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Abstract

Recent research has observed that in machine learning optimization, gradient
descent (GD) often operates at the edge of stability (EoS) [[Cohen et al., |2021],
where the stepsizes are set to be large, resulting in non-monotonic losses induced
by the GD iterates. This paper studies the convergence and implicit bias of constant-
stepsize GD for logistic regression on linearly separable data in the EoS regime.
Despite the presence of local oscillations, we prove that the logistic loss can be
minimized by GD with any constant stepsize over a long time scale. Furthermore,
we prove that with any constant stepsize, the GD iterates tend to infinity when
projected to a max-margin direction (the hard-margin SVM direction) and converge
to a fixed vector that minimizes a strongly convex potential when projected to the
orthogonal complement of the max-margin direction. In contrast, we also show that
in the EoS regime, GD iterates may diverge catastrophically under the exponential
loss, highlighting the superiority of the logistic loss. These theoretical findings
are in line with numerical simulations and complement existing theories on the
convergence and implicit bias of GD, which are only applicable when the stepsizes
are sufficiently small.

1 Introduction

Gradient descent (GD) is a foundational algorithm for machine learning optimization that motivates
many popular algorithms. Theoretically, the behavior of GD is well understood when the stepsize is
small. In this regard, one of the most classic results is the descent lemma (see, e.g., Section 1.2.3 in
Nesterov et al.[[2018]]):

Lemma (Descent lemma, simplified version). Suppose that sup,, ||V2L(w) ||2 < then
L(wy) < L(w) =+ (1= n8/2) - [VL(w)[3, where w. = w —1- VL(w).

When the targeted function is smooth (such as logistic regression) and the stepsize is small (0 < n <
B3/2), the descent lemma ensures a monotonic decrease of the function value by performing each
GD step. Building upon this, a sequence of iterates produced by GD with small stepsizes provably
minimizes the function value in various settings (see, e.g., Lan| [2020]).

For a more modern example, a recent line of research has established the implicit bias of GD
with small stepsizes (see/Soudry et al.|[2018]], Ji1 and Telgarsky|[2018b] and references thereafter).
Specifically, they consider GD for optimizing logistic regression (besides other loss functions) on

!The uniformly bounded Hessian norm condition is stated for simplicity and can be relaxed in many ways.
For example, it can be replaced by requiring L(-) to be S-smooth. For another example, it can also be replaced
with supgcy <y [VPLOX-w + (1= X) - wy) ||, < 8.
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Figure 1: The behaviors of GD for optimizing a neural network. We randomly sample 1,000 data from
the MNIST dataset and then use GD to train a 4-layer fully connected network to fit those data. We use the
cross-entropy loss, i.e., the multi-class version of the logistic loss. The sub-figures (a), (b), and (c) report the
training loss, test accuracy, and sharpness (i.e., ||V L(w¢)||2) along the GD trajectories, respectively. The red
curves correspond to GD with a large stepsize n = 0.1, where the training losses oscillate locally and the
sharpnesses can exceed 2/n = 20. The green curves correspond to GD with a small stepsize n = 0.01, where
the training losses decrease monotonically and the sharpnesses are always below 2/n = 200. Moreover, (c)
suggests that large-stepsize GD achieves better test accuracy than small-stepsize GD, consistent with larger-scale
deep learning experiments [Goyal et all 2017]]. More details of the experiments can be found in Appendix [D]

linearly separable data. When the stepsizes are sufficiently small, the GD iterates are shown to
decrease the risk monotonically (by a variant of the descent lemma); moreover, the GD iterates tend to
align with a direction that maximizes the /»-margin of the data [Soudry et al.; 2018}, Ji and Telgarsky,
2018b]. The margin-maximization bias of small-stepsize GD sheds important light on understanding
the statistical benefits of GD, as a large margin solution often generalizes well [Bartlett et al., 2017,
Neyshabur et al., 2017].

Nonetheless, in practical machine learning optimization, especially in deep learning, the empirical
risk (or training loss) often varies non-monotonically (while being minimized in the long run) — the
local risk oscillation is not only caused by the algorithmic randomness but is more an effect of using
large stepsizes, as it happens for deterministic GD (with large stepsizes) as well [Wu et al., 2018}
Xing et al., 2018| [Lewkowycz et al.,[2020, (Cohen et al.,|2021]]. This phenomenon is showcased in
Figures|I[a) and 2[a), and is referred to by |[Cohen et al.|[2021]] as the edge of stability (EoS). The
observation sets a non-negligible gap between practical and theoretical GD setups, where in practice,
GD is run with large stepsizes that lead to local risk oscillations, but in theory, GD is only considered
with sufficiently small stepsizes, predicting a monotonic risk descent (with a few exceptions, which
will be discussed later in Section[2)). A tension remains to be resolved:

Is the convergence of risk under local oscillation merely a “lucky” occurrence,
or is it predictable based on theory?

Contributions. In this work, we study the behaviors of GD in the EoS regime in arguably the
simplest setting for machine learning optimization — logistic regression on linearly separable data.
We show that with any constant stepsize, while the induced risks may oscillate locally, GD must
minimize the risk in the long run at a rate of O(1/t), where ¢ is the number of iterates. In addition, we
show that the direction of the GD iterates (with any constant stepsize) must align with a max-margin
direction (the hard-margin SVM direction) at a rate of O(1/log(¢)). These results explain how GD
minimizes a risk non-monotonically, and complement existing theories [Soudry et al., 2018 J1 and
Telgarskyl [2018b] on the convergence and implicit bias of GD, which are only applicable when the
stepsizes are sufficiently small.

Some additional notable contributions are

1. We also show that, when projected to the orthogonal complement of the max-margin direction,
the GD iterates (with any constant stepsize) converge to a fixed vector that minimizes a strongly
convex potential at a rate of O(1/log(t)). This characterization is conceptually more interpretable
than an existing version [Soudry et al., 2018]].

2. We show that in the EoS regime, GD can diverge catastrophically if the logistic loss is replaced
by the exponential loss. This is in stark contrast to the small-stepsize regime, where the behaviors
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of GD are known to be similar under any exponentially-tailed losses including both the logistic
and exponential losses [Soudry et al., 2018| J1 and Telgarsky|, 2018b]]. The difference in the EoS
regime provides insights into why the logistic loss is preferable to the exponential loss in practice.

3. From a technical perspective, we develop a new approach for analyzing GD with large stepsizes.
Our approach views the GD iterates as a coupling of two orthogonal iterates, one along a max-
margin direction and the other along the orthogonal complement of the max-margin direction.
The former iterates tend to infinity and the latter iterates approximate “imaginary” GD iterates
that minimize a strongly convex potential with a decaying stepsize scheduler, controlled by the
former iterates. Our techniques for analyzing large-stepsize GD can be of independent interest.

2 Related Works

In this section, we discuss papers related to our work.
Implicit bias. We first review a set of papers on the implicit bias of GD (with small stepsizes).

Along this line, Soudry et al.| [2018]] are the very first to show that GD converges along a max-margin
direction when minimizing the empirical risk of an exponentially-tailed loss function (such as the
logistic and exponential losses), a linear model, and linearly separable data. Then, an alternative
analysis is provided by [Ji and Telgarsky| [[2018b], which also deals with non-separable data. These
two works directly motivate us for considering GD for logistic regression on linearly separable data.
However, there are at least three notable differences between our work and theirs. Firstly, their
results only apply to GD with small stepsizes, while our results apply to GD with any constant
stepsize. Secondly, their theories predict no difference between the logistic and exponential losses (as
they are limited to the small-stepsize regime). Quite surprisingly, we prove that in the EoS regime,
GD can diverge catastrophically under the exponential loss. Thirdly, from a technical viewpoint,
their implicit bias analysis is built upon the risk convergence analysis, which further relies on a
monotonic risk descent argument, hence only applies to small stepsizes. In comparison, we come up
with a new approach that allows analyzing the implicit bias under risk oscillations; the long-term
risk convergence is simply a consequence of the implicit bias results. Hence our techniques can
accommodate any constant stepsize. See Section [5|for more discussions.

