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1 S1. Experimental procedure

400 nm thick PbZr0.27i0.803/30nm Ba0.5570.5 RuO3 /N dScO3 thin films were grown using
pulsed laser deposition. The films have been the subject of prior studies[1][2][3]. These films exist in
a typical tetragonal ferroelectric phase; however, NdScO3 imposes a large tensile strain that drives
strain-induced spinodal instability. The result is a hierarchical domain structure that is a mixture
of ¢/a/c/a and al/a2/al/a2 domains[4]. This results in a single film with large variations in
piezoresponse and switching mechanisms. Within the primary out-of-plane polarized ¢/a/c/a is
a large vertical piezoresponse and classical ferroelectric switching mechanisms. Conversely, there
is suppressed vertical piezoresponse in the al/a2/al/a2 domains. Since this material is at an
energetic degeneracy between the ¢/a/c/a and al/a2/al/a2, the application of bipolar-triangular
switching waveforms results in a two-step, three-state ferroelastic switching process. In these films,
the topography has a sawtooth-like structure with an amplitude of 4 nm and a periodicity of 900 nm
because of the tetragonality and large difference in crystallographic orientation of domain variants.
Furthermore, the highly asymmetric elastic modulus tensor increases elastic modulus variations by up
to 23%. Further details regarding the structure, properties, and switching mechanisms of this material
can be obtained in prior reports[1][2][3]. The mixed-phase PbZ10.27%0.803 provides an ideal
model system to stress test Band-excitation piezoresponse force microscopy (BE-PFM) due to the
highly variable piezoresponse, switching mechanisms, and elastic modulus. Significant variances in
local piezoresponse and tip-surface contact within the dataset shift the cantilever resonance frequency,
necessitating the BE-PFM. The dataset used in this work, an original creation of the authors, has been
the subject of prior reports, and publicly released under the open source creative commons attribution
4.0 License[1].

Briefly, in the original studies, BE-PFM Polarization Spectroscopy (BE-PS), in a square 60x60 grid
was conducted using a conductive cantilever mounted tip (Figure 1a). To measure the piezoresponse
a small-signal (1 V) BE waveform was applied to excite the cantilever at a band of frequencies
(bandwidth = 200 kHz), near the cantilever resonance (Figure 1b-c). The resulting response was
detected using a quadrant photodiode and processed using a data acquisition system sampling at (4
MS/s). An onboard FPGA was used to conduct real-time fast-Fourier transform, resulting in the real
and imaginary components of the cantilever response (Figure 1d). This is commonly visualized as the
magnitude and phase of the response (Figure 1e). BE is crucial for these measurements as it minimizes
effects from changing tip-sample contact resonances that can alter the observed response, enabling
consistent qualitative measurements. Two sequential bipolar-triangular-switching waveforms were
applied to switch the sample while measuring the piezoresponse in the on and off-field state (Figure
1f). Following fitting the cantilever response to a simple harmonic oscillator (SHO) model, the
piezoresponse amplitude, phase (A), phase (¢), cantilever resonance frequency (w), and dissipation
(¢) can be determined. By computing the optimum rotation angle (#) that maximizes the cosine
function, the piezoelectric hysteresis loops at every pixel can be calculated using P = Acos(¢ + 0)
(Figure 1g). To extract further insight from the piezoelectric hysteresis loops, it is common to fit them
to a 9-parameter empirical function[5]. This fitting function extracts parameters related to the shape
of the loop. This function is merely empirical and does not have a solid physical basis.

2 S2. Least Squares Fitting method

Conventionally, the fits are computed using Least Square Fitting (LSQF) method min,, f(z) =
0.5 2?501 p(f(z)?) s.t. Ib < z < ub based on the Jacobian using the SciPy implementation[6].
These algorithms are subject to many pitfalls. They require initial priors in the form of ‘guesses.’
Designing robust guessing algorithms is challenging, particularly in real experimental data with low
signal-to-noise (SnR). When the guesses are incorrect, algorithms can get stuck at a local rather than
ideal global minimum.

