηn.

2. Else, we have461

max{4n/b, ηn2/b} ≤ ∥w̄t∥2 ≤ max{4n/b, ηn2/b}+ ηn,

which implies462

∥w̄t+1∥2 ≤ ∥w̄t∥2 by Lemma B.2

≤ max{4n/b, ηn2/b}+ ηn.

This completes the induction.463
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B.3 Divergence of GD in the Max-Margin Subspace464

Definition 3 (Some loss measurements in the non-separable subspace). Under Assumptions 1, 2, and465

3, we define the following notations:466

(A) Define two loss functions467

G(w̄) :=
∑
i∈S

e−w̄⊤x̄i , H(w̄) :=
∑
i/∈S

e−w̄⊤x̄i .

In the case where S = [n], we define H(w̄) = 0.468

(B) Define469

Gmin := min
w̄∈Rd−1

G(w̄),

It is clear that Gmin ≥ 1 since (x̄i)i∈S are non-separable by Definition 2.470

(C) Define471

w̄∗ := arg min
w̄∈Rd−1

G(w̄).

It is clear that G(w̄∗) = Gmin. Moreover, it holds that ∥w̄∗∥2 ≤Wmax by Lemma B.4.472

(D) Recall that ∥w̄t∥2 ≤Wmax according to Lemma B.3. We then define473

Gmax := sup
∥w̄∥2≤Wmax

G(w̄), Hmax := sup
∥w̄∥2≤Wmax

H(w̄).

It is clear that474

G(w̄t) ≤ Gmax, H(w̄t) ≤ Hmax,

and that Gmax, Hmax are polynomials on eη , en, and e1/b, and are independent of t.475

Lemma B.4. For the w̄∗ in Definition 3, it holds that476

∥w̄∗∥2 ≤
log(n)

b
≤Wmax.

Proof. By Definition 2, there exists j ∈ S such that477

w̄⊤
∗ x̄j ≤ −b · ∥w̄∗∥2,

which implies that478

G(w̄∗) =
∑
i∈S

e−w̄⊤
∗ x̄i ≥ e−w̄⊤

∗ x̄j ≥ eb·∥w̄∗∥2 .

On the other hand, by the definition of w̄∗, we have479

G(w̄∗) ≤ G(0) = n.

Therefore, we have eb·∥w̄∗∥2 ≤ n, that is, ∥w̄∗∥2 ≤ log(n)/b ≤Wmax.480

481

We now consider (wt)t≥0.482

Lemma B.5. Suppose Assumptions 1, 2, and 3 hold. Then for every t ≥ 0, it holds that483

wt+1 ≥ wt +
ηγ

2
·min

{
1, e−γwt ·G(w̄t)

}
,

wt+1 ≤ wt + η ·min
{
γn, γ · e−γwt ·G(w̄t) + η · e−θwt ·H(w̄t)

}
.

Proof. Recall that484

wt+1 = wt − η · ∇wL(wt, w̄t), ∇wL(wt, w̄t) = −
n∑

i=1

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi.
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We only need to provide upper and lower bounds on −∇wL(wt, w̄t). The lower bound is because:485

−∇wL(wt, w̄t) =

n∑
i=1

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi

≥
∑
i∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi since xi ≥ γ > 0 by Definition 1

=
∑
i∈S

e−γwt−x̄⊤
i w̄t

1 + e−γwt−x̄⊤
i w̄t
· γ since xi = γ for i ∈ S

≥ γ

2
·
∑
i∈S

min{1, e−γwt−x̄⊤
i w̄t} since et/(1 + et) ≥ 0.5min{1, et}

≥ γ

2
·min

{
1, e−γwt ·

∑
i∈S

e−x̄⊤
i w̄t

}
=

γ

2
·min

{
1, e−γwt ·G(w̄t)

}
.

