
Appendix2

A Materials and Methods3

A.1 Natural Scenes Dataset4

Here, we briefly summarize the data acquisition and preprocessing steps that are described in detail5

elsewhere [1]. Scanning was conducted at 7T using whole-brain gradient-echo EPI at 1.8-mm6

resolution and 1.6-s repetition time. Images were taken from the Microsoft Common Objects in7

Context (COCO) database [2], square cropped, and presented at a size of 8.4° x 8.4°. A special8

set of 1,000 images were shared across subjects; the remaining images were mutually exclusive9

across subjects. Images were presented for 3 s with 1-s gaps in between images. Subjects fixated10

centrally and performed a long-term continuous recognition task on the images. The fMRI data were11

pre-processed by performing one temporal interpolation (to correct for slice time differences) and one12

spatial interpolation (to correct for head motion). A general linear model was then used to estimate13

single-trial beta weights. Cortical surface reconstructions were generated using FreeSurfer, and14

both volume- and surface-based versions of the beta weights were created. Estimated beta weights15

provided in the subject-native space (func1pt8mm) were used in all of our experiments. Every16

stimulus considered in this study had 3 repetitions. We averaged single-trial betas after z-scoring17

every voxel within each scan session to create our voxel responses.18

19

A.2 Response-optimized Model Training Routine20

Response-optimized models for each visual area were trained for a maximum of 100 epochs using
Adam with a learning rate of 1e-4, a batch size of 16 and early stopping (patience = 20) based on the
Pearson’s correlation coefficient between the predicted and measures responses on the validation set.
The target signals for each model comprised the image stimuli and voxel-level response vector for
each ROI. The loss is computed as the following:

L =
X

i2Batch

SX

s=1

nsX

v=1

1i2Is(r
pred
s,v � rmeas.

s,v )2,

where 1i2Is is the indicator variable specifying if image i was shown to subject s, rpreds,v and rmeas.
s,v21

are the predicted and measured response at subject s, voxel v. This masked squared error loss22

allowed us to backpropagate errors through the shared convolutional backbone even if the subjects23

were not exposed to common stimuli. The other response-optimized baseline model (denoted as24

‘Response-optimized (no rotation symmetries)’ in the main text) is optimized following the same25

training procedure as defined above.26

A.3 Details of the task-optimized DNN models evaluated27

Table A.2 lists all DNN models used as baselines against response-optimized models for quantitative28

comparisons. All pre-trained models, except CORnet-S were downloaded from the official PyTorch29

Model Zoo. CORnet-S was obtained from the official github repository of the project [3]. For30

evaluation of all models except CORnet-S, we downsample convolutional layers by applying an31

avgpool layer so that the resulting feature map has dimension at most 9K. We found that further32

decreasing it (e.g. to 1K) only decreased the prediction accuracy on the validation set. For CORnet-S,33

we do not perform layer selection for each of the 5 visual regions, rather we pre-select the layer34

homologous to each visual region, i.e., layers V1, V2 and V4 are used for modeling responses to35

voxels in V1, V2 and V4 respectively. We further use the layer IT for modeling responses to LO36

and VO. The pre-selection of convolutional layers further allows us to employ a spatial x features37

factorized linear readout for the CORnet-S model to enable a fairer comparison with the proposed38

response-optimized encoding models. We further resize the convolutional output of the CORnet-S39

model to have spatial dimensions of 28⇥28 (same as the response-optimized model).40

41
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Quantitative fit (response predictivity)
Analysis Probe/evaluation

dataset
Metrics for evalua-
tion

Baselines

NSD (i) Generaliza-
tion to novel stimuli

(in-distribution)

Held-out stimuli-
response pairs from
the same NSD sub-
jects

Prediction accuracy
(Pearson’s R)

Category ideal observer,
ImageNet-trained mod-
els (AlexNet, CORnet-S,
ResNet-50, DenseNet121)
and MS-COCO-trained
(ResNet-50) task-optimized
models)