Subsequent works have extended the results by Soudry et al.|[2018]], Ji and Telgarsky|[2018b] to other
algorithms such as momentum-based GD [Gunasekar et al.|[2018al Ji et al., 2021]] and SGD [Nacson
et al., 2019c|], and homogenous but non-linear models [[Gunasekar et al., 2017} Ji and Telgarsky,
2018al |Gunasekar et al.; 2018bl [Nacson et al.,|2019al |Lyu and Li,[2019] and non-homogenous models
[Nacson et al.,|2019a]]. All these theories require the stepsizes to be small or even infinitesimal, in a
regime away from our focus, the EoS regime.

It is worth noting that Nacson et al.|[2019b] consider GD with an increasing stepsize scheduler that
achieves a faster margin-maximization rate than constant-stepsize GD. However, their stepsize at
each iteration is still appropriately small, resulting in a monotonic risk descent by a variant of the
descent lemma.

Edge of stability. The risk oscillation phenomenon has been observed in several deep learning
papers [Wu et al., [2018|, [Xing et al.| 2018| |Lewkowycz et al., 2020, and the work by |Cohen et al.
[2021]] coins the term, edge of stability (EoS), that formally refers to it. In the remainder of this part,
we focus on reviewing the current theoretical progress in understanding EoS.

Zhu et al.|[2022] rigorously characterize EoS for a two-dimensional function (u,v) — (u?v? — 1)2.

Chen and Bruna| [2022] study EoS for a one-dimensional function u + (u? — 1)? and for a special
two-layer single-neuron network. |Ahn et al. [2022a]] consider functions (u,v) — ¢(uv), where
¢ is assumed to be convex, even, and Lipschitz; notably, they show a statistical gap between the
small-stepsize regime and the EoS regime. Compared to their settings, our problem, i.e., logistic
regression, is a natural machine-learning problem with fewer artifacts (if any).

EoS has also been theoretically investigated for general functions [Ma et al.| 2022, |Ahn et al.| |2022b)
Damian et al., 2022} [Li et al., |2022], but these theories are often subject to subtle assumptions
that are hard to interpret or verify. Specifically, [Ma et al.| [2022] require the function to grow
“subquadratically”. |Ahn et al.[[2022b] assume the existence of a “forward invariant subset” near
the set of minima of the function. Damian et al.| [2022]] assume a negative correlation between the
gradient direction and the largest eigenvalue direction of the Hessian. |L1 et al.[[2022] consider a
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two-layer neural network but require the norm of the last layer parameter and the sharpness to change
in the same direction along the GD trajectory. In comparison, our assumptions are more natural and
interpretable.

The unstable convergence has also been studied for normalized GD [Arora et al.| 2022 [Lyu et al.,
2022] and regularized GD [Bartlett et al., [ 2022]. These algorithms are apart from our focus on the
vanilla GD.

3 Preliminaries

We use x € R? to denote a feature vector and y € {1} to denote a binary label, respectively. Let
(xi, i), be a set of training data. Throughout the paper, we assume that (x;, y;)"_; is linearly
separable [Soudry et al., [2018]).

Assumption 1 (Linear separability). Assume there is w € R? such that y;x; w > 0fori=1,... n.

Let w € R? be the parameter of a linear model. In logistic regression, we aim to minimize the
following empirical risk

L(w) = Zlog (1+exp(—y; - (xi,w))), weR™L

We study a sequence of iterates (w;);>( produced by constant-stepsize gradient descent (GD), where
w( denotes the initialization and the remaining iterates are sequentially generated by:

wy =w;_1 —1n-VL(wi_1), t>1, (GD)

where 1 > 0 is a constant stepsize. We are especially interested in a regime where 7) is very large
such that L(w) oscillates as a function of ¢. For the simplicity of presentation, we will assume that
wo = 0. Our results can be easily extended to allow general initialization.

The following notations are useful for presenting our results.

Definition 1 (Margins and support vectors). Under Assumption[I] define the following notations:
(A) Let y be the max-f5-margin (or max-margin in short), i.e.,

v:= max min y; - (X;, W).
llwll2=1i€[n]

(B) Let w be the hard-margin support-vector-machine (SVM) soluion, i.e.,
W :=arg min |[|w|2, st y;- (x5, w)>1, i=1,...,n.
weRd
It is clear that W exists and is uniquely defined (see, e.g., Section 5.2 in|Mobhri et al.[[2018]).

Note that || W||2 = 7 and W/||W||2 is a max-margin direction. Also note that by duality, w can
be written as (see, e.g., Section 5.2 in Mohri et al.|[2018])

w = ZOM, “YiXi, 0 > 0.
i€S
(C) Let S be the set of indexes of the support vectors, i.e.,
S:={ien]:y- xi,w/[[wl2) =~}
(D) If there exists non-support vector (S C [n]), let 8 be the second smallest margin, i.e.,

0 :=min y; - (x;, W/[|Wl|2).
min yi - (x5, W/|[Wll2)
It is clear from the definitions that 6 > ~ > 0.

In addition to Assumption [T} we make the following two mild assumptions to facilitate our analysis.
Assumption 2 (Regularity conditions). Assume that:

A) |xil2<1,i=1,...,n.
(B) rank{x;, i=1,...,n} = d.
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Assumption [2]is only made for the convenience of presentation. In particular, Assumption 2[A)]
can be made true for any dataset by scaling the data vectors with a factor of max; ||x;||2. Without
Assumption our theorems still hold under a minor revision by replacing all the vectors of
interests with their projections to span{x;,i = 1,...,n}.

Assumption 3 (Non-degenerate data). In addition to Assumption|[I] assume that

(A) rank{x;, i € S} =rank{x;, i=1,...,n}.
(B) There exist o; > 0,1 € S such that w = ZiGS Q; * YiX;.

Note thatimplies that 3, . g o = 1sincey = ||Wllo =3, c5 i yix] W/||[Wll2a = ,cq i 7.

Assumption[3|requires that the support vectors span the dataset and are associated with strictly positive
dual variables. The requirements are weak since they hold almost surely for every linearly separable
dataset sampled from a continuous distribution according to Appendix B in Soudry et al.| [2018]].
Assumption [3] provides convenience to our analysis, but we conjecture it might not be necessary.
Removing/relaxing Assumption [3|is left as a future work.

3.1 Space Decomposition

Conceptually, our analysis is built on a novel space decomposition viewpoint, which relies on the
following lemma.

Lemma 3.1 (Non-separable subspace). Suppose that Assumptions|[I| 2] and[3|hold. Then (x;,y;)ics
is not linearly separable in the subspace orthogonal to the max-margin direction W/ ||W||2. That is,
for every v such that (v, W) = 0, there existi,j € S such that y; - (x;,v) <0, y; - (xj,v) > 0.

Proof of Lemma[3.1} By Assumption [3|and (v, W) = 0, we have

0= (v,w)= Zai -iniTV.
i€S
By Assumptions 2 and [3] we have
rank{y;x;, i € S} = rank{x;, i € S} =rank{x;, i =1,...,n} =d,
so there must exist ¢ € S such that yix;-'—v = (0. Without loss of generality, assume that yix;r v < 0.
Then since o; > 0 fori € S by Assumption there must exist j € S such that ijij > 0. O

Lemma 3.1] shows that, although the dataset can be (linearly) separated by w, it cannot be separated
by any vector orthogonal to w. This motivates us to decompose the d-dimensional ambient space into
a 1-dimensional “separable” subspace and a (d — 1)-dimensional “non-separable” subspace. This
idea is formally realized as follows.

Fix d — 1 orthogonal vectors fi,...,f;-1 € R? such that (W/||W||2, 1, ..., ;1) forms an orthog-
onal basis of the ambient space R?. Then define two projection operators:

P:RY =R givenby v = v w/||W|,

P:R? 5 RI! givenby v — (VTfl, . ,vad,l).