The upper bound is because:486

−∇wL(wt, w̄t) =

n∑
i=1

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi

=
∑
i∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi +

∑
i/∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi

≤
∑
i∈S

e−γwt−x̄⊤
i w̄t

1 + e−γwt−x̄⊤
i w̄t
· γ +

∑
i/∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t

since xi = γ for i ∈ S, and xi ≤ 1 for i ∈ [n]

≤ γ ·
∑
i∈S

min{1, e−γwt−x̄⊤
i w̄t}+

∑
i/∈S

min{1, e−wtxi−x̄⊤
i w̄t}

since et/(1 + et) ≤ min{1, et}

≤ γ ·
∑
i∈S

min
{
1, e−γwt−x̄⊤

i w̄t

}
+
∑
i/∈S

min
{
1, e−θwt−x̄⊤

i w̄t

}
since xt ≥ θ > γ for i /∈ S

≤ γ ·
∑
i∈S

e−γwt−x̄⊤
i w̄t +

∑
i/∈S

e−θwt−x̄⊤
i w̄t

= γe−γwt ·G(w̄t) + e−θwt ·H(w̄t).

We have completed the proof.487

Lemma B.6 (A lower bound on wt). Suppose Assumptions 2, 1, and 3 hold. Then it holds that488

wt ≥
1

γ
· log

(
1 +

ηγ2

2
· t
)
, t ≥ 0.

As a direct consequence, it holds that489

e−γwt ≤ 2

2 + ηγ2 · t
, t ≥ 0.

Proof. Observe that490

wt+1 ≥ wt +
ηγ

2
·min

{
1, e−γwt ·G(w̄t)

}
by Lemma B.5

≥ wt +
ηγ

2
·min

{
1, e−γwt · 1

}
by Definition 3
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≥ wt +
ηγ

2
· e−γwt , since wt ≥ 0 by Lemma B.1 (20)

which implies that wt is increasing. Furthermore, we have491

eγwt+1 − eγwt = eγwt ·
(
eγ(wt+1−wt) − 1

)
≥ eγwt · γ(wt+1 − wt) since et − 1 ≥ t for t ≥ 0, and wt+1 ≥ wt

≥ ηγ2

2
, by (20)

which implies that492

eγwt ≥ eγw0 +
ηγ2

2
· t

= 1 +
ηγ2

2
· t. since w0 = 0

We then get493

wt ≥
1

γ
· log

(
1 +

ηγ2

2
· t
)
, t ≥ 0.

494

Lemma B.7 (An upper bound on wt). Suppose Assumptions 1, 2, and 3 hold. Then it holds that495

wt ≤
1

γ
· log

((
eηγ2Gmax + eηγHmax

)
· (t+ 1)

)
, t ≥ 0.

As a direct consequence, it holds that496

e−γwt ≥ 1(
eηγ2Gmax + eηγHmax

)
· (t+ 1)

, t ≥ 0.

Proof. Observe that497

wt+1 − wt ≤ ηγ · e−γwt ·G(w̄t) + η · e−θwt ·H(w̄t) by Lemma B.5

≤ ηγ · e−γwt ·G(w̄t) + η · e−γwt ·H(w̄t) since θ > γ by Definition 1

≤ η ·
(
γGmax +Hmax

)
· e−γwt by Definition 3 (21)

Let498

t0 := min
{
t : γη ·

(
γGmax +Hmax

)
· e−γwt ≤ 1

}
.

Recall that wt is increasing according to (20). So we have499

for t ≤ t0, wt ≤
1

γ
· log

(
ηγ2Gmax + ηγHmax

)
; (22)

for t ≥ t0, γη ·
(
γGmax +Hmax

)
· e−γwt ≤ 1. (23)

(21) and (23) together imply that500

for t ≥ t0, 0 ≤ γ ·
(
wt+1 − wt

)
≤ 1. (24)

Then for t ≥ t0, we have501

eγwt+1 − eγwt = eγwt
(
eγ(wt+1−wt) − 1

)
≤ eγwt · e · γ(wt+1 − wt) by (24) and that et − 1 ≤ e · t for 0 ≤ t ≤ 1

≤ eηγ2Gmax + eηγHmax, by (21).
which implies502

eγwt ≤ eγwt0 +
(
eηγ2Gmax + eηγHmax

)
· (t− t0)

≤ ηγ2Gmax + ηγHmax +
(
eηγ2Gmax + eηγHmax

)
· (t− t0) by (22)

≤
(
eηγ2Gmax + eηγHmax

)
· (t+ 1).

Therefore, for t ≥ t0, we have503

wt ≤
1

γ
· log

((
eηγ2Gmax + eηγHmax

)
· (t+ 1)

)
.