(ii) Generalization to
novel subjects

Held-out stimuli-
response pairs from 4
novel NSD subjects

(iii) Generalization to
OOD stimuli

’NSDsynthetic’
stimuli-response
pairs

Generalization to
novel fMRI datasets

Algonauts 2019,
BOLD5000, Inani-
mate objects dataset

RSA (Kendall’s ⌧ ) Comparison among
response-optimized models

Characterizing neural response properties by probing response-optimized models
Characterizing spatial
tuning

Measured pRF maps
from NSD Retino-
topy experiment

Pearson’s R (Ec-
centricity); Circular
correlation coeffi-
cient (Polar angle)

—

Characterizing fea-
ture representations
(i) Alignment with
human perception

NSD-meadows multi-
arrangement task

RSA (Kendall’s ⌧ ) Comparison among
response-optimized models

(ii) Separability of
category information

THINGS, ImageNet-
16, NSD

RSA (Kendall’s ⌧ )

(iii) Single voxel tun-
ing (maximally acti-
vating images)

– –

(iv) shape v/s texture
bias

ImageNet-16, Silhou-
ette and Geirhos Style
Transfer dataset

Tranfer performance
(classification accu-
racy), shape bias

MS-COCO-trained multi-
label object classification
network, task-optimized
encoding model (AlexNet)

Table A.1: Summary of model evaluation and interpretability techniques employed in this study

Name Number of parameters Layers selected for evaluation
AlexNet 0.61M conv1, conv2, conv3, conv4, conv5, fc6, fc7

CORnet-S 53.4M V1, V2, V4, IT

ResNet-50 25.6M Last layer of every residual stage
(res1, res2, res3, res4) and avgpool

DenseNet-121 8M Last layer of every dense block
(denseblock1, denseblock2, denseblock3, denseblock4)

ResNet-50 backbone
(FasterRCNN, MS-COCO) 41.7M Last layer of every residual stage (res1, res2, res3, res4)

and avgpool
Table A.2: Details of the task-optimized DNNs used as baselines
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A.4 Characterizing the spatial tuning of early visual areas: Polar angle agreement42

We measured the agreement between the polar angles estimated from the learned encoding model
against the polar angle measurements from the independent pRF experiment using the circular
correlation coefficient. The circular correlation coefficient between measured and predicted polar
angle arrays in an ROI of n voxels, respectively denoted by {a1m, .., anm} and {a1p, .., anp}, called

‘polar angle agreement’, is calculated as,

r =

Pn
i=1 sin(a

i
m � Tm) sin(aip � Tp)qPn

i=1 sin
2(aim � Tm)

Pn
i=1 sin
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,

where Tm and Tp are the circular mean angles of the measured and predicted polar angle vectors,43

respectively,44
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A.5 Noise ceiling estimation45

Noise ceiling for every voxel represents the performance of the “true" model underlying the generation46

of the responses (the best achievable accuracy) given the noise in the fMRI measurements. They47

were computed using the standard procedure followed in [1] by considering the variability in voxel48

responses across repeat scans. The dataset contains 3 different responses to each stimulus image49

for every voxel. In the estimation framework, the variance of the responses, �2
response, are split into50

two components, the measurement noise �2
noise and the variability between images of the noise free51

responses �2
signal.52

�̂2
response = �̂2

signal + �̂2
noise

An estimate of the variability of the noise is given as �̂2
noise =

1
n

Pn
i=1 Var(�i), where i denotes the53

image (among n images) and Var(�i) denotes the variance of the response across repetitions of the54

same image. An estimate of the variability of the noise free signal is then given as,55

�̂2
signal = �̂2

response � �̂2
noise

Since the measured responses were z-scored, �̂2
response = 1 and �̂2

signal = 1� �̂2
noise. The noise ceiling56

(n.c.) expressed in correlation units is thus given as n.c. =
r

�̂2
signal

�̂2
signal+�̂2

noise
. The models were evaluated57

in terms of their ability to explain the average response across 3 trials (i.e., repetitions) of the stimulus.58

To account for this trial averaging, the noise ceiling is expressed as n.c. =

r
�̂2

signal
�̂2

signal+�̂2
noise/3

. We59

computed noise ceiling using this formulation for every voxel in each subject and expressed the60

noise-normalized prediction accuracy (R) as a percentage of this noise ceiling.61

