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Abstract

Recent work claims that large language models display emergent abilities: abilities
not present in smaller-scale models that are present in larger-scale models. What
makes emergent abilities intriguing is two-fold: their sharpness, transitioning
seemingly instantaneously from not present to present, and their unpredictability,
appearing at seemingly unforeseeable model scales. Here, we present an alternative
explanation for emergent abilities: for a particular task and model family, when ana-
lyzing fixed model outputs, emergent abilities appear due to the researcher’s choice
of metric rather than due to fundamental changes in models with scale. Specifically,
nonlinear or discontinuous metrics produce seemingly emergent abilities, whereas
linear or continuous metrics produce smooth, continuous, predictable changes in
model performance. We present our alternative explanation in a simple mathemati-
cal model, then test it in three complementary ways: we (1) make, test and confirm
three predictions on the effect of metric choice using the InstructGPT/GPT-3 family
on tasks with claimed emergent abilities; (2) make, test and confirm two predictions
about metric choices in a meta-analysis of emergent abilities on the Beyond the
Imitation Game Benchmark (BIG-Bench); and (3) show how to choose metrics to
produce never-before-seen seemingly emergent abilities in multiple vision tasks
across diverse deep network architectures. Via all three analyses, we provide
evidence that emergent abilities disappear with different metrics or with better
statistics, and may not be a fundamental property of scaling AI models.

1 Introduction

Emergent properties of complex systems have long been studied across disciplines, from physics to
biology to mathematics. The idea of emergence was popularized by Nobel Prize-winning physicist
P.W. Anderson’s “More Is Different" [1], which argues that as the complexity of a system increases,
new properties may materialize that cannot be predicted even from a precise quantitative understand-
ing of the system’s microscopic details. Recently, the idea of emergence gained significant attention
in machine learning due to observations that large language models (LLMs) such as GPT [4], PaLM
[7] and LaMDA [35] exhibit so-called “emergent abilities" [38, 9, 33, 4] (Fig. 1).

The term “emergent abilities of LLMs" was recently and crisply defined as “abilities that are not
present in smaller-scale models but are present in large-scale models; thus they cannot be predicted by
simply extrapolating the performance improvements on smaller-scale models" [38]. Such emergent
abilities were first discovered in the GPT-3 family [4]. Subsequent work emphasized the discovery,
writing that “[although model] performance is predictable at a general level, performance on a
specific task can sometimes emerge quite unpredictably and abruptly at scale" [9]. These quotations
collectively identify the two defining properties of emergent abilities in LLMs:

1. Sharpness, transitioning seemingly instantaneously from not present to present
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Figure 1: Emergent abilities of large language models. Model families display sharp and unpre-
dictable increases in performance at specific tasks as scale increases. Source: Fig. 2 from [38].

2. Unpredictability, transitioning at seemingly unforeseeable model scales

These emergent abilities have garnered significant interest, raising questions such as: What controls
which abilities will emerge? What controls when abilities will emerge? How can we make desirable
abilities emerge faster, and ensure undesirable abilities never emerge? These questions are especially
pertinent to AI safety and alignment, as emergent abilities forewarn that larger models might one day,
without warning, acquire undesired mastery over dangerous capabilities [34, 12, 19, 20].

In this paper, we call into question the claim that LLMs possess emergent abilities, by which we
specifically mean sharp and unpredictable changes in model outputs as a function of model scale
on specific tasks. Our doubt stems from the observation that emergent abilities seem to appear only
under metrics that nonlinearly or discontinuously scale any model’s per-token error rate. For instance,
as we later show, > 92% of emergent abilities on BIG-Bench tasks [33] (hand-annotated by [37])
appear under either of these two metrics:

Multiple Choice Grade def
=

{
1 if highest probability mass on correct option
0 otherwise

Exact String Match def
=

{
1 if output string exactly matches target string
0 otherwise

This raises the possibility of an alternative explanation for the origin of LLMs’ emergent abilities:
sharp and unpredictable changes might be induced by the researcher’s choice of measurement, even
though the model family’s per-token error rate changes smoothly, continuously and predictably with
increasing scale. Specifically, our alternative posits that emergent abilities are a mirage caused
primarily by the researcher choosing a metric that nonlinearly or discontinuously deforms per-token
error rates, and secondarily by possessing too few test data to accurately estimate the performance of
smaller models, thereby causing smaller models to appear wholly unable to perform the task.