Note that the above also holds for 0 ≤ t ≤ t0 according to (22). We have completed the proof.504
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B.4 Convergence of GD in the Non-Separable Subspace505

We show that the vanilla gradient on the non-separable subspace,∇w̄L(wt, w̄t), can be understood as506

the gradient on a modified loss with a rescaling factor, e−γwt∇G(w̄t), ignoring higher order errors.507

Lemma B.8 (Gradients comparison lemma). Suppose Assumptions 1, 2, and 3 hold. Then it holds508

that509 ∥∥∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)
∥∥
2
≤ e−2γwt ·G2

max + e−θwt ·Hmax, t ≥ 0.

As a direct consequence, for every vector v̄ ∈ Rd−1, it holds that510

⟨v̄, ∇w̄L(wt, w̄t)⟩ ≤ e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ∥v̄∥2 ·
(
e−2γwt ·G2

max + e−θwt ·Hmax

)
.

Proof. Recall that511

∇w̄L(wt, w̄t) = −
n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i ∇G(w̄t) = −

∑
i∈S

e−w̄⊤
t x̄i · x̄i.

By the triangle inequality, we have512 ∥∥∇w̄L(wt, w̄t)− e−γwt∇G(w̄t)
∥∥
2

=

∥∥∥∥∑
i∈S

(
e−γwt−w̄⊤

t x̄i − e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

)
· x̄i −

∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥∥
2

≤
∥∥∥∥∑

i∈S

(
e−γwt−w̄⊤

t x̄i − e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

)
· x̄i

∥∥∥∥
2︸ ︷︷ ︸

(♣)

+

∥∥∥∥∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥∥
2︸ ︷︷ ︸

(♡)

. (25)

The (♣) term can be bounded by513

(♣) =
∥∥∥∥∑

i∈S

(
e−γwt−w̄⊤

t x̄i − e−γwt−w̄⊤
t x̄i

1 + e−γwt−w̄⊤
t x̄i

)
· x̄i

∥∥∥∥
2

since xi = γ for i ∈ S

=

∥∥∥∥∑
i∈S

e−γwt−w̄⊤
t x̄i

1 + e−γwt−w̄⊤
t x̄i
· e−γwt−w̄⊤

t x̄i · x̄i

∥∥∥∥
2

= e−2γwt ·
∥∥∥∥∑

i∈S

1

1 + e−γwt−w̄⊤
t x̄i
· e−2w̄⊤

t x̄i · x̄i

∥∥∥∥
2

≤ e−2γwt ·
∑
i∈S

1

1 + e−γwt−w̄⊤
t x̄i
· e−2w̄⊤

t x̄i · ∥x̄i∥2 by triangle inequality

≤ e−2γwt ·
∑
i∈S

1

1 + e−γwt−w̄⊤
t x̄i
· e−2w̄⊤

t x̄i since ∥x̄i∥2 ≤ 1 by Assumption 2

≤ e−2γwt ·
∑
i∈S

e−2w̄⊤
t x̄i

≤ e−2γwt ·
(∑

i∈S
e−w̄⊤

t x̄i

)2

= e−2γwt ·G(w̄t)
2

≤ e−2γwt ·G2
max. by Definition 3

The (♡) term can be bounded by514

(♡) =
∥∥∥∥∑

i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥∥
2
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≤
∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· ∥x̄i∥2 by triangle inequality

≤
∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

since ∥x̄i∥2 ≤ 1 by Assumption 2

≤
∑
i/∈S

e−wtxi−w̄⊤
t x̄i

≤ e−θwt ·
∑
i/∈S

e−w̄⊤
t x̄i xi ≥ θ > γ for i /∈ S

= e−θwt ·H(w̄)

≤ e−θwt ·Hmax. by Definition 3

Bringing the bounds on the (♣) and (♡) into (25), we obtain515 ∥∥∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)
∥∥
2
≤ e−2γwt ·G2

max + e−θwt ·Hmax, t ≥ 0.

We have shown the first conclusion. The second conclusion follows from the first conclusion: for516

every v ∈ Rd−1,517

⟨v̄,∇w̄L(wt, w̄t)⟩ = e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ⟨v̄, ∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)⟩
≤ e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ∥v̄∥2 · ∥∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)∥2
≤ e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ∥v̄∥2 ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
.