3 S3. Computational benchmarks for piezoelectric hysteresis loops fitting

The equations used for this fitting are as follows:
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Figure 1: Schematic diagram of band-excitation piezoresponse force microscopy switching spec-
troscopy (BE-SS) a Artistic render of an AFM tip applying an electric field to the surface. b Band
of excited frequencies excited. The dashed line shows the cantilever resonance frequency. ¢ Band-
excitation waveform used to excite the cantilever in time domain d Fast Fourier transform of a

single-cantilever resonance during band-excitation piezoresponse force microscopy — shown as real

and imaginary components. e Magnitude spectrum showing the amplitude and the phase of cantilever
resonance. f Bipolar-triangular waveform used to switch the ferroelectric. The inset shows where the
band-excitation waveform was applied in both the voltage-on and voltage-off states. g Example of a

typical piezoelectric hysteresis loop obtained during BE-SS.
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ADAM, a first-order method, didn’t yield satisfactory results even after 20+ minutes. AdaHessian, a
second-order method, performed slightly worse due to computational complexity.

A Trust Region (TR) CG optimizer outperformed ADAM and AdaHessian, achieving an order of
magnitude lower MSE in just 300 seconds (0.00426+0.00025 with a batch size of 256). After 650
epochs, similar to AdaHessian, it reached 0.003 MSE.

We visually compared DNN and LSQF reconstructions for best, median, and worst cases. TR-
optimized DNN performed better in the worst-case scenario and showed equivalent performance in
the best and median cases.

We used violin plots to compare NN and LSQF parameter distributions, demonstrating that NN
consistently exhibited narrower, more Gaussian-like distributions with fewer outliers. The DNN’s
superior performance can be attributed to reduced sensitivity to noise, perturbing initial guesses and
causing local minima. Trust Region CG outperformed ADAM threefold in predicting the correct loop
shape. We plotted parameter maps using LSQF and TR-optimized neural networks, observing key
domain structure features and their visual similarity.

Table 1: Piezoelectric hysteresis loops fitting results with the deep neural network predictions
performed for different batch sizes on Tesla P100-PCIE GPU for 300 seconds each.

Optimizer Batch size # of epochs Reconstruction Loss (MSE)  Params Loss (MSE)
64 8.4+0.5 0.00496+0.00042 0.5897+0.0789
128 16.0+£0.6 0.00452+0.00027 0.5235+0.0393
Trust Region CG 256 27.6x1.6 0.00426+0.00025 0.4645+0.0268
512 51.4+13.8 0.00396+0.00026 0.4875+0.0322
1024 106.0+11.2 0.00389+0.00030 0.4366+0.0208
64 292.0+1.0 0.00975+0.00132 2.55927+0.88428
128 500.0£0.0 0.00803+0.00027 2.28119+0.63473
AdaHessian 256 647.0£2.4 0.01155+0.00361 3.61001+0.70472
512 735.0+7.4 0.01340+0.00537 3.01150+1.38619
1024 387.0£0.0 0.02671+0.01630 4.03416+1.54232
64 560.0+125.6 0.00774+0.00042 2.41973+1.02710
128 937.0+233.7 0.00835+0.00106 2.65518+0.32084
ADAM 256 1568.0+402.3 0.00830+0.00121 3.13807+0.71523
512 2537.0+£684.7 0.01134+0.00333 2.95574+1.05801
1024 3214.0£937.2 0.01012+0.00166 3.24794+0.50383

4 S4. Computational benchmarks for Simple Harmonic Oscillator (SHO)

fitting

We conducted comprehensive experiments to assess the computational performance of both LSQF
and DNN models across a range of practical scenarios, each with varying hyperparameters. It’s worth
noting that designing benchmark studies in this context is a complex endeavor due to factors such as
data variability, optimization techniques, and computing hardware constraints.

While both LSQF and DNN fitting methods for cantilever resonance responses exhibit remarkable
parallelism, there are constraints on the degree of throughput enhancement achievable through



parallelization and practical hurdles in the implementation process. Nevertheless, it’s noteworthy
that both LSQF and DNN fitting techniques can yield results quickly enough to inform subsequent
experiments, typically taking only a few hours. Notably, DNNSs, once trained, simplify computations
during inference to highly parallelizable matrix multiplication operations, resulting in lightning-fast
processing.