A.6 Principal components analysis for characterizing features in high-level visual area VO62

We implemented a principal components analysis on the predicted activity patterns in the anterior63

ventral stream ROI VO to all 26,107 images from the THINGS dataset [4]. This also enables us to64

find a compressed representation of thousands of voxels in VO (across 4 subjects). We found that the65

first 2 principal components explained a large proportion of the variance in voxel responses (main text66

Figure 5D). We examined the 2 discovered components by ordering exemplars along each component67

dimension for intuitive exposition. Specifically, we extracted the top and bottom 100 images for each68

PC dimension. We extracted the top 5 concepts that had the highest frequency in each of the top and69

bottom image sets (the THINGS dataset comprises a total of 1,854 diverse concepts) and visualized70

the two images within each of these concept categories that elicited the highest/lowest response along71

the PCs. These images are shown in the main text Figure 5D [left]. We also plotted all images in the72

2-dimensional space spanned by the PCs and colored them based on the animate/inanimate labels73

provided along with the THINGS dataset (as part of the Top-Down WordNet Category ).74
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A.7 Generalization to held-out NSD subjects75

For each of the 4 held-out NSD subjects, the dataset comprised brain responses to 5,445 stimuli with76

3 repetitions (remaining stimuli had either 1 or 2 repetitions and were discarded from analysis). To77

assess generalization of response-optimized models in terms of predicting responses on held-out78

NSD subjects, we fixed the weights of the shared convolutional backbone and used data from new79

NSD participants to train their linear readouts. We varied the size of the training set for learning80

readout weights from a mere 100 stimulus-response pairs from every new participant to a large set of81

4,500 pairs. The readouts had the same architecture as the original models, i.e., they were factorized82

into spatial and feature dimensions. The readouts were trained independently for each subject, each83

training set size and each visual ROI for 100 epochs with an early stopping criterion (patience of 20).84

For task-optimized and category ideal observer models, we fit linear regression models (as described85

above for the original 4 subjects) using these restricted sample sizes. The regularization parameter86

for both semantic and task-optimized models was optimized independently for each training set size,87

each subject and for voxels in each visual area by testing among 8 log-spaced values in [1e-4, 1e4].88

A.8 Category ideal observer model89

We fit a category ideal observer model using category annotations for NSD images. The input to90

the categorical model is an 80-D binary vector corresponding to the 80 object categories annotated91

in the MS-COCO database, where each element indicates whether the corresponding category was92

present in the image or absent. The weights corresponding to different categories for every voxel are93

optimized by fitting a l2 regularized linear regression model. The regularization parameter for this94

model was optimized independently for each subject and for voxels in each visual area by testing95

among 8 log-spaced values in [1e-4, 1e4].96

A.9 Maximally activating images97

We performed k-means clustering (k=4) on model-predicted voxel-level responses of each visual ROI98

to locate ‘representative’ voxels (cluster medians) for visualization, rather than randomly selecting99

these voxels. Following [5], we start with a random noise input x0 for each model neuron i100

and iteratively update the input along the gradient @ai

@x to synthesize inputs that would result in101

higher and higher predicted activation ai for that neuron. For visualization purposes, since we were102

interested in featural tuning, we discarded the spatial mask in the readout of every voxel and used103

the learned feature tuning of every voxel to create an additional 1x1 convolutional layer, so that104

every voxel is represented by an independent unit in this convolutional layer and synthesized inputs105

to activate individual units in this convolutional voxel layer instead. Most visualization techniques106

further employ an image prior in the form of a regularizer to encourage stable results [6, 7]. This107

visualization technique is commonly employed in neural network interpretability research to find the108

features that drive model neurons. Formally, the goal of finding the maximally activating image x⇤ is109

then expressed as the following optimization problem.110

x⇤ =
x2RH⇥W⇥C

Aij(✓, x) +R(x)

where A(i,j)(✓, x) denotes the activation of unit i from layer j in the neural network to input x111