We have completed the proof.518

Lemma B.9 (A gradient norm bound). Suppose Assumptions 1, 2, and 3 hold. Then it holds that519 ∥∥∇w̄L(wt, w̄t)
∥∥
2
≤ e−γwt · (Gmax +Hmax), t ≥ 0.

Proof. The inequality is because:520 ∥∥∇w̄t
L(wt, w̄t)

∥∥
2
=
∥∥∥ n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥
2

≤
n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· ∥x̄i∥2 by triangle inequality

≤
n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

since ∥x̄i∥2 ≤ 1 by Assumption 2

≤
n∑

i=1

e−wtxi−w̄⊤
t x̄i

≤ e−γwt ·
n∑

i=1

e−w̄⊤
t x̄i since xi ≥ γ for i ∈ [n]

= e−γwt ·
(
G(w̄t) +H(w̄t)

)
≤ e−γwt · (Gmax +Hmax).

521

The next lemma shows that the function value is “non-increasing” ignoring higher order terms.522

Lemma B.10 (A modified descent lemma). Suppose Assumptions 1, 2, and 3 hold. Then it holds that523

G(w̄t+1) ≤ G(w̄t) + 2(η + η2) ·Gmax ·
(
G2

max +H2
max

)
·
(
e−2γwt + e−θwt

)
, t ≥ 0.

As a direct consequence of the above and Lemma B.6, it holds that524

G(w̄t+k) ≤ G(w̄t) + c0 · 2(1 + η)Gmax ·
(
(t− 1)−1 + (t− 1)1−

θ
γ

)
, k ≥ 0, t ≥ 1,
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where θ/γ > 1 by Definition 1 and c0 is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is525

independent of t, given by526

c0 := η ·
(
G2

max +H2
max

)
· θ

θ − γ
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
.

Proof. Note that527

∥∇2G(w̄)∥2 =

∥∥∥∥∑
i∈S

e−w̄⊤x̄ixix
⊤
i

∥∥∥∥
2

≤
∑
i∈S

e−w̄⊤x̄i∥xi∥22 by triangle inequality

≤
∑
i∈S

e−w̄⊤x̄i since ∥x̄i∥2 ≤ 1 by Assumption 2

= G(w̄).

Recall that ∥w̄t∥2 ≤Wmax. So we have528

sup
t
∥∇2G(w̄t)∥2 ≤ sup

∥w̄∥2≤Wmax

∥∇2G(w̄)∥2 ≤ sup
∥w̄∥2≤Wmax

G(w̄) =: Gmax. (26)

Then we can apply Taylor’s theorem to obtain that529

G(w̄t+1) ≤ G(w̄t) + ⟨∇G(w̄t), w̄t+1 − w̄t⟩+
Gmax

2
· ∥w̄t+1 − w̄t∥22 by (26)

= G(w̄t)− η · ⟨∇G(w̄t), ∇w̄L(wt, w̄t)⟩+
Gmax

2
· ∥∇w̄L(wt, w̄t)∥22.

Next we use Lemma B.8 with v = −∇G(w̄t) to get The cross-term is bounded by530

− ⟨∇G(w̄t), ∇w̄L(wt, w̄t)⟩

≤ −e−γwt ·
∥∥∇G(w̄t)

∥∥2
2
+ ∥∇G(w̄t)∥2 ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
≤ −e−γwt ·

∥∥∇G(w̄t)
∥∥2
2
+Gmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
. by (26)

Using the above and the gradient norm bound from Lemma B.9, we get that531

G(w̄t+1) ≤ G(w̄t)− ηe−γwt ·
∥∥∇G(w̄t)

∥∥2
2

+ ηe−2γwt ·G3
max + ηe−θwt ·Gmax ·Hmax + η2e−2γwt · (Gmax +Hmax)

2

≤ G(w̄t) + ηe−2γwt ·G3
max + ηe−θwt ·Gmax ·Hmax + η2e−2γwt · (Gmax +Hmax)

2

≤ G(w̄t) + 2(η + η2) ·Gmax ·
(
G2

max +H2
max

)
·
(
e−2γwt + e−θwt

)
,

where in the last inequality we use that Gmax ≥ Gmin ≥ 1 by Definition 3.532

From the above we have533

G(w̄t+k) ≤ G(w̄t) + 2(η + η2) ·Gmax ·
(
G2

max +H2
max

)
·
s+k∑
s=t

(
e−2γws + e−θws

)
. (27)