The two operators together define a natural space decomposition, i.e., R = P(RY) @ P(RY).
Moreover. (P(x-) 4)71 are linearly separable with an max-/;-margin ~ according to Definition
s 7 ay% i=1 y p 2 g ’Y g
i
composition of space can also be understood as the decomposition of data features into “max-
margin features” and “non-separable features”.

gl and (P(x;), i), s (hence (P(xs), yi)nzl) are non-separable according to Lemma So the
e

In what follows, we will call P(R?) the max-margin subspace and P(R?) the non-separable subspace,
respectively. In addition, we define a “margin offset” that quantifies to what extent the ‘“non-separable
features” are not separable.

Definition 2 (Margin offset for the non-separable features). Under Assumptions|[I] 2 and[3] it holds
that (P(x:), i), g is non-separable. Let b be a margin offset such that

—b:= min y; - (P(x;), W).

max
weERI—L ||w|2=1 ‘€S
Then b > 0 due to the non-separability. The definition immediately implies that:

for every v € R?™!, there exists i € S such that y; - (P(x;), V) < —b- V]2
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Comparison toJi and Telgarsky|[2018b]. The work by |Ji and Telgarsky| [[2018b] also conducts
space decomposition (see their Section 2). However, our approach is completely different from theirs.
Firstly, they consider a non-separable dataset but we consider a linearly separable dataset. Secondly,
at a higher level, they decompose the “dataset” (into two subsets), while we decompose the “features”
(into two kinds of features). More specifically, Ji and Telgarsky| [2018b] first group the non-separable
dataset into the “maximal linearly separable subset” and the complement, non-separable subset, then
decompose the ambient space according to the subspace spanned by the non-separable subset and its
orthogonal complement. In comparison, we consider a linearly separable dataset and decompose the
ambient space according to a max-margin direction (i.e., P) and its orthogonal complement (i.e., P).

4 Main Results

We are now ready to present our main results. All proofs are deferred to Appendix [C] To begin with,
we provide the following theorem that captures the behaviors of constant-stepsize GD for logistic
regression on linearly separable data.

Theorem 4.1 (The implicit bias of GD for logistic regression). Suppose that Assumptions
and E]hold. Consider (w¢)i>o produced by (GD) with initilizatiorﬂ wo = 0 and constant stepsize
1 > 0. Then there exist positive constants cy, ca, cg > 0 that are upper bounded by a polynomial of
{e", e, el 1/n,1/(0 —~),1/7, 69/7} but are independent of t, such that:

(A) The risk is upper bounded by
L(wy) <ci/t, t>3.

(B) In the max-margin subspace,

P(wi) > log(t) /v + log(1y?/2) /v, t> 1.
(C) In the non-separable subspace,
[P(wi)||, < c2, t>0.
(D) In addition, in the non-separable subspace,
G(P(wy)) —minG(:) < cz/log(t), t >3,

where G(+) is a strongly convex potential defined by

G(v) = Zexp (—wyi-(Pxi), v)), ve R4L,
€S

Note that Theorem [4.T|applies to GD with any positive constant stepsize, therefore allowing GD to
be in the EoS regime. We next discuss the implications of Theorem[4.T]in detail.

Risk minimization. Theorem guarantees that the GD iterates minimize the logistic loss
at a rate of O(1/t) for any constant stepsize, even for those large stepsizes that cause local risk
oscillations. This result explains the risk convergence of GD in the EoS regime, as illustrated in
Figure[2] and is also consistent with the observations in neural network experiments (see Figure|[T).

Margin maximization. Theorem shows that the GD iterates, when projected to the max-
margin direction, tend to infinity at a rate of O(log(t)). Moreover, Theorem . I{C)|shows that the
GD iterates, when projected to the non-separable subspace, are uniformly bounded. These two
results together imply that the direction of the GD iterates will tend to a max-margin direction, i.e.,
the hard-margin SVM direction, at a rate of O(1/log(t¢)). Therefore, the implicit bias of GD that
maximizes the £3-margin is consistent in both the EoS regime and the small-stepsize regime [Soudry
et al.,[2018} J1 and Telgarsky, |2018b].

Iterate convergence in the non-separable subspace. Theorem shows that the GD iterates,
when projected to the non-separable subspace, converge to the minimizer of a strongly convex
potential G(-). Here, G(-) measures the exponential loss of a parameter on the support vectors with
their non-separable features. This provides a more precise characterization of the implicit bias of GD:
the direction of the GD iterates converges to the hard-margin SVM direction, moreover, the limit of

’The theorem can be easily extended to allow any wy that has a bounded ¢3-norm.
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Figure 2: The behaviors of GD for logistic regression. We randomly sample 1, 000 data with labels “0” and “8”
from the MNIST dataset and then use GD to perform logistic regression on those data. The sub-figures (a) and
(b) report the risk (i.e., the logistic loss) and sharpness (i.e., ||V L(w¢)||2) along the GD trajectories, respectively.
The blue and red curves correspond to GD with large stepsizes 7 = 10 and n = 0.1, respectively, where the
training losses oscillate locally and the sharpnesses can exceed 2/n = 0.2 and 2/n = 20, respectively. The
green curves correspond to GD with a small stepsize n = 0.01, where the training losses decrease monotonically
and the sharpnesses are always below 2/n = 200. More details of the experiments can be found in Appendix@

the projections of the GD iterates to the orthogonal complement to the hard-margin SVM direction
minimizes the exponential loss on the non-separable features of the support vectors.

Comparison to Theorem 9 in Soudry et al.[[2018]. Theorem 9, in particular, equation (18), in
Soudry et al.| [2018] indirectly characterizes the convergence of GD iterates in the non-separable
subspace. It reads in our notations that: w := lim;_, (wt — Wlog(t)) exists and satisfies

forevery i € S, n-exp(—y; - (xi, W)) = a;, where o is defined in Assumption 3] e))

In Appendix [A] we show that Theorem [4.I[D)]is equivalent to condition (IJ) in terms of describing
P(Wa). Despite their equivalence, (T)) is less interpretable than Theorem . 1{(D)] as (T)) entangles
an effect of P(wo,) with P(wo ), while Theorem 4. 1{completely decouples P (W) and P (W ).
In particular, (T) seems to suggest P(w,) to be a function of stepsize 7 since w depends on 7.
However, this is only an illusion brought by the lack of interpretability of (I); it is clear that P(w,)
is independent of 1 according to Theorem

Exponential loss. Until now, our theory for GD is consistent for large and small stepsizes. However,
this is a particular benefit thanks to the design of the logistic loss, and may not hold for other losses.
Our next result suggests that, in the EoS regime where the stepsizes are large, GD can diverge
catastrophically under the exponential loss.

Theorem 4.2 (The catastrophic divergence of GD under the exponential loss). Consider a dataset of
two samples, where

X1 = (’Ya 1)7 Y1 = 1 X2 = (77 _1)7 Y2 = 1.

It is clear that (X;,y;)i=1,2 is linearly separable and (1,0) is the max-margin direction. Consider a
risk defined by the exponential loss:

L(w,w) := exp(—y1 (x1,W)) + exp(—ya(x2,W)) = - (e “ +¢€%), where w= (w,0).
Let (wy, Wy ) >0 be the iterates produced by GD with constant stepsize 1 for optimizing L(w, w). If
0<wo<2 |wol>1, 0<y<1/4, n>4,

then:

(A) L(wt,i)t) — OQ.

(B) wy — o0.

(C) Foreveryt > 0, |wi| > 2vw;.

(D) Moreover, the sign of wy flips every iteration.

As a consequence, (wy, Wt )¢>o diverge in terms of either magnitude or direction; in particular, the
direction of (wy, Wy)>0 cannot converge to the max-margin direction (which is (1,0)).
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Theorem 4.2 shows that with a large constant stepsize, the GD iterates no longer minimize the risk
defined by the exponential loss and no longer converge along the max-margin direction. In fact, the
directions of the GD iterates flip every step, thus the direction of the GD iterates necessarily diverges,
resulting in no meaningful implicit bias at all.