To communicate our alternative explanation, we present it as a simple mathematical model and
demonstrate how it quantitatively reproduces the evidence offered in support of emergent abilities of
LLMs. We then test our alternative explanation in three complementary ways:
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Figure 2: Emergent abilities of large language models are created by the researcher’s chosen
metrics, not unpredictable changes in model behavior with scale. (A) Suppose the per-token
cross-entropy loss decreases monotonically with model scale, e.g., LCE scales as a power law. (B)
The per-token probability of selecting the correct token asymptotes towards 1. (C) If the researcher
scores models’ outputs using a nonlinear metric such as Accuracy (which requires a sequence of
tokens to all be correct), the metric choice nonlinearly scales performance, causing performance
to change sharply and unpredictably in a manner that qualitatively matches published emergent
abilities (inset). (D) If the researcher instead scores models’ outputs using a discontinuous metric
such as Multiple Choice Grade (akin to a step function), the metric choice discontinuously scales
performance, again causing performance to change sharply and unpredictably. (E) Changing from a
nonlinear metric to a linear metric such as Token Edit Distance, scaling shows smooth, continuous
and predictable improvements, ablating the emergent ability. (F) Changing from a discontinuous
metric to a continuous metric such as Brier Score again reveals smooth, continuous and predictable
improvements in task performance. Consequently, the observation of "emergent abilities" can be
explained by the researcher’s choice of metrics, and does not require fundamental changes in model
family behavior on specific tasks with scale.

1. We make, test and confirm three predictions based on our alternative hypotheses using the
InstructGPT [27] / GPT-3 [4] model family.

2. We meta-analyze published benchmarks [33, 38] to reveal that emergent abilities only appear
for specific metrics, not for model families on particular tasks, and that changing the metric
causes the emergence phenomenon to disappear.

3. We induce never-before-seen, seemingly emergent abilities in multiple architectures across
various vision tasks by intentionally changing the metrics used for evaluation.

2 Alternative Explanation for Emergent Abilities

How might smooth, continuous, predictable changes in model family performance appear sharp and
unpredictable? The answer is that the researcher’s choice of a nonlinear or discontinuous metric can
distort the model family’s performance to appear sharp and unpredictable.

To expound, suppose that within a model family, the test loss falls smoothly, continuously, and
predictably with the number of model parameters. One reason to believe this is the phenomenon
known as neural scaling laws: empirical observations that deep networks exhibit power law scaling in
the test loss as a function of training dataset size, number of parameters or compute [15, 32, 13, 18,
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10, 14, 17, 39, 16, 8, 29]. For concreteness, suppose we have a model family of different numbers of
parameters N > 0 and assume that each model’s per-token cross entropy falls as a power law with
the number of parameters N for constants c > 0, α < 0 (Fig. 2A):

LCE(N) =
(N
c

)α

To be clear, we do not require this particular functional form to hold; rather, we use it for illustrative
purposes. Let V denote the set of possible tokens, p denote the true but unknown probability
distribution, and p̂N denote the N -parameter model’s predicted probability distribution. The per-
token cross entropy as a function of number of parameters N is:

LCE(N)
def
= −

∑
v∈V

p(v) log p̂N (v)

In practice, p is unknown, so we substitute a one-hot distribution of the observed token v∗:

LCE(N) = − log p̂N (v∗)

A model with N parameters then has a per-token probability of selecting the correct token (Fig. 2B):

p(single token correct) = exp
(
− LCE(N)

)
= exp

(
− (N/c)α

)
Suppose the researcher then chooses a metric that requires selecting L tokens correctly. For example,
our task might be L-digit integer addition, and a model’s output is scored 1 if all L output digits
exactly match all target digits with no additions, deletions or substitutions, 0 otherwise. If the
probability each token is correct is independent1, the probability of scoring 1 is:

Accuracy(N) ≈ pN (single token correct)num. of tokens = exp
(
− (N/c)α

)L

This choice of metric nonlinearly scales performance with increasing token sequence length. When
plotting performance on a linear-log plot, one sees a sharp, unpredictable emergent ability on longer
sequences (Fig. 2C) that closely matches claimed emergent abilities (inset). What happens if the
researcher switches from a nonlinear metric like Accuracy, under which the per-token error rate scales
geometrically in target length (App. A.3), to an approximately linear metric like Token Edit Distance,
under which the per-token error rate scales quasi-linearly in target length (App. A.2)?