The summation is small by Lemma B.6, because534

s+k∑
s=t

(
e−2γws + e−θws

)
≤

s+k∑
s=t

(
2

2 + ηγ2 · s

)2

+

s+k∑
s=t

(
2

2 + ηγ2 · s

) θ
γ

by Lemma B.6

≤
(

2

ηγ2

)2

·
s+k∑
s=t

s−2 +

(
2

ηγ2

) θ
γ

·
s+k∑
s=t

s−
θ
γ

22



≤
(

2

ηγ2

)2

· (t− 1)−1 +

(
2

ηγ2

) θ
γ

· (t− 1)1−
θ
γ

θ
γ − 1

by integral inequality

≤ max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
· θ

θ − γ
·
(
(t− 1)−1 + (t− 1)1−

θ
γ

)
.

Inserting the above into (27) completes the proof.535

We now prove the convergence of the iterates projected on the non-separable subspace.536

Lemma B.11 (Convergence on the non-separable subspace). Suppose Assumptions 1, 2, and 3 hold.537

Then it holds that538

G(w̄T )−G(w̄∗) ≤
c1

log(T )
, T ≥ 3,

where c1 > 0 is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is independent of T .539

Proof. The proof is conducted in several steps.540

Step 1: one-step function value bound. Observe that541

∥w̄t+1 − w̄∗∥22 = ∥w̄t − w̄∗∥22 + 2 · ⟨w̄t − w̄∗, w̄t+1 − w̄t⟩+ ∥w̄t+1 − w̄t∥22
= ∥w̄t − w̄∗∥22 − 2η · ⟨w̄t − w̄∗,∇w̄L(wt, w̄t)⟩+ η2 · ∥∇w̄L(wt, w̄t)∥22.

For the cross-term, we apply Lemma B.8 with v = −(w̄t − w̄∗) to obtain542

− ⟨w̄t − w̄∗,∇w̄L(wt, w̄t)⟩
≤ −e−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ ∥w̄t − w̄∗∥2 ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
≤ −e−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ (Wmax + ∥w∗∥2) ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
≤ −e−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ 2Wmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
,

where the second inequality is by Lemma B.3, and the last inequality is by Lemma B.4. Using the543

above and the gradient norm bound from Lemma B.9, we get that544

∥w̄t+1 − w̄∗∥22 ≤ ∥w̄t − w̄∗∥22 − 2ηe−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩
+ 4η ·Wmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
+ η2 · e−2γwt · (Gmax +Hmax)

2.

(28)

By the convexity of G(·), we have545

⟨w̄t − w̄∗,∇G(w̄t)⟩ ≥ G(w̄t)−G(w̄∗). (29)

So we get546

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
≤ 2ηe−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩ by (29)

≤ ∥w̄t − w̄∗∥22 − ∥w̄t+1 − w̄∗∥22
+ 4η ·Wmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
+ η2 · e−2γwt · (Gmax +Hmax)

2 by (28)

≤ ∥w̄t − w̄∗∥22 − ∥w̄t+1 − w̄∗∥22
+ 6η ·Wmax ·

(
G2

max +H2
max

)
·
(
e−2γwt + e−θwt

)
, (30)

where we use η ≤Wmax := max{4n/b, ηn2/b}+ ηn in the last inequality.547
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Step 2: the sum of function values stays bounded. Observe that548

T∑
t=2

(
e−2γwt + e−θwt

)
≤

T∑
t=2

(
2

2 + ηγ2 · t

)2

+

T∑
t=2

(
2

2 + ηγ2 · t

) θ
γ

by Lemma B.6

≤
(

2

ηγ2

)2

·
T∑

t=2

t−2 +

(
2

ηγ2

) θ
γ

·
T∑

t=2

t−
θ
γ

≤
(

2

ηγ2

)2

· 1 +
(

2

ηγ2

) θ
γ

· 1

θ/γ − 1

≤ max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
· θ

θ − γ
. (31)

Taking telescope summation over (30), we obtain549

T∑
t=2

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
≤ ∥w̄2 − w̄∗∥22 − ∥w̄T+1 − w̄∗∥22