In the EoS regime, large-stepsize GD still behaves nicely under the logistic loss (Theorem[4.1)) but can
behave catastrophically under the exponential loss (Theorem4.2). From a mathematical standpoint,
this difference is rooted in the fact that the gradient of the logistic loss is uniformly bounded while
the gradient of the exponential loss could be extremely large. From a practical standpoint, it provides
insights into why the logistics loss (and its multi-class version, the cross-entropy loss) is preferable to
the exponential loss in practice.

The different behaviors of large-stepsize GD under the logistic and exponential losses also sharply
contrast the EoS regime with the small-stepsize regime. Because in the small-stepsize regime, the
convergence and implicit bias of GD are known to be similar under any exponentially-tailed losses,
including the logistic and exponential losses [[Soudry et al.,[2018, Ji and Telgarsky| [2018b].

5 Techniques Overview

The proofs of Theorems [d.1]and [f.2] are deferred to Appendix [C| In this section, we explain the proof
ideas of Theorem [{.T]by analyzing a simple dataset considered in Theorem [4.2](the treatment to the
general datasets can be found in Appendix [B). But this time we work with the logistic loss instead of
the exponential loss, that is,

L(w,w) = log(1 + e 7~") +log(1 + e 1 1%).
Then the GD iterates can be written as
Wiyl = We — 1+ G, Wiy = Wg — 1+ Gt,

where

1 _ 1 1
gt = =7 <1 + eYwt+wy + 1+ e’Y’wt—wt)’ 9t = _<1 + eYWwi+we o 1+ e’th—wt)'

For simplicity, assume that

wo =0, |wg] > 0.
Different from [Soudry et al.|[2018]], J1 and Telgarsky| [[2018b]l, our approach begins with showing the
implicit bias (despite that the risk may oscillate). The long-term risk convergence is then simply a
consequence of the implicit bias results.

Step 1: (w;);>0 is uniformly bounded. Observe that g; and w; always share the same sign and
that |g;| < 1, so we have

[ We1| = [|we| — - ]| < max {[we], - 1ge|} < max {|w,l, n}.

By induction, we get that (|@;|),. , is uniformly bounded by max{|wo|, n} = ©(1).

t>0

Step 2: w; ~ log(t)/y. We turn to study the max-margin subspace. It is clear that g; < 0 for every
t > 0. So we have w; > 0 by induction. Moreover, we have

e YWt —We e*’ﬂ”ﬁ*@t _ _

_9 + <e MW g™ 4 o7 MW oWt < e Q(1)

~ 1+ e~ YWt —Wt 1+ e~ Ywitwy — - ’
where the last inequality is because |w;| is uniformly bounded. We also have

gt e YWt — Wt e~ YWt Wt

— . : —yw¢ ,— Wt . : —Yyw¢ W
v L4 e W T e = 09 min{1,e”""" e} + 0.5 - min{1, """ e }

> 0.5 -min{l,e """ 4 e e} > 0.5 - min{l,e """} = 0.5- e T,
where the third inequality is because e =% + ¢@t > 1 and the last equality is because w; > 0. Putting

these together, we have

g~ —y-e ™ .0(1) = w Rwg—ny-e " -0(1) = wy=log(t)/y£O(1). (2
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Step 3: §: ~ exp(—yw;) - VG(w;). We turn back to the non-separable subspace. Note that g, is
an odd function of w;. Without loss of generality, let us assume w; > 0 in this part. Notice that

1 1
for every fixeda > 1, f(t) := W “ila is a decreasing function of ¢t > 0. 3)
a a

Then we have

1 1 1 1
gy =e TVt ( - ) <e YWr. ( - ) =: e . VG(wy),

e YWt | e~ Wt e YWt | eWt e~ Wt eWt
where the inequality is by (3), and G(w) := e” + e~ is defined as in Theorem On the other
hand, since |w;| is bounded and wy is increasing (and tends to infinity), there must exist a time ¢
such that e 7wt < e~ l®tl for every t > tg. Then for ¢t > t; we have

o 1 1 w 1 1
gr=e Twe | _ _ >e Twe | _ _ _
e~ YWt 4 e~ Wt e~ YWt | eWt Qe Wt e~ Wt 4 eWt

ewt 6_71“‘ ewt e—u’)t 1
— T YWt —YWwt — —YWwt 7
=e . - >e . = —-e -VG(w
2e~200 £ 2~ 4 4 (1),

where the first inequality is by (3) and e=7t < e~ ¢, and the last inequality is because we assume
wy > 0. Putting these together, and using @), we obtain that

forevery t > tg, Wip1 =Wy — - VG(wy), wheren, =n-e 7 - 0(1) = ©(1)/t. (4)

Step 4: a modified descent lemma. Using (@) and Taylor’s expansion, we have

o(1
for every ¢ > to, G(iin) < G() —ne- [VG(@) |2 + 2 i - [VGm)|? < Gla) + 2,
where 3 1= SUp 5| <max{|wo|,n} || V>G(0)[l2 = O(1). Taking a telescoping sum from # to T', we have
forevery T >t > to, G(wr) < G(w) +O(1)/t. ®)

Step 5: the convergence of w;. What remains is adapted from classic convergence arguments.
Choose w, = argmin G(-), then

@41 = @13 = ll@e — @5 — 20 - (@ — @, G(@r)) + 117 - [ VG (@03
< e — @il — 2ne - (G(@e) — G(wx)) + O(1) /82, t > to,

where the equality is by (@), and the inequality is because of the convexity of G(-), || < ©(1), and
(). Taking a telescoping sum, we have

T T
> 2 (G(wy) = G(w4)) < |y, — w3 = [0 g1 — @all3 + > O(1)/¢% < O(1).
t=to t=to

Combing the above with (3) and using 1, ~ ©(1)/t from @), we get

Do (Glor) = G(@.)) < Y e - (Glwy) = Gl@.)) + Y e - O(1)/t < ©(1).

t=tg t=to t=to
Finally, since Zfzto ne > O(1) - (log(T) —log(to)) according to (@), we get that G(wr) — G(w,) <
©(1)/(log(T') — log(to))-

Step 6: risk convergence. The long-term risk convergence result can be easily established by
making use of the implicit bias results we have obtained so far.

6 Conclusion

We consider constant-stepsize GD for logistic regression on linearly separable data. We show that
with any constant stepsize, GD minimizes the logistic loss; moreover, the GD iterates tend to infinity
when projected to a max-margin direction and tend to a fixed minimizer of a strongly convex potential
when projected to the orthogonal complement of the max-margin direction. We also show that GD
with a large stepsize may diverge catastrophically if the logistic loss is replaced by the exponential
loss. Our theory explains how GD minimizes a risk non-monotonically.
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A On the Equivalence between Theorem @.1(D) and ()
Note that w in (I)) contains components in both the max-margin and non-separable subspaces, and
we need to disentangle those two components.
Under the coordinate system that defines 7 and P, we can represent a vector v € R? as
V= ('P(V),'P(V)).

Then for i € S, we have

=y; - P(x;) - P(W) +y; - (P(x;), P(W))  since P and P are orthogonal
=9P(W) +y; - (P(x;), P(W)). since y; P(x;) =y fori € S
So () is equivalent to
foreveryi € S, mnexp(—yP(W)) -exp (—yi - (P(x:), P(W))) = .

Recall that ) ;s o; = 1 according to Assumption E So focusing on P, the above is equivalent
to the following condition on P (W):

a; ocexp (—yi - (P(xi), P(W))), i€S. (6)
Here we ignore a shared normalization factor.
Now, recall from Assumption [3(B)|that («;);es are such that
w = Z Q- Yi X,
=

Note that as long as ), g a; = 1, we have P(W) = > . s ;- 4P(x;) = v by Assumption

Now consider P. Note that P(w) = 0 by the choice of P, then apply P on both sides of the above
equation, we get

0="P(W) =) ai yP(xi). ©)

i€S
Under (7)), (6) is equivalent to the following condition on P (W):
i€S
which is precisely the first-order condition of

P(W) € argmin G(+), where G(v) := Zexp (—vi- (P(xi), v)).