(H: Height, W: Width, C: Channels), and ✓ denotes the parameters of the network. The latter are112

fixed during the above optimization procedure. R(x) denotes the regulariser. In order to generate113

maximally activating image for the jth voxel, we set i to the output voxel layer and j to be the index114

of the model neuron in the output layer that emulates voxel j. We find a local solution for the above115

optimization problem by performing gradient ascent in the input space and updating x iteratively in116

the direction of the gradient of Aij(✓, x) +R(x). We employed a very weak form of regularization,117

where we stochastically jitter (up to 3 px)) the image before each optimization step to avoid high118

frequency noise. We also blurred the image after every gradient ascent step using a Gaussian filter119

to avoid high-frequency effects. The images are optimized starting from random noise with Adam120

optimizer for 1000 steps using a step size of 1.121

A.10 Shape bias analysis122

Training baseline object classification model on MS-COCO We train a baseline DNN for multi-123

label object classification on the entire MS-COCO dataset. The dataset comprises 82,081 training and124
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40,137 validation images, with most images containing multiple objects at once. Since NSD images125

were drawn from the MS-COCO dataset, this serves as a useful control for assessing features that126

may arise simply due to the dataset distribution. The model employs the same backbone architecture127

as the proposed rotation-equivariant response-optimized model comprising 4 convolutional blocks128

with E(2)-steerable convolutions. The convolutional output is downsampled to a spatial resolution of129

4⇥4 and is mapped on to an 80-D output using a linear layer. The model is optimized for multi-label130

classification using a Binary Cross-Entropy loss with an Adam optimizer (learning rate of 0.001).131

The model is trained for 30 epochs and achieves a mean Average Precision (mAP) measure of 66.7%132

on the validation set, which is within the range of competitive CNN models, although on the lower133

end of that range [8].134

Mapping predicted voxel-wise responses to ImageNet-16 category labels and measuring transfer135

performance We use the proposed response-optimized models to extract the predicted responses136

of voxels in every region to stimuli from a small subset of the large-scale ImageNet-16 dataset. This137

subset comprised 500 images from each of the 16 categories, resulting in a total of 8,000 images138

(same samples were used in the RDM analyses shown in the main text Figure 5B). The predicted139

voxel-wise responses for every visual area constitute the representational space of that ROI. We140

randomly split the 8,000 images into training (70%), validation (5%) and test sets (25%) and fitted141

l2 regularized linear classification models (known as ridge classifiers) on top of this ROI-specific142

representational space to predict the category label of test images from the ImageNet-16 subset. The143

predicted labels were compared against the ground truth labels to compute the ImageNet-16 transfer144

performance. Error bars are computed over 5 random splits. This approach is akin to supervised145

linear probes [9], where linear classifiers are trained independently of the models to probe their neural146

representations. The classification accuracy provides a quantitative measure of the ability of each147

ROI-specific neural representational space to support object classification. As demonstrated in the148

main text, this classification capacity increases along the ventral visual hierarchy 4.149

We also used the response-optimized models to extract the model-predicted responses of voxels150

in every region to 160 images (10 per category) from the Silhouettes dataset [10]. The predicted151

responses were mapped onto the 16 category labels using the linear classifier weights estimated with152

the ImageNet-16 dataset (as described above) without any additional fitting. This also helps us assess153

how well the prediction function generalizes to out-of-domain stimuli, such as image silhouettes. The154

classification performance on this dataset is termed ‘Silhouettes transfer performance’.155

Figure A.1: A. Transfer performance of dif-
ferent task-optimized encoding models on
ImageNet-16 dataset. B. Fraction of shape vs.
texture decisions for stimuli with cue conflict.
Bar plots on the right display the proportion
of correct decisions (either shape or texture
recognized correctly) as a fraction of all tri-
als for human observers as well as response-
optimized and task-optimized models of LO.