+ 6η ·Wmax ·
(
G2

max +H2
max

)
·

T∑
t=2

(
e−2γwt + e−θwt

)
by (30)

≤ 2Wmax + 6η ·Wmax ·
(
G2

max +H2
max

)
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
· θ

θ − γ
by (31)

= 2Wmax + 18Wmax · c0,

where550

c0 := η ·
(
G2

max +H2
max

)
· θ

θ − γ
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}

is a constant (a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is independent of t) defined in551

Lemma B.10.552

Step 3: function value decreases, approximately. For T ≥ t ≥ 1, we have553

G(w̄T ) ≤ G(w̄t) + c0 · 2(1 + η)Gmax ·
(
(t− 1)−1 + (t− 1)1−

θ
γ

)
, by Lemma B.10

which implies that554

2ηe−γwt ·
(
G(w̄T )−G(w̄∗)

)
≤ 2ηe−γwt ·

(
G(w̄t)−G(w̄∗)

)
+ 2ηe−γwt · c0 · 2(1 + η)Gmax ·

(
(t− 1)−1 + (t− 1)1−

θ
γ

)
≤ 2ηe−γwt ·

(
G(w̄t)−G(w̄∗)

)
+ 2η · 2

2 + ηγ2 · t
· c0 · 2(1 + η)Gmax ·

(
(t− 1)−1 + (t− 1)1−

θ
γ

)
by Lemma B.6

≤ 2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
+

8(1 + η)c0
γ2

·
(
(t− 1)−2 + (t− 1)−

θ
γ

)
. (32)

Step 4: the last function value is small. Taking summation of (32) over t = 2, . . . T , we get555

T∑
t=2

2ηe−γws ·
(
G(w̄T )−G(w̄∗)

)
≤

T∑
t=2

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
+

8(1 + η)c0
γ2

·
T∑

t=2

(
(t− 1)−2 + (t− 1)−

θ
γ

)
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≤
T∑

t=2

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
+

8(1 + η)c0
γ2

·
(
2 + 1 +

1

θ/γ − 1

)
≤ 2Wmax + 18Wmax · c0 +

8(1 + η)c0
γ2

· 3θ

θ − γ
. by (31)

We also have556

T∑
t=2

e−γwt ≥ 1

eηγ2Gmax + eηγHmax
·

T∑
t=2

1

t+ 1
by Lemma B.7

≥ 1

eηγ2Gmax + eηγHmax
·
(
log(T + 1)− log(3)

)
Putting these together, we get557

G(w̄T )−G(w̄∗) ≤

(
2Wmax + 18Wmax · c0 +

8(1 + η)c0
γ2

· 3θ

θ − γ

)
· eηγ

2Gmax + eηγHmax

log(T + 1)− log(3)
,

where558

c0 := η ·
(
G2

max +H2
max

)
· θ

θ − γ
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}

is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

. So for T ≥ 3, we have559

G(w̄T )−G(w̄∗) ≤
1

log(T )
· c1,

where c1 is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is independent of T .560
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C Proofs Missing from the Main Paper561

C.1 Proof of Theorem 4.1562

Proof of Theorem 4.1. Theorem 4.1 is a consequence of our analysis in Appendix B.563

(C) is because of Lemma B.3.564

(B) is because of Lemma B.6.565

(D) is because of Lemma B.11.566

(A) is because of the following:567

L(wt) =

n∑
i=1

log(1 + exp(−wtxi −w⊤
t xi))

≤
n∑

i=1

exp(−wtxi −w⊤
t xi)

≤ exp(−wt · γ) ·
n∑

i=1

exp(−w⊤
t xi)

≤ c/ log(t),

where the last inequality is because that568

exp(−wt · γ) ≤
2

2 + ηγ2 · t

by Lemma B.6 and that
∑n

i=1 exp(−w⊤
t xi) is uniformly bounded by a constant by Definition 3.569

C.2 Proof of Theorem 4.2570

Proof of Theorem 4.2. The GD iterates can be written as571

wt+1 = wt + ηγ · e−γwt ·
(
e−w̄t + ew̄t

)
, (33)

w̄t+1 = w̄t − ηe−γwt ·
(
e−w̄t − ew̄t

)
. (34)