Hence we have shown that: the condition that W satisfies (]) is equivalent to the condition that P (W)
minimizes the strongly convex potential G(-).
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B The Behaviors of Constant-Stepsize GD

B.1 Notation Simplifications
Without loss of generality, we assume that
=1, 1=1,...,n.

Otherwise, we replace y; with 1 and x; with y; - x;, respectively, and the following analysis does not
change.

Then the risk becomes

L(w) =Y log(1+e™ %),

i=1

Rotating the hard-margin SVM solution. Note that the iterates (under linear models) are
rotation equivariant. Specifically, let R be an orthogonal matrix, then applying R on both sides of

(GD), we obtain

RWt+1 = RW{; + T]Z (1 - S(Xz—»rwt)) . RX7
i=1

= Rw; + 772 (1 — 8((RXZ)T(RW1§))) - Rx;,

i=1
which is equivalent to the GD iterates under changes of variables, w <— Rw and x < Rx.

Therefore, without loss of generality, we can apply a rotation to the dataset such that w || e;. Then
for v € R%,

Pv=v[l]€R, Pv=v[2:d eR""
Slightly abusing notations, in what follows we will write
x; = (v, %) eEROR"Y, i=1,...,n,

where
ZTi = Xl[].] € R, X; 1= XZ[Q : d] S Rdil.

Similarly, we define

Then we have

So the loss can be written as:

So (GD)) can be written as:

wo =0, wy=wi1—nVyL(we_1,We_1), t>1; ®)

wo=0, wy=w;_1 —n Vel(wi_1,wi_1), t>1.

The above two recursions capture the GD iterates projecting to the max-margin and non-separable
subspaces, respectively.

13
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B.2 Boundedness of GD in the Non-Separable Subspace

We first show that (W );>¢ stay bounded for every fixed stepsize 7.

Lemma B.1 (Positiveness of w;). Suppose that Assumptio holds. Consider (w¢)¢>¢ defined by (8)
with constant stepsize n > 0. Then for every t > 0, it holds that w; > 0.

Proof. Recall that
wo =0, wi=wi1—1n Vel(wi_1,Ws_1), t>1.
We only need to show that V,, L(w, w) < 0. This is because

1
1+ ewwi+WTii ’

Vwl(w,w) = — Z
i=1
< 0. since z; > v > 0 by Definition[T]

Ly

O

Lemma B.2 (A recursion of |W¢||2). Suppose that Assumptions and|3|hold. Consider (W)i>0
defined by ) with constant stepsize n) > 0. Then for every t > 0, there exists j € [n] such that

_ _ - b-[[well2 U .
2 2 wey | _ . 2 _p.
[Westllz < [[Well3 + 2ne™" (” 1 * 7 Ty (mm? = b [[Wl2).-

As a direct consequence,

| Well2 > max{4n/b, gn?/b} implies that || Wei1|l2 < [|[Well2.
Proof. We first make a few useful notations. Fix a time index ¢.

* Let k be the index of the “most negatively classified” support sample, i.e.,
k= in{(w¢,X;) },
arg min{(wy, %;) }
then by Definition[2]it holds that
(Wi, X)) < —b - [[We[2. ©)
* Let j be the index of the “most negatively classified” sample, i.e.,
j = arg 1I§Ililéln{wt{1}i + (W, X))
Then
wyx; + (W, X)) < wpx; + (W, X;) for every i € [n]. (10)

In particular, we must have

(We,X;) < =bl[wel|z, (11)
since
wey + (W, Xj) < wexj + (W, X;j) by Definition[T]
< ?Sél{wfxi + (W, %)} by (I0)
= wyy + I}éig{(ﬁ/t, xi)} by Definition[I]
< wyy — b||Wel|2. by Definition[Z]

We remark that it is possible that & = j.

14



441 Step 0: an iterate norm recursion. Recall that

Wip1 = Wy — Vs L(we, W), VgL(wg, W) Z

X
Wz W, X,

= l1+e ¢
442 Then

_ _ _ _ _ 2
IWis1ll3 = Well5 — 20 - (Wi, Vo L(we, i) +0° - |V L(we, W) |-
443 Step 1: gradient norm bounds.

By definition, we have

- - 1 ,
||Vv‘vL(wt;Wt)H2 = Hz—l—f—ewt - .

— "X
x; er;r X

2

< Z 1 + WX +Wt X ||X1||2

<D e

n
=] ewens Wy X by Assumption 2]
= W by (12)
<n.

(13)
444 Therefore, we have

[V, Lwe, o) 5

IN

(s ) IvsLtwwal,

n2

[T @09

IN

445

Step 2: cross-term bounds.
446

We aim to show that the negative parts in the cross-term can cancel
both the positve parts in the cross-term and the squared gradient norm term

447 Note that the following holds for either j = k or j # k:

— (W, Vi, L(we, Wy))

= 1
= Z 1+ wtx,:—i-v'v;ril W;r)_cl
i=1 €
1 .
< Z 1 + ewt:c.b+wt X4 ’ Wt Xi
v_v;r)_m >0 (15)

1 1 1 1
2 1 + eWtT; +W, X

211 ewiwim, L
ass  The first term in (T3] can be bounded by

> — L arx

1 + ewtzi+w;rii
w, Ix;>0

—wWT
1 + e—w,wi—v’vjii

W, T%;>0

>

—— sincee t-t<1
£ 1 + efwtzifwt Xi
w, X;>0

§ efwtm.;
w, %x;>0

< ne YW,

IN

since x; > ~y for i € [n] (16)

15



449

450

451

452

453

454

455

457
458

459

460

461

462

463

The second term in (T3] can be bounded by
1 1
- W,
2 14 ewtTitw, X

The third term in (T3) can be bounded by

1 1 i 1 —b- ||V_Vt||2

—b - [|will2

ot by (Tl (17)

1
2. < 1
%= 2 14 ewrzitW/ X,

3" W cW, X < 27 T et by @) and the choice of &
_ b lwell2 e
- 2 e—WtY 4 ev‘v?)‘ck
—b-||w —wey o .

< !Wt”Q € 7 since e T eWe ¥ <1 (18)

since

wyy > 0, by Lemma[B]]
v_v;r)_(k <0. by the choice of k
Now, bringing (T6), (T7), and (I8) into (T3], we obtain
_ _ - b-llwella) _ b-l[will2 1
— _ wey -, — — .
(Wi, Vi, L(wg, Wy)) < et (n : 5 T (19)

Step 3: iterate norm recursion bounds. Using (T4) and (T9), we can obtain

_ _ _ _ 2
IWes1ll3 = [Well3 — 20 - (We, Vo L(we, We)) + 177 - || Voo L(we, W) |

. - b- ||wll2 . 1
2 weY N | RS2 | Ly B A - -
< wellz +2me™ <TL 4 nb - [IWellz 1 4 ewtz;+W/ %,
2
2, "
1 1 4 ewtmi+w/ %,
. - b-[[willa n .
_ 2 wey | _ . 2 _ 7.
= il + 20 (= ) ).
We have completed the proof. O

Lemma B.3 (Boundedness of w). Suppose that Assumptions and hold. Consider (W)i>0
defined by (B) with constant stepsize n) > 0. Then for every t > 0, it holds that

[Well2 < Winax := max{4n/b,nn?/b} + nn.
Proof. We prove the claim by induction. Clearly, ||Woll2 = 0 < max{4n/b,nn?/b} + nn. Now
suppose that
W2 < max{4n/b,nn?/b} + nn,
and discuss the following two cases:

L. If || W]z < max{4n/b,nn?/b}, then
IWit1lle < [|[Well2 + |0 - Ve L(we, W) |2 by triangle inequality

< [Iwill2 +nn by 3)
< max{4n/b,nm?/b} + nn.

2. Else, we have
max{4n/b,nmm?/b} < ||[W¢|2 < max{4n/b,nn?/b} 4+ nn,
which implies
[Wer1ll2 < |[Well2 by Lemma[B7]
< max{4n/b,nn?/b} + nn.