Shape bias evaluation (a) Response-optimized156

models: Finally, we use the response-optimized mod-157

els to extract the model-predicted responses of vox-158

els in every region to 1200 images from the Geirhos159

cue-conflict dataset [10]. We map these predicted160

responses onto the 16-class-ImageNet categories us-161

ing the linear classifier weights estimated with the162

ImageNet-16 subset (as described above). Each im-163

age from this dataset has a texture and a shape label.164

The shape bias of each response-optimized model is165

then computed as the percentage of times it classi-166

fies images from the cue-conflict dataset according167

to shape, provided it classified either shape or texture168

correctly.169

(b) Task-optimized models: We can also compute170

the shape bias of task-optimized encoding models171

(here, we assess the AlexNet model) by extracting172

their predicted voxel-wise responses to the images173

from the Geirhos cue-conflict dataset and mapping174

these responses to the 16-class-ImageNet categories.175

For the mapping, we follow the same procedure as176

employed in the case of response-optimized models,177

wherein a linear classifier is first trained to map the178

predicted responses to 16 classes using the 8,000179

images from the ImageNet-16 subset. The transfer180
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Figure A.2: Voxel-wise prediction accuracy (R) of the proposed response-optimized model across
all voxels in all the 5 visual ROIs depicted on cortical flatmaps for each subject. High prediction
accuracy (> 0.6) is obtained across large swathes of the cortex, well beyond early visual cortex
(V1-V4) into LO and VO as well.

performance in this case is much higher than the181

transfer performance of response-optimized models,182

as shown in Supplementary Figure A.1. This gap is183

perhaps unsurprising given that the task-optimized184

encoding models inherit feature representations optimized for ImageNet classification. The shape185

bias is evaluated using the same approach as response-optimized models. As shown in the main186

text Figure 4B[bottom], these models exhibit a strong texture bias. This is also not surprising given187

that the task-optimized encoding model is more likely to reflect the biases of supervised ImageNet188

training [10].189

B Supplemental Results190

B.1 Voxel-wise prediction accuracy on cortical surface191

Supplementary Figure A.2 depicts the raw voxel-wise prediction accuracy of the proposed response-192

optimized models on the cortical surface for each of the 4 NSD participants analyzed in the main193

study.194

B.2 Generalization to novel datasets195

We also compared the representational similarity structure captured by response-optimized models of196

different ROIs to novel stimuli from other well-known fMRI datasets besides NSD. Here, we wanted197

to assess whether the models indeed captured ROI-specific features that could generalize in explaining198

representational geometries of similar visual ROIs in different datasets. While the ROI definitions199

and nomenclature can vary substantially across these datasets because of the different protocols200

involved in their localization, we expected the response-optimized models to capture representational201

geometry of voxel responses in ROIs that lie in a roughly similar anatomical location as any of the202

5 ROIs considered in this study. We first performed this generalization analysis using the classical203

RSA framework (without any fitting) on the following two widely-used fMRI datasets: (1) Cichy204

et al. dataset [11] comprises fMRI recordings while 15 human participants observed 92 images of205

natural objects (this dataset was also used in the Algonauts 2019 Challenge Training Set): Here, the206

subject-averaged RDMs of early (‘EVC’) and high-level visual ROIs (‘IT’) were already computed207

and publicly distributed by the authors. Further details about the localization of these 2 ROIs are208

provided in [11]. (2) BOLD5000 V2 (GLM-denoised) dataset [12] comprises fMRI recordings209

from 4 subjects (CSI1-4), while they each viewed ⇠5,254 natural scene images. Subject CSI4 was210

discarded from this analyses since this subject completed much fewer scan sessions. We restrict our211

analyses to the 1,000 images within the BOLD5000 dataset that are shared with the NSD dataset.212

This enables us to compute the match not just against model-predicted RDMs but also against RDMs213

derived from measured responses in NSD subjects. Importantly, these 1,000 images are all part of the214

test set and were not used in training any of the response-optimized models. We focus on two visual215

ROIs in this dataset, namely ‘EarlyVis’ and ‘LOC’, which had (at least) a partial overlap with some216

of the 5 visual ROIs we modeled in our study.217

For stimuli from each of the above datasets, we first extracted model-predicted responses from218

the response-optimized models of all 5 visual ROIs: [V1, V2, V4, LO, VO]. We then computed219

model RDMs separately for each ROI by computing the pairwise correlation distance between the220

model-predicted responses of all images in each dataset. We then computed the RDM similarity221

between model-predicted RDMs of each ROI against the observed-response RDMs (computed using222