We claim that: for every t ≥ 0,572

1. wt ≥ 0.573

2. |w̄t| ≥ 1.574

3. |w̄t| ≥ 2γwt.575

We prove the claim by induction. For t = 0, it holds by assumption. Now suppose that the claim576

holds for t and consider the case of t+ 1.577

1. wt+1 ≥ 0 holds since wt+1 ≥ wt by (33) and wt ≥ 0 by the induction hypothesis.578

2. |w̄t+1| ≥ 1 holds because579

|w̄t+1| ≥ ηe−γwt · |e−w̄t − ew̄t | − |w̄t| by (34)

≥ ηe−γwt · e
|w̄t|

2
− |w̄t| since |w̄t| ≥ 1 and that et − e−t ≥ et

2
for t ≥ 1

(35)

≥ 2e|w̄t|−γwt − |w̄t| since η ≥ 4

≥ 2e|w̄t|/2 − |w̄t| since
|w̄t|
2
≥ γwt

≥ 1. since 2et/2 ≥ t+ 1 for t ∈ R
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3. To prove that |w̄t+1| ≥ 2γwt, first observe that580

wt+1 = wt + ηγ · e−γw ·
(
e−w̄ + ew̄

)
≤ wt + ηγ · e−γw · 2 · e|w̄t|. (36)

Then we have581

|w̄t+1| − 2γwt+1

≥ ηe−γwt · e
|w̄t|

2
− |w̄t| − 2γ

(
wt + ηγ · e−γw · 2 · e|w̄t|

)
by (35) and (36)

=
η

2
· (1− 8γ2) · e|w̄t|−γwt − |w̄t| − 2γwt

≥ e|w̄t|−γwt − |w̄t| − 2γwt since η ≥ 4 ≥ 2/(1− 8γ2)

≥ e|w̄t|−γwt − |w̄t| since wt ≥ 0

≥ e|w̄t|/2 − |w̄t| since
|w̄t|
2
≥ γwt

≥ 0. since et/2 ≥ t for t ∈ R

We have completed the induction.582

Finally, we prove the claims in Theorem 4.2 using the above results.583

(B) is because of584

wt+1 ≥ wt + ηγ · e−γwt

from (33).585

We have already proved (C) by induction.586

To show (D), without lose of generality, let us assume w̄t ≥ 0, then587

w̄t+1 ≤ w̄t − ηe−γwt · |e−w̄t − ew̄t | by (34)

≤ w̄t − ηe−γwt · e
|w̄t|

2
since |w̄t| ≥ 1 and that et − e−t ≥ et

2
for t ≥ 1

≤ w̄t − 2e|w̄t|−γwt since η ≥ 4

≤ w̄t − 2e|w̄t|/2 since
|w̄t|
2
≥ γwt

≤ −1. since 2et/2 ≥ t+ 1 for t ∈ R

We can repeat the above argument to show that w̄t+1 > 0 if w̄t ≤ 0.588

To show (A), we apply wt →∞ and that |w̄t| ≥ 2γwt:589

L(wt, w̄t) = e−γwt ·
(
e−w̄t + ew̄t

)
≥ e−γwt · e|w̄t|

≥ eγwt →∞.

We have completed all the proofs.590
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D Experimental Setups591

Neural network experiments. We randomly sample 1, 000 data from the MNIST3 dataset as the592

training set and use the remaining data as the test set. The feature vectors are normalized such that593

each feature is within [−1, 1].594

We use a fully connected network with the following structure595

784→ ReLU→ 500→ ReLU→ 500→ ReLU→ 10.

The network is initialized with Kaiming initialization. We use the cross-entropy loss.596

We consider constant-stepsize GD with two types of stepsizes, η = 0.1 and η = 0.01.597

The results are presented in Figure 1.598

Logistic regression experiments. We randomly sample 1, 000 data with labels “0” and “8” from599

the MNIST dataset as the training set. The feature vectors are normalized such that each feature is600

within [−1, 1].601

We use a linear model without bias. So the number of parameters is 784. The model is initialized602

from zero. We use the binary cross-entropy loss, i.e., the logistic loss.603

We consider constant-stepsize GD with three types of stepsizes, η = 10, η = 0.1, and η = 0.01.604

The results are presented in Figure 2.605

3http://yann.lecun.com/exdb/mnist/
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