This completes the induction. O
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464 B.3 Divergence of GD in the Max-Margin Subspace

465 Definition 3 (Some loss measurements in the non-separable subspace). Under Assumptions|[T} 2] and
466 we define the following notations:

467 (A) Define two loss functions
G(w) := Zefﬁﬁii, H(w) := Zefﬁﬁii.
= i¢Ss
468 In the case where S = [n], we define H(w) = 0.

469 (B) Define

Guin := min G(w),
weRd—!

470 It is clear that Gyp;,, > 1 since (X;)ies are non-separable by Deﬁnition

471 (C) Define
w, :=arg min G(W).

weRd—1
472 It is clear that G(W,) = Guin. Moreover, it holds that |W,||2 < Winax by Lemma
473 (D) Recall that ||[W¢||2 < Wiax according to Lemma We then define
Grax = sup  G(w), Hpox i= sup  H(w).
[IW]l2 <Wiax 1%l <Winax
474 It is clear that

G(Wt) S Gmaxa H(Wt) S Hmaxy

1/b

475 and that G4, Hax are polynomials on e, €™, and e'/°, and are independent of ¢.

476 Lemma B.4. For the W, in Definition[3} it holds that

log(n
el < 2 <

477 Proof. By Definition[2] there exists j € S such that
W, X < —b- [|Wall2,
476 which implies that
Zefw X; >e W] %, > eb Hw*||2
€S
479 On the other hand, by the definition of w,, we have
G(w,) <G(0) =
ss0  Therefore, we have e*1%+ll2 < thatis, ||W. |2 < log(n)/b < Wiax.
481 O

a2 We now consider (w¢)¢>o.
483 Lemma B.5. Suppose Assumptions[I|[2] and[3|hold. Then for every t > 0, it holds that

Wit > wy + % min {1, e T . G(v_vt)}7

Wiy1 < Wy + 1 - min {vn, vee M G(Wy) + e H(Wt)}-

484 Proof. Recall that

n —T;We— x;rv’vt
Wi41 = Wy 7ﬂ'va(wt,Wt), V U}t,Wt E 1+ riwi— T *Tj.
e

; Wi
=1
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as5 We only need to provide upper and lower bounds on —V,, L(w;, W ). The lower bound is because:

B e
—VwL(wtaWt) Z 1+ e Tiwe— —x Wy "

ef:viwt X Wt
>Z o since . > ~ P
22y prr——— Z; since z; > v > 0 by Definition[T]
1€
efthf)’(;rv’vt ) ‘
= Z ﬁ e simce r; = 7y fori € S
- tT A t
cs 1 te
> in{1, e 7eX W ince ¢ /(1 + ¢') > 0.5min{1, '
25" min{1, e Wy since ' /(1 +¢€') > 0.5min{1,e"}
i€S
T -
> % mln{l e YW -Ze‘xz “’t}
€S
— 0 1 YWt . G(w
=3 min {1,e -G(wy)}
485 The upper bound is because:
n e—xiwt—i:v_vt
_va(wt’Wt) = Z 1+ e—zlwt—ijv_vt, "
i=1
—X] Wy e~ Tiwe—%] Wi
I S T
—T;we—X,; Wi —Twe—X,; Wy
s lte 75 1+e
e 'ywt—ic;rv’vt e ﬂiiwt—i;rWt
< >
< —— —
—yws—X,; Wt —xTiwi—X,; W
ies Lte igs LTe€
since z; =~y fori € S, and z; < 1fori € [n]
T
S’y-Zmln{l e YW X W’}—I—Zmln{l e WeTiTR Wi}
€S ¢S

since ' /(1 + e') < min{1, "}
<7 Zmin {1, e YT Wt} + Zmin {1, efew“’f‘iT"f"f}
ies i¢s
sincex; >0 > yfori ¢ S

S,y_ze—'ywt ’Tv’vt_’_z —Owy — fc Wy

i€S ¢S
= e TV G(Wy) + e 0 - H(wy).

487 We have completed the proof. O
483 Lemma B.6 (A lower bound on wy). Suppose Assumptions|2}[I} and[3|hold. Then it holds that

1 2
wtz-log(l—i—m-t), t>0.
¥ 2

489 As a direct consequence, it holds that

e Tt <L # t>0.
490 Proof. Observe that
W1 > wy + % min {1,e” """ - G(wy)} by Lemma[B23)]
> wy + % ~min {1,e” 7" - 1} by Definition[3]
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491

492

496

497

500

501

502

503

504

> we + % ceT e since w; > 0 by Lemma[B1]  (20)

which implies that w;, is increasing. Furthermore, we have
YW+l _ oYWt — VWi (e'Y(wt+1_wt) _ 1)

> e y(wipr — wy) since e’ — 1 >t fort > 0, and w; 1 > wy
2
ny
> 5 by @
which implies that

2
e’th, > e’on + "7'77 -t
- 2

2
=1+ % - t. since wy = 0
We then get
1 m?
wy > —-log |1+ —-t), t>0.
¥ 2
O
Lemma B.7 (An upper bound on w;). Suppose Assumptions[I} 2} and[3|hold. Then it holds that
1
wy < S log ((env2Gmax + enyHmax) - (t + 1)), t>0.
As a direct consequence, it holds that
eI > 1 , t>0.
(enyQGmax + en’yHmax) (t+1)
Proof. Observe that
W1 —wy <y - €T G(Wy) + - e 0 H(wy) by Lemma[B.3
<npy-e 7 G(Wy) + e 7 H(Wy) since 6 > ~ by Definition[T]
<7 (VGmax + Hmax) - €~ by Definition 3] 21)
Let
tp := min {t Tyn - (’meax + Hmax) e T < 1}.
Recall that w, is increasing according to (20). So we have
1
for t <to,  wy < = -1og (17’ Gmax + 17Hmax); (22)
Y
for t > tg, n - (maax + Hmax) ceT W < 1. (23)
(21) and 23) together imply that
for t > to, 0<v (wg1—w) <1 (24)

Then for t > tg, we have
VWL _ o YWe YWy (ev(wt+rwt) _ 1)

< et e y(wirr — wy) by @4) and that e’ — 1 <e-tfor0 <t <1
< eny?Gmax + enyHmax, by ).

which implies

YVt < VWi (67]'}/2Gmax + 677")/Hmax) (t —to)
< 7?Grnax + 1Y Hmax + (€17 Gmax + €n7Hmax) - (£ — to) by @2
< (enfyszax + enyHmax) - (t+1).

Therefore, for t > t;, we have
1
wy < o log ((emQGmaX + enyHmax) - (t + 1))-

Note that the above also holds for 0 < ¢ < ¢, according to (22). We have completed the proof. [J
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506
507

508
509

510

511

512

513

514

B.4 Convergence of GD in the Non-Separable Subspace

We show that the vanilla gradient on the non-separable subspace, V L(w;, Wy ), can be understood as
the gradient on a modified loss with a rescaling factor, e~ 7"tV G (W), ignoring higher order errors.

Lemma B.8 (Gradients comparison lemma). Suppose Assumptions|l} 2} and[3|hold. Then it holds

that

HV L(ws, wy) — e 7 - VG (W H2 <e we. G2 e % Hpae, t>0.

max

As a direct consequence, for every vector v € R~ it holds that

(V, Ve L(w, wy)) < e - (v, VG(Wy)) + ||[V]|2 - (e7>7 - G}

Proof. Recall that

V\TVL(wtv Wt) =

— Wt T4 7W:5€7‘,

By the triangle inequality, we have

HV L U}t,Wt) —

€S

<

€S

€ 'waVG Wt H2

n

>

— 1+67wtmi7\7v;rf(i
1=

5 (i

W, X;
1 +e wtwi—v’vjii

5 (v

W, X;
e
1 + e WtTi—Wy X

6—9wt : Hmax) .

max

The (&) term can be b

(%) =

i€S

— 6—2’Yﬂ)f, .