Token Edit Distance(N) ≈ L
(
1− pN (single token correct)

)
= L

(
1− exp

(
− (N/c)α

))
The linear metric reveals smooth, continuous, predictable changes in model performance (Fig. 2E).
Similarly, if the researcher uses a discontinuous metric like Multiple Choice Grade, the researcher
can find emergent abilities (Fig. 2D), but switching to a continuous metric like Brier Score removes
such abilities (Fig. 2F). In summary, sharp and unpredictable changes with increasing scale can be
fully explained by three interpretable factors: (1) the researcher choosing a metric that nonlinearly or
discontinuously scales the per-token error rate, (2) having insufficient resolution to estimate model
performance in the smaller parameter regime, with resolution2 set by 1/test dataset size, and (3)
insufficiently sampling the larger parameter regime.

3 Analyzing InstructGPT/GPT-3’s Emergent Arithmetic Abilities

Previous papers prominently claimed the GPT [4, 27] family3 displays emergent abilities at integer
arithmetic tasks [9, 33, 38] (Fig. 1A). We chose these tasks as they were prominently presented

1While the independence assumption is not true, the approximation yields results qualitatively matching the
observed emergence claims.

2Resolution is defined as “The smallest interval measurable by a scientific instrument; the resolving power."
3As of 2023-03-15, 4 models with 350M, 1.3B, 6.7B, 175B parameters are available via the OpenAI API.
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Figure 3: Claimed emergent abilities evaporate upon changing the metric. Top: When perfor-
mance is measured by a nonlinear metric (e.g., Accuracy), the InstructGPT/GPT-3 [4, 27] family’s
performance appears sharp and unpredictable on longer target lengths. Bottom: When performance
is instead measured by a linear metric (e.g., Token Edit Distance), the family exhibits smooth, pre-
dictable performance improvements.
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Figure 4: Claimed emergent abilities evaporate upon using better statistics. Based on the
predictable effect Accuracy has on performance, measuring performance requires high resolution.
Generating additional test data increases the resolution and reveals that even on Accuracy, the
InstructGPT/GPT-3 family’s [4, 27] performance is above chance and improves in a smooth, continu-
ous, predictable manner that qualitatively matches the mathematical model.

[4, 9, 33, 38], and we focused on the GPT family due to it being publicly queryable. As explained
mathematically and visually in Sec. 2, our alternative explanation makes three predictions:

1. Changing the metric from a nonlinear or discontinuous metric (Fig. 2CD) to a linear or
continuous metric (Fig. 2 EF) should reveal smooth, continuous, predictable performance
improvement with model scale.

2. For nonlinear metrics, increasing the resolution of measured model performance by increas-
ing the test dataset size should reveal smooth, continuous, predictable model improvements
commensurate with the predictable nonlinear effect of the chosen metric.

3. Regardless of metric, increasing the target string length should predictably affect the model’s
performance as a function of the length-1 target performance: approximately geometrically
for accuracy and approximately quasilinearly for token edit distance.
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To test these predictions, we collected outputs from the InstructGPT/GPT-3 family on two tasks:
2-shot multiplication between two 2-digit integers and 2-shot addition between two 4-digit integers.

Prediction: Emergent Abilities Disappear With Different Metrics On both arithmetic tasks, the
GPT family displays emergent abilities if the target has 4 or 5 digits and if the metric is Accuracy
(Fig. 3, top) [4, 9, 38]. However, if one changes from nonlinear Accuracy to linear Token Edit
Distance while keeping the models’ outputs fixed, the family’s performance smoothly, continuously
and predictably improves with increasing scale (Fig. 3, bottom). This confirms our first prediction
and supports our alternative explanation that the observation of emergent abilities can be explained
by the researcher’s choice of metric, not changes in the model family’s outputs. We also observe that
under Token Edit Distance, increasing the length of the target string from 1 to 5 predictably decreases
the family’s performance in an approximately quasilinear manner, confirming the first half of our
third prediction.