6



Figure A.3: Generalization to the Cichy et al. and BOLD5000 datasets assessed with classical RSA.
A and B depict the RDM similarity between model-predicted RDMs (5 models corresponding to
the 5 visual ROIs considered in this study) and fMRI RDMs from the Cichy et al. and BOLD5000
datasets, respectively. C depicts the model-predicted RDMs from each ROI model (V1-VO, center)
as well as the fMRI RDMs of ‘EVC’ (left) and ‘IT’ ROIs (right)

the respective fMRI datasets). RDM similarities were computed using the Kendall’s ⌧ coefficient. As223

shown in Supplementary Figure A.3, response-optimized model RDMs captured the representational224

geometry of respective ROIs in these novel fMRI datasets. For e.g., early visual ROI model RDMs225

(V1-V4) better match fMRI RDMs of early visual areas (‘EVC’ in Cichy et al. and ‘EarlyVis’ in226

BOLD5000) and higher-order ROI model RDMs (LO and VO) better match fMRI RDMs of higher-227

order visual areas (‘IT’ in Cichy et al. and ‘LOC’ in BOLD5000). This can also been qualitatively228

in the model-predicted and fMRI RDMs for the Cichy et al. dataset (Supplementary Figure A.3C).229

Importantly, we also had access to the measured responses in NSD participants to the restricted230

BOLD5000 image set since the same stimuli were also shown to NSD participants. This enabled us231

to compare subject-averaged measured RDMs (from observed responses of NSD participants) against232

BOLD5000 observed RDMs. Intriguingly, this agreement against observed BOLD5000 RDMs was233

greater with predicted than measured NSD responses, likely highlighting the denoising quality of234

encoding models (Figure A.3B). Further, the model-predicted RDM similarity follows the same235

pattern as NSD-measured RDM similarity across ROIs, suggesting that the models indeed capture236

features idiosyncratic to each visual ROI.237

We also assesses model generalization to a challenging new fMRI dataset, namely the Inanimate238

Objects dataset from Konkle et al. ( [13]). As shown in [13], current SOTA supervised and239

unsupervised models trained on ImageNet struggle to predict voxel responses to stimuli from this240

dataset. This dataset comprises fMRI responses from 10 participants to 72 everyday objects. We241

focused on responses within two high-level visual ROIs in this dataset, namely posterior occipito-242

temporal cortex (pOTC), and the anterior occipito-temporal cortex. We extracted model-predicted243

responses from the response-optimized models of all 5 visual ROIs: [V1, V2, V4, LO, VO] to each244

of the 72 images in this dataset to construct the model representational space. Model-brain match245

in this dataset was then measured using a voxelwise encoding RSA (veRSA) procedure, following246

the same protocol described in [13] for consistency. Performance of competing models, namely247

(i) a Supervised ImageNet-trained model and (ii) a self-supervised ImageNet-trained model, called248

instance-prototype contrastive learning (IPCL) with an AlexNet architecture was already reported249

in the main paper describing this dataset [13] and is included in Supplementary Figure A.4 for250

comparison. As shown in Supplementary Figure A.4, response-optimized models of high-level251

visual ROIs (and not early visual ROIs) perform on par with these SOTA models in predicting neural252

responses in both the high-level visual ROIs (pOTC and aOTC), serving as another useful model253

class for studying high-level visual cortical representations.254

7



Figure A.4: Generalization to the Konkle et al. Inanimate Objects dataset assessed with voxel-wise
encoding RSA as described in [13]. Performance numbers for competing models (Supervised
(ImageNet), IPCL (ImageNet)) as well as the noise ceiling are taken directly from the values reported
in the main paper (details provided in [13].)

B.3 Models retain signatures of voxel-level idiosyncracies255

We correlated the predicted response of every voxel (from the proposed response-optimized model)256

against the measured response of every other voxel (across all 4 subjects in the main study) in each257

ROI to obtain a voxel identifiability matrix per ROI. Visualizing this matrix helps us assess whether the258

models indeed captured meaningful voxel-level idiosyncracies. We note