Our benchmarking commenced with evaluating LSQF’s SHO fits using the BGLib Python imple-
mentation, leveraging parallel processing capabilities. These benchmarks involved fitting the entire
dataset comprising 1,382,400 spectra on a cluster of four 2.3 GHz CPU cores. The fitting process
was completed in approximately 18+1 minutes, equating to a rate of 1280 fits per second. It’s worth
mentioning that single-fit latencies, crucial for real-time analysis, were measured at the millisecond
per fit level.

Subsequently, we turned our attention to benchmarking the performance and speed of the DNN. All
experiments were conducted on Google Colab, utilizing a single P100 PCIe GPU. Model training
entailed a 70/30 train/test split, with batch sizes ranging from 64 to 1024, doubling at each interval,
and all models were trained for five epochs.

Table 2: SHO fitting results with deep neural network predictions performed for different batch
sizes using AdaHessian optimizer on Tesla P100-PCIE GPU. Results were computed by training and
testing the inference of the model on 10 different random seeds (from 1 to 10) and by choosing 4 best
performances.

Batch size  Training time (s) Reconstruction Loss (MSE)  Params Loss (MSE)  Inference time (fit/s)

64 899.6x10.1 0.047+£0.002 0.132+0.011 23,866.3+341.8
128 473.944.2 0.048+0.006 0.3+0.12 21,141.6+134.1
256 312.9£13.3 0.047£0.005 0.133+0.013 10,341.3+203.2
512 286.5+6.4 0.047+0.003 0.138+0.011 204,081.6+37,515.0
1024 314.3£2.4 0.051+0.005 0.139+0.140 476,689.7+£113,497.5

Table 3: SHO fitting results with deep neural network predictions performed for different batch
sizes using ADAM optimizer on Tesla P100-PCIE GPU. Results were computed by training and
testing the inference of the model on 10 different random seeds (from 1 to 10) and by choosing 5 best
performances.

Batch Size Training Time (s) Reconstruction Loss (MSE)  Params Loss (MSE) Inference Time (fit/s)

64 309.6+1.4 0.0422+0.00021 0.1174+0.0056 30,389.5+453.6
128 170.6£1.1 0.0424+0.00012 0.1168+0.0029 57,951.5+583.9
256 109.1+0.8 0.0425+0.00020 0.1172+0.0036 105,380.7£1706.1
512 66.2+0.1 0.0429+0.00062 0.1169+0.0051 146,983.0+£607.5
1024 58.2+0.2 0.0432+0.00009 0.1181+0.0061 174,417.8+519.2

We employed the Adam optimizer, a momentum-based first-order optimization method for model
evaluation. The results from this evaluation are detailed in the Table 3.

Additionally, we examined the DNN'’s training speed when utilizing AdaHessian, a second-order
optimization method (see Table 2). Notably, training speed was significantly influenced by the batch
size, with smaller batches resulting in substantially slower training. This is attributed to increased
computational instructions, reduced parallelism, and increased minibatch updates. However, with a
sufficiently large batch size (in this case, 256), the model converged to an acceptable Mean Squared
Error (MSE) comparable to LSQF results. When assessing fit parameters, a more critical metric,
we calculated the MSE loss between LSQF and DNN fits. Irrespective of the batch size, substantial
differences were observed in the fit parameters between LSQF and DNN fits, primarily attributed to
inadequacies in LSQF initialization, as indicated by our comprehensive analysis.

Furthermore, we evaluated inference latency as a function of batch size. Notably, as the batch size
reached a sufficiently large value (in this case, >128), there were significant reductions in inference
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Figure 2: SHO fitting results of DNN in comparison with LSQF method’s results. Best, median, and
worst predictions of the LSQF method.



latency due to increased parallelism. For instance, with a batch size 1024, the model achieved a
remarkable throughput of approximately 480,000 fits per second, completing the entire dataset in
less than 3 seconds. This represents a speed improvement of more than two orders of magnitude
compared to LSQF.
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