Prediction: Emergent Abilities Disappear With Better Statistics We next tested our second
prediction: that even on nonlinear metrics such as accuracy, smaller models do not have zero accuracy,
but rather have non-zero above-chance accuracy commensurate with choosing to use accuracy as the
metric. In order to accurately measure models’ accuracy, we increased the resolution by generating
additional test data, and found that on both arithmetic tasks, all models in the InstructGPT/GPT-3
family achieve above-chance accuracy (Fig. 4). This confirms our second prediction. We also
observe that as the target string length increases, the accuracy falls approximately geometrically
with the length of the target string, confirming the second half of our third prediction. These results
additionally demonstrate that the researcher’s choice of metric has the effect that one should predict
accuracy to have, i.e., geometric decay with the target length.

4 Meta-Analysis of Claimed Emergent Abilities

Analyzing the GPT family is possible because the models are publicly queryable. However, at the
time of this analysis, other model families claimed to exhibit emergent abilities are not publicly
queryable, nor are their generated outputs publicly available, meaning we are limited to analyzing the
published results themselves [9, 38, 37]. Our alternative explanation makes two predictions.

1. At the “population level" of Task-Metric-Model Family triplets, emergent abilities should
appear predominantly on specific metrics, not task-model family pairs, and specifically with
nonlinear and/or discontinuous metrics.

2. On individual Task-Metric-Model Family triplets that display an emergent ability, changing
the metric to a linear and/or continuous metric should remove the emergent ability.

To test these predictions, we used claimed emergent abilities on BIG-Bench [33, 38] due to the
benchmark being pertinent and publicly available.

Prediction: Emergent Abilities Should Appear with Metrics, not Task-Model Families If
emergent abilities are real, one should expect task-model family pairs to show emergence for all
reasonable metrics. However, if our alternative explanation is correct, we should expect emergent
abilities to appear only under certain metrics. To test this, we analyzed on which metrics emergent
abilities appear. To determine whether a task-metric-model family triplet exhibits a possible emergent
ability, we used a metric from previous work [33]. Letting yi ∈ R denote model performance at
model scales xi ∈ R, sorted such that xi < xi+1, the emergence score is:

Emergence Score
({

(xn, yn)
}N

n=1

)
def
=

sign(argmaxi yi − argmini yi)(maxi yi −mini yi)√
Median({(yi − yi−1)2}i)

We found that most metrics used in BIG-Bench have zero task-model family pairs that exhibit
emergent abilities: of the 39 preferred metrics in BIG-Bench, at most 5 display emergence (Fig.
5A). Many of the 5 are nonlinear and/or discontinuous, e.g., Exact String Match, Multiple Choice
Grade, ROUGE-L-Sum (App. A.4). Notably, because BIG-Bench often scores models on tasks using
multiple metrics, the lack of emergent abilities under other metrics suggests that emergent abilities
do not appear when model outputs are scored using other metrics.
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Figure 5: Emergent abilities appear only for specific metrics, not task-model families. (A)
Possible emergent abilities appear with at most 5 out of 39 BIG-Bench metrics. (B) Hand-annotated
data by [37] reveal emergent abilities appear only under 4 preferred metrics. (C) > 92% of emergent
abilities appear under one of two metrics: Multiple Choice Grade and Exact String Match.

Because emergence score only suggests emergence, we also analyzed hand-annotated task-metric-
model family triplets [37], which revealed emergent abilities appear with 4/39 metrics (Fig. 5B), and
2 metrics account for > 92% of claimed emergent abilities (Fig. 5C): Multiple Choice Grade and
Exact String Match. Multiple Choice Grade is discontinuous, and Exact String Match is nonlinear.