< e—2’ywt . Z

i€ES
S 672'ywt . 2
i€S

S 6—2’th . Z

i€S

IN

E <e’ywtw;rxi _
e—'ywt—v’vjii

1
; =

5 1+e ywe—w, %;

(%)

ounded by

1

1 + e—'ywt—v’v:ii

1

1+ e*’th*W;rii

e—2v*vjic,-

2
_ T —
6727wt . ( § e Wi xi>

€S
— e—2fywt . G(V_Vt)Q

< 6—2711),, . GQ

— m

The (©) term can be b

ax"*

ounded by

T
e~ WtTi— w, X;

_T—
e YW= W, X

|55

14 e~ weTi— w;rxI

_ T —
e*’th*Wt Xi

1+ e*’th*WtTii

ii E € wt i i'.
€S
e~ WiTi— wt X;
T Wz X
—WtT; — Wy X
‘g5 +e 2
efwtiltifw;ri(i
"X + Z]. wix; —W, X "X (25)
e Wt i Wy i
2 igs LT 2
(@)
> - X; since x; =y fori e S
2
. ii
2
. 6_2W:ii . )_(’L
2
—ow %, = 1 1 1
e 2% Xi . ||%;]l2 by triangle inequality
_ow) % . - T 1
LT 2W X since ||x;||2 < 1 by Assumplmn
by Definition 3]
2
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515

516
517

518

519

520

521

522

523

524

— WL — wt X

< Z rp— 1%l by triangle inequality
e~ WiTi— w;rxb
< Z TR——_ since ||x;|l2 < 1 by Assumption
¢S
S Ze—wtm—v_v;rij
¢S
< e fwe Z e*WtTii x; >0 > ~for §Z S
¢S
= e_ewt . H(W)
< e~ 0wt - Hppax by Dcﬁniti()nlzl

Bringing the bounds on the () and (V) into (23)), we obtain
||V‘7"L(wt’ Wt) —e T vG(Wt)HQ < e G?nax + eiewt “Hpax, t2>0.

‘We have shown the first conclusion. The second conclusion follows from the first conclusion: for
every v € R4-1,

(V, Ve L(we, W) = e 7 - (v, VG(Wy)) + (V, Ve L(wg, wy) — e 7 - VG(Wy))
e 1 (v, VG(We)) + |[Vl2 - Ve L(wg, wi) — e - VG(Wy) |2
S e (v, VG(W)) + V]2 (6727 - Gl e - Hunax).
We have completed the proof. O

IN

Lemma B.9 (A gradient norm bound). Suppose Assumptions|[I| 2} and[3|hold. Then it holds that
|V L(we, we)||, < €7 - (Gmax + Hmax),  t > 0.

Proof. The inequality is because:

n — W T — \X/Ifq
Vs, L(wy, %) |, = HZ %
Wi ’ 2 14+ ewewi—Wi % "
i=1
e~ WiTi— w;rxZ

< Z Tp————— 1% |2 by triangle inequality

2

— W T — Wthl

e . .
< E since ||X;]|2 < 1 by Assumption ]
1 + e wiTi— w, X

n
< § e—wtzi—wr)’(i

i=1

7T7. . ~ .

< e YW E e W Xi since x; > 7 fori € [n]

— e YWt (G(wt) + H(Wt))
S ei’ywt : (Gmax + Hmax)-

The next lemma shows that the function value is “non-increasing” ignoring higher order terms.
Lemma B.10 (A modified descent lemma). Suppose Assumptions[l} 2] and[3|hold. Then it holds that

(W) < G(W2) 200+ 77) - O+ (G + Ho) - (€777 7). 1> 0.
As a direct consequence of the above and Lemma(B.6| it holds that

G(Wer) < G(y) + co - 21 + 1) Grmax - ((t e 1)1—%), k>0, t>1,
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525 where /vy > 1 by Deﬁnitionand co is a polynomial on {e”, e el/b

526 independent of t, given by

0 2 \? [/ 2\
o= (G + Ho) - o - max () | () |
o= )= { my? my?

527 Proof. Note that

2

IV2G@)ll = || D7 e ]
i€S 2

< Z e BB by triangle inequality
€S

< Ze*WTii since ||X;||2 < 1 by Assumption ]
€S

= G(w).

see  Recall that [|[W;||2 < Wiax. So we have
sup [V2G(We)2 < sup  [VEG(W)[a < sup  G(W) =: Gruax. (26)
t 1|2 < Winax 1% ]2 < Winax

529 Then we can apply Taylor’s theorem to obtain that

Gmax

G(Wiy1) < G(We) + (VG(Wy), Wipr — Wy) + Wi — w3 by (26)

Gmax _
=G(w) —n-(VG(Wy), Vi L(wg, We)) + 5 IV L(we, we)ll3-

530 Next we use Lemrnawith v = —VG(w,) to get The cross-term is bounded by
—(VG(Wy), Ve L(we, wy))
< —e 1 VG |2+ VG (W) 12 - (€727 - G + €% - Hina)
< —e T |VG(W)||2 A+ G - (€727 - G+ €70 - Hya). by 9

ss1 Using the above and the gradient norm bound from Lemma[B.9] we get that
G(Wis1) < G(Wy) —ne - | VG(Wy)||,
e P G e Grnax - Hinax + 176727+ (Giax + Hinax)”
< G(Wy) 4 ne > G+ 1€ - Ginax - Hinax + 177" - (Gimax + Hax)”
<GW) +20+10?) - Gax * (Ghax + Hl o) - (67277 +e701),
532 where in the last inequality we use that Giax > Gin > 1 by Deﬁnition@

533 From the above we have

s+k
G(Weik) < G(We) + 200 +0%) - G (G + Hina) - D (€727 7). @7)
s=t
53 The summation is small by Lemma[B.6] because
s+k
Z (6—2711)3 + e—Gws)
s=t
s+k 9 2 stk 9 %
< Sz:; (2—H7’)/QS> + Sz:; (2+77’728) by Lemma|B.6|
9 2 s+k 9 % s+k )
() B ()
() X (i) 2

s=t s=t
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535

536

537
538

539

540

541

542

544

545

546

547

2 \2 2 \7 (t—1)'7%
< <2> (t— 1)_1 + <2> C—— by integral inequality
m m g1
2 0/~
2 2 0
< max (2> , <2> -—-((t—l)_l—i-(t—l)l_%).
my my 0—v
Inserting the above into (27) completes the proof. O

We now prove the convergence of the iterates projected on the non-separable subspace.

Lemma B.11 (Convergence on the non-separable subspace). Suppose Assumptions|[I| 2] and[3]hold.
Then it holds that

Proof. The proof is conducted in several steps.

Step 1: one-step function value bound. Observe that
[Wip1 = Wall3 = [We = W3 + 2 (Wi — W, o1 — W) + [ Wi — Wef3
= |[We — W ll5 — 20 - (Wi — W, Vo L(wy, We)) + 07 - [V L(wy, W) |3
For the cross-term, we apply Lemma B8] with v = — (W, — W..) to obtain
— (Wi — Wi, Vg L(wyg, Wy))
—e T (W — W, VG (W) + [ Wy — W2 - (e—Q’th _G2 4 e—fwe Hmax)
—e TV <‘7Vt - W*v G( t)> ( max T ||W*H ) ( —2ywe anax + eiawt . Hmax)
S —e T <Wt W*7 VG( )> + 2I/Vmax : ( 2 G?nax + e_ewt ’ Hmax)7

INIA

where the second inequality is by Lemma[B.3] and the last inequality is by Lemma[B-4} Using the
above and the gradient norm bound from Lemma[B:9] we get that

[Wer = Wl < [[We = W[5 — 20e ™7 - (Wi — W, VG(W))

+4n - Wiax - (672’th G?nax + e Hmax) (28)
+ 772 . 672’““t . (Gmax + Hmax) .