Prediction: Changing Metric Removes Emergent Abilities To test our second prediction, we
focused on the LaMDA family [35] because its outputs are available through BIG-Bench. We
identified tasks on which LaMDA displays emergent abilities with Multiple Choice Grade, then asked
whether LaMDA still displays emergent abilities on the same tasks with a different BIG-Bench metric:
Brier Score [3]. Brier Score is a strictly proper scoring rule for predictions of mutually exclusive
outcomes; for a binary outcome, the Brier Score simplifies to the squared error between 1 and the
model’s probability mass on the outcome. LaMDA’s emergent abilities on the discontinuous Multiple
Choice Grade disappeared when we changed the metric to the continuous Brier Score (Fig. 6). These
results support our alternative explanation that emergent abilities are induced by the chosen metric.
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Figure 6: Changing the metric when evaluating task-model family pairs causes emergent abilities
to disappear. Top: The LaMDA model family displays emergent abilities when measured under
the discontinuous Multiple Choice Grade. Bottom: The LaMDA model family’s emergent abilities
disappear when measured under a continuous BIG-Bench metric: Brier Score.

5 Inducing Emergent Abilities in Networks on Vision Tasks

To demonstrate how emergent abilities can be induced by the researcher’s choice of metric, we
show how to produce emergent abilities in deep networks of various architectures: fully connected,
convolutional, self-attentional. We focus on vision tasks because abrupt transitions in vision models’
capabilities have not been observed to the best of our knowledge; this is one reason why emergence
in large language models is considered so interesting. For the convolutional example, see App. B.

Emergent Reconstruction of CIFAR100 Natural Images by Nonlinear Autoencoders We
first induce an emergent ability to reconstruct images in shallow (i.e., single hidden layer) nonlinear
autoencoders trained on CIFAR100 natural images [21]. To emphasize that the sharpness of the metric
is responsible for emergent abilities, and to show that sharpness extends to metrics beyond Accuracy,
we intentionally define a discontinuous metric that measures a network’s ability to reconstruct a
dataset as the average number of test data with squared reconstruction error below cutoff c:

Reconstructionc
(
{xn}Nn=1

)
def
=

1

N

∑
n

I
[
||xn − x̂n||2 < c

]
, (1)

where I(·) denotes an indicator variable and x̂n is the autoencoder’s reconstruction of xn. The
autoencoder family displays smoothly decreasing squared reconstruction error as the number of
bottleneck units increases (Fig. 7B). Under our newly defined Reconstructionc metric and for
particular choices of c, the autoencoder family exhibits a sharp and seemingly unpredictable image
reconstruction ability (Fig. 7C) that qualitatively matches published emergent abilities (Fig. 7A).

Emergent Classification of Omniglot Characters by Autoregressive Transformers We next
induce emergent abilities in Transformers [36] trained to autoregressively classify Omniglot hand-
written characters [22], in a setup inspired by recent work [6]: Omniglot images are embedded
by convolutional layers, then sequences of embedded image-image class label pairs are fed into
decoder-only transformers. We measure image classification performance on sequences of length
L ∈ [1, 5], again via subset accuracy: 1 if all L images are classified correctly (Fig. 8B), 0 otherwise.
Causal transformers display a seemingly emergent ability to correctly classify Omniglot handwritten
characters (Fig. 8C) that qualitatively matches published emergent abilities (Fig. 8A).
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Figure 7: Induced emergent reconstruction ability in shallow nonlinear autoencoders. (A) A
published emergent ability at the BIG-Bench Periodic Elements task [33]. (B) Shallow nonlinear
autoencoders trained on CIFAR100 [21] display smoothly decreasing mean squared reconstruction
error. (C) Using a newly defined Reconstructionc metric (Eqn. 1) induces an unpredictable change.
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Figure 8: Induced emergent classification ability in autoregressive Transformers. (A) A published
emergent ability on the MMLU benchmark [9]. (B) Autoregressive transformers trained to classify
Omniglot images display increasing accuracy with increasing scale. (C) When accuracy is redefined
as classifying all images correctly, a seemingly emergent ability appears.

6 Limitations

This paper has several limitations. First, nothing in this paper should be interpreted as claiming
that large language models cannot display emergent abilities; rather, our message is that some
previously claimed emergent abilities appear to be mirages induced by researcher analyses. Second,
our experiments and analyses are limited because some LLMs with claimed emergent abilities (e.g.,
PaLM 1, Gopher, Chinchilla) are private and not queryable at the time of our analysis. Lastly, the best
metric(s) arguably depends on human preferences, which may exhibit qualitatively different behavior;
we are unaware of studies quantifying whether human judgment is thresholded in an “emergent" way.

7 Related Work

Srivastava et al. [33] observed that while accuracy at a particular task can empirically appear sharp
and unpredictable, cross-entropy does not appear so; the authors then discussed whether emergent
abilities may be partially attributed to the metric. Our paper converts their discussion into precise
predictions, then quantitatively tests the predictions to reveal metric choice is possibly responsible
for some claimed emergent abilities; well-known and widely-used metrics (including metrics used
by [33]) capture graded improvements; emergent abilities do not appear only on tasks involving
multiple steps, such as the discontinuous Multiple Choice Grade; metric choice can be used to induce
emergent abilities in a novel domain (vision) in diverse architectures and tasks.

Alternative explanations exist for the origin of emergent abilities. Caballero et al. [5] explain
emergence by assuming a piece-wise power law functional form; under this view, emergent abilities
are real, caused by a “break" (or possibly multiple breaks) in the governing power law. In contrast, our
work suggests that emergent abilities can be induced by the researcher under a single power law. Both

9



explanations could be true: some emergent abilities might genuinely be abruptly appearing, whereas
some emergent abilities might be attributable to the metric. Michaud et al. [28] posits that language
modeling data might be comprised of discrete subtasks (“quanta”) that networks learn; if larger
networks have greater capacity, and are thus more capable of learning more of these quanta, then if
some downstream task requires a network to learn some combination of quanta, larger networks are
more likely to have all the requisite capabilities and thus are capable of performing this downstream
task. We think that this is a very interesting hypothesis. Whether language modeling data can or
should be understood from this quantization perspective, and whether these quanta indeed are the
origin of emergent abilities, are really exciting questions that we think merit more study.

8 Discussion

Our paper presents an alternative explanation for the claimed emergent abilities of large language
models. For a fixed task and a fixed model family, the researcher can choose a metric to create an
emergent ability or choose a metric to ablate an emergent ability. Ergo, emergent abilities may be
creations of the researcher’s choices, not a fundamental property of the model family on the specific
task.

Our work has several implications. Firstly, a task and a metric are distinct and meaningful choices
when constructing a benchmark. Secondly, when choosing metric(s), if the goal is to accurately predict
scaling behavior, then one should consider the interplay between cross-entropy, transformations, and
resolution-limited evaluations so that one isn’t surprised. As a corollary, continuous/linear metrics
are probably better for accurate scaling forecasts, but if discontinuous/nonlinear metrics are preferred,
then one may need a lot of data for sufficient resolution to accurately measure performance. The
key is thinking through the consequences of one’s choices! Thirdly, when making claims about
capabilities of large models, including proper controls is critical. In this particular setting, emergent
abilities claims are possibly infected by a failure to control for multiple comparisons. In BIG-Bench
alone, there are ≥ 220 tasks, ∼ 40 metrics per task, ∼ 10 model families, for a total of ∼ 106 task-
metric-model family triplets, meaning the probability that no task-metric-model family triplet exhibits
an emergent ability by random chance might be small. Fourthly, scientific progress can be hampered
when models and their outputs are not made available for independent scientific investigation.
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A Approximate Behavior of Metrics on Sequential Data

How do different metrics behave when used to measure autoregressive model outputs? Precisely
answering this question is tricky and possibly analytically unsolvable, so we provide an approximate
answer here.

Notationally, we consider N test data of length L (here, length is measured in tokens) with targets
denoted tn

def
= (tn1, tn2, ...tnL), the autoregressive model has a true-but-unknown per-token error

probability of ϵ ∈ [0, 1] and the model outputs prediction t̂n
def
= (t̂n1, t̂n2, ...t̂nL). This assumes that

the model’s per-token error probability is constant, which is empirically false, but modeling the
complex dependencies of errors is beyond our scope.