By the convexity of G(-), we have

(W — W, VG(Wy)) > G(wy) — G(W.). (29)
So we get
2 (G(31) — G(w.)) < 2ne™ T - (s, — ., VG(w,) by E9)
< Wi = W[5 = [[Wegr — w3

+ 47] : VVmax : ( 727“& G2 + eiewt : Hmax)

max

+ 772 eI (Gmax + HmaX) by @
< Wi = Wll3 = [Wer — w3
+ 677 . Wmax ' (G?nax + Hr%lax) : ( ~2rws + e—th)7 (30)

where we use 17 < Winax := max{4n/b,nn?/b} + nn in the last inequality.
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548 Step 2: the sum of function values stays bounded. Observe that

T T 9 2 T 9 2
—2ywy —Ow; N .
e +e < — | + _— by Lemma |[B.6}
( )_Z(2+n’y2~t) ;(2—#7772-15) y

t=2 t=2
2\’ & 2\ s
<= - t‘2+<) Syt
(7772) tz:; ny? 2
2 A
<<2> .1+(2>”. 1
—\m? ny? 6/y—1
2 \?2 ( 2 )9/” )
<max{ [ =), (= L (31)
{(7772) m? 0—~

s49  Taking telescope summation over (30), we obtain

T
22776771“ (G(wy) — G(wy))

< IWa = Will3 = W1 — .3

(G*Q’th + 670wt) by

M=

+ 67] - Wax - (G?rnx + H1211ax) :
t

2 2 2 0/~ 0
S QWmaX +6n- VVmaX ! G?nax + Hrznax - max <> ’ <> h A by
! ( ) { Ul Ul 0 — ED

||
N

= 2Wmax + 18Wmax - Co,

0 2\2 7/ 2\
¢ Gilax + anax . ——— - max (> , (>
o= = g { m? m?

1/b e?/7} and is independent of ¢) defined in

s50 where

1

ss1 is a constant (a polynomial on {e”, ", e'/?, %, 7= %,

552 Lemma|B.10

553 Step 3: function value decreases, approximately. For T >t > 1, we have

G(wr) < G(wy) +¢o - 2(1 + 17)Gax - ((t —)7 (- 1)1_%), by Lemma [B-10]

554 which implies that

2pe” TVt . (G(W — G(w.))
< 2pe YWt (G ) +2ne™ " - cp - 2(1 4+ 1) Gmax - ((t — 1) (- 1)1_%)
< 2ne” 7 (G(Wy) w.))
+2n- ﬁ -2(1 4+ 1)Gmax - ((t 1) (- 1)17%) by Lemma[B-q]
8(1
< e - (G(w) — G(W.)) + (;")CO (=D -1, (32)

555 Step 4: the last function value is small. Taking summation of (32) over t = 2,...T, we get

T
227}67771)5 (G(wr) — G(W.))
t=2

<3 2me 7 (G(wr) — G(w.)) + 1+77 > ( (t—1)24(t—-1)"
t=2

2
N———
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T
<D 2me 7 (G(We) = G(W)) + 8(1;77)60 (2414 9/717—1)

t=2

by I

8(1 30
< 2VVmax + 18Wmax “co + ( +277)CO ’ '
v 0—~

556 We also have
T

a 1 1
Z e~ Tt > . by Lemma|B.7
= eny?Gumax + enyHmax —t+l
1
- (log(T + 1) — log(3))

>
~ ey Gmax + €0V Hmax

s57  Putting these together, we get

ey Gmax + €77 Hmax
log(T + 1) —log(3) ’

(V_VT) - G(V_V*) < 2Wmax + 18Wmax “co + 8(1 + 77)C0 . 30 .
v? 0—~

G
s58  where
0 2 \? [/ 2\
co:=n- (G2, +H2,.) ——  max () , ()
(Cina o) 0—~ m? m?
1/b L 1,66/7}.Sof0rT23,wehave

559 isapolynomialon{e”,e”,e ,%,m,;
1

G(WT) — G(W*) < 10g(T)

, %, ﬁ, %, 60/7} and is independent of 7.

-cy,

1/b

s60 where c; is a polynomial on {e", e, e
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C Proofs Missing from the Main Paper

C.1 Proof of Theorem [d.1]

Proof of Theorem Theorem [{.1]is a consequence of our analysis in Appendix [B]

[(C)is because of Lemma[B.3]
[(B)]is because of Lemma[B.6]

is because of Lemma[B.11]
[(A)]is because of the following:

L(wy) = Zlog(l + exp(—wpz; — W/ x;))

=1

n
< Z exp(—wyx; — Wthi)

1=1
n
< exp(—w; - 7) - Y exp(—w,/ x;)
=1

< c/log(t),

where the last inequality is because that

€ —W¢ * < —
Xp( tﬁ)/)—2+7772t

by Lemmaand that 37", exp(—w, x;) is uniformly bounded by a constant by Deﬁnition O

C.2 Proof of Theorem
Proof of Theorem The GD iterates can be written as
Wi = we 1y e (e ), (33)
Wyp1 = Wy —ne” "t (e_ﬁ" — eﬁ"’). (34)
We claim that: for every ¢ > 0,

1. Wt 2 0.
2. || > 1.

3. |7I]t‘ Z Q’Yﬂ}t

We prove the claim by induction. For ¢t = 0, it holds by assumption. Now suppose that the claim
holds for ¢ and consider the case of £ + 1.

1. w1 > 0 holds since wy41 > w; by (33) and w; > 0 by the induction hypothesis.

2. |wyy1| > 1 holds because

T — €™ —|wy] by )

|Wi 1] > me” 7 - e

| | t

e . , € ,
> e . - |y since |w;| > 1 and that e’ —e™* > — fort > 1
(35)
> 2el@tl=ywe _ | ¢ since ) > 4
. . w
> 2elPt/2 _ |y since u > yw;
> 1. since 2¢/2 >t +1fort e R
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sso 3. To prove that |@s41| > 2ywy, first observe that

wepr = we+ny-e M (e +e)

<wptny-e 2. el (36)
581 Then we have
|0 11] — 2ywii1
> ne TVt ? — || — 27<wt +ny-e 2. ew‘|> by (33) and
= g (1 —82) - el®l=rer gy | — 2y
> el@el=ywe _ || — 2ywy since 77 > 4 > 2/(1 — 877)
> el@el = _ |, since w; > 0
> el@el/2 _ |04 since @ > ywy
> 0. since '/? > tfort € R

s82  We have completed the induction.
ss3  Finally, we prove the claims in Theorem[4.2]using the above results.

584 [(B)|is because of
Wip1 > we +1y-e” T

sss  from (33).

s86  We have already proved [(C)|by induction.

ss7 To show [(D)] without lose of generality, let us assume w; > 0, then

ey < wy —me” TV |eT T — e by G4
el@l . t t e
< wy —ne TV 5 since |w;| > 1 and thate’ —e™ " > — fort > 1
< 1, — 2el@rlmrwe since n > 4
_ . W
< w; — 2¢l®tl/2 since ‘—)/| > ywy
< —1. since 2¢t/2 >t+1fort e R

588 We can repeat the above argument to show that w4, > 0 if w; < 0.
ss9  To show|(A)| we apply w; — oo and that |w;| > 2vyw;:

L(wg,w) = e 7%t (e_wt + ewf)
67’7wt . e‘wtl

et — oo.

AV

590 We have completed all the proofs. O
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D Experimental Setups

Neural network experiments. We randomly sample 1, 000 data from the MNIS dataset as the
training set and use the remaining data as the test set. The feature vectors are normalized such that
each feature is within [—1, 1].

We use a fully connected network with the following structure
784 — ReLU — 500 — ReLU — 500 — ReLU — 10.
The network is initialized with Kaiming initialization. We use the cross-entropy loss.
We consider constant-stepsize GD with two types of stepsizes, n = 0.1 and n = 0.01.
The results are presented in Figure|[T]
Logistic regression experiments. We randomly sample 1, 000 data with labels “0” and “8” from

the MNIST dataset as the training set. The feature vectors are normalized such that each feature is
within [—1, 1].

We use a linear model without bias. So the number of parameters is 784. The model is initialized
from zero. We use the binary cross-entropy loss, i.e., the logistic loss.

We consider constant-stepsize GD with three types of stepsizes, n = 10, n = 0.1, and = 0.01.
The results are presented in Figure

*http://yann.lecun.com/exdb/mnist/
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