A.1 Per-Token Error Probability is Resolution-Limited

Note that because we have N test data, each of length L, our resolution for viewing the per-token
error probability ϵ is limited by 1/NL. Here, resolution refers to “the smallest interval measurable
by a scientific instrument; the resolving power." To explain what resolution means via an example,
suppose one wants to measure a coin’s probability of yielding heads. After a single coin flip, only
two outcomes are possible (H, T), so the resolution-limited probability of heads is either 0 or 1. After
two coin flips, four outcomes are possible (HH, HT, TH, TT), so the resolution-limited probability
of heads is now one of 0, 0.5, 1. After F coin flips, we can only resolve the coin’s probability of
yielding heads up to 1/F . Consequently, we introduce a resolution-limited notation:

ab
def
= a rounded to the nearest integer multiple of 1/b (2)

A.2 Token Edit Distance

We first consider an adaptation of the Levenshtein (string edit) distance for models that function
on tokens rather than characters, an adaptation we term the token edit distance. The token edit
distance between two token sequences tn, t̂n is defined as the integer number of additions, deletions
or substitutions necessary to transform tn into t̂n (or vice versa).

Token Edit Distance(tn, t̂n)
def
= Num Substitutions + Num. Additions + Num. Deletions (3)

=

L∑
ℓ=1

I[tnℓ ̸= t̂nℓ] + Num. Additions + Num. Deletions (4)

≥
L∑

ℓ=1

I[tnℓ ̸= t̂nℓ] (5)

The expected token edit distance is therefore:

E[Token Edit Distance(tn, t̂n)] ≥ E[
L∑

ℓ=1

I[tnℓ ̸= t̂nℓ]] (6)

=

L∑
ℓ=1

p(tnℓ ̸= t̂nℓ) (7)

≈ L(1− ϵ) (8)

The resolution-limited expected token edit distance is therefore:

E[Token Edit Distance(tn, t̂n)]NL ≥ L
(
1− ϵNL

)
(9)

From this, we see that the expected token edit distance scales approximately linearly with the
resolution-limited per-token probability. The real rate is slightly higher than linear because additions
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and deletions contribute an additional non-negative cost, but modeling this requires a model of how
likely the model is to overproduce or underproduce tokens, which is something we do not currently
possess.

A.3 Accuracy

Accuracy(tn, t̂n)
def
= I[No additions] I[No deletions]

L∏
l=1

I[tnl = t̂nl] (10)

≈
L∏

l=1

I[tnl = t̂nl] (11)

As with the Token Edit Distance (App. A.2), we ignore how likely the language model is to
overproduce or underproduce tokens because we do not have a good model of this process. Continuing
along,

E[logAccuracy] =
∑
l

E[log I[tnl = t̂nl]] (12)

≤
∑
l

logE[I[tnl = t̂nl]] (13)

≈ L log(1− ϵ) (14)

Taking an approximation that would make most mathematicians cry:

E[Accuracy] ≈ exp(E[logAccuracy]) (15)

= (1− ϵ)L (16)
(17)

This reveals that accuracy approximately falls geometrically with target token length. The resolution-
limited expected accuracy is therefore:

E[Accuracy]NL = (1− ϵ)LNL (18)

From this we can see that choosing a nonlinear metric like Accuracy is affected significantly more
than a linear metric by limited resolution because Accuracy forces one to distinguish quantities that
decay rapidly.

A.4 ROUGE-L-Sum

Another BIG-Bench metric [33] is ROUGE-L-Sum [25], a metric based on the longest common
subsequence (LCS) between two sequences. Section 3.2 of [25] gives the exact definition, but the key
property is that ROUGE-L-Sum measures the “union" LCS, which means “stitching" together LCSs
across the candidate and multiple references. As explained in the original paper [25]: if the candidate
sequence is c = w1w2w3w4w5, and if there are two reference sequences r1 = w1w2w6w7w8 and
r2 = w1w3w8w9w5, then LCS(r1, c) = w1w2 and LCS(r2, c) = w1w3w5, then the union LCS of
c, r1, r2 is w1w2w3w5, with length 4. Intuitively, this disproportionately benefits models with smaller
error rates because their mistakes can be “stitched" across multiple references; this is confirmed in
Monte Carlo simulation (Fig. 9).

A.5 BLEU

Yet another BIG-Bench metric [33] is BLEU [30], a metric based on shared n-grams between the
generated string and reference strings. BLEU is also a discontinuous and nonlinear metric for several
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Figure 9: ROUGE-L-Sum is a sharp metric. Simulations show that as the per-token error probability
slightly increases (e.g. from 0.05 to 0.1), the ROUGE-L-Sum metric falls sharply.
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Figure 10: BLEU is a sharp metric. Simulations show that as the per-token error probability slightly
increases (e.g. from 0.05 to 0.1), the ROUGE-L-Sum metric falls sharply.

reasons. For an explanation of its discontinuity, consider bleu.compute(predictions=["hello there
general"], references=[["hello there general"]]). At first glance, this might seem like it should also
result in a BLEU score of 1.0 since the prediction matches the reference. However, the issue here is
the absence of longer n-grams. For the unigrams, bigrams, and trigrams, the precision is 1.0 since
they match perfectly. However, for the 4-grams, there are none in both the candidate and the reference.
This results in a precision of 0 for the 4-grams because the BLEU score takes the geometric mean of
the n-gram precisions, meaning any 0 in the set will make the entire product 0. Hence, despite the
match in unigrams, bigrams, and trigrams, the absence of 4-grams results in a BLEU score of 0.0.
This behavior of BLEU has been a point of criticism, as short sentences or those with fewer n-grams
than the maximum considered (often 4) can yield scores that are counter-intuitive. This is confirmed
in Monte Carlo simulations (Fig. 10)

B Inducing Emergent Abilities in Networks on Vision Tasks

B.1 Emergent Classification of MNIST Handwritten Digits by Convolutional Networks

We begin by inducing an emergent classification ability in a LeNet convolutional neural network
family [24], trained on the MNIST handwritten digits dataset [23]. This family displays smoothly
increasing test accuracy as the number of parameters increases (Fig. 11B). To emulate the accuracy
metric used by emergence papers [9, 38, 33], we use subset accuracy: 1 if the network classifies K
out of K (independent) test data correctly, 0 otherwise. Under this definition of accuracy, the model
family displays an “emergent" ability to correctly classify sets of MNIST digits as K increases from
1 to 5, especially when combined with sparse sampling of model sizes (Fig. 11C). This convolutional

16



1021 1022 1023

GPT-3 Model Parameters

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Te
st

 A
cc

ur
ac

y

Published Emergent Ability
Published Emergent Ability

104 105

LeNet Model Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

No Emergent Ability
Num. All Correct

1

104 105

LeNet Model Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Metric-Induced Emergent Ability
Num. All Correct

6
8
10

Figure 11: Induced emergent MNIST classification ability in convolutional networks. (A) A
published emergent ability from the BIG-Bench Grounded Mappings task [38]. (B) LeNet trained
on MNIST [23] displays a predictable, commonplace sigmoidal increase in test accuracy as model
parameters increase. (C) When accuracy is redefined as correctly classifying K out of K independent
test data, this newly defined metric induces a seemingly unpredictable change.

family’s emergent classification ability qualitatively matches published emergent abilities, e.g., at the
BIG-Bench Grounded Mappings task [38] (Fig. 11A).

C Relationship Between Emergent Abilities and Grokking

Emergent abilities [4, 9, 33, 38] are sometimes compared with grokking [31, 26, 2, 11], a phenomenon
whereby a single model will, over the course of learning, achieve high training accuracy and only
much later achieve high test accuracy. There are several differences between grokking and emergent
abilities:

1. Grokking is primarily studied within a single model, whereas emergent abilities are studied
within a model family (i.e., multiple models).

2. Grokking occurs with increasing gradient steps, whereas emergent abilities occur with
increasing model scale, typically measured in parameters or effective parameters (although
more recently compute).

3. Grokking explicitly studies a discrepancy between the model’s train and test behavior,
whereas emergent abilities (to the best of our knowledge) do not present separate train &
test curves.

4. Grokking is primarily studied on toy “algorithmic" tasks in small networks, whereas emer-
gent abilities are often studied on benchmark NLP tasks in large language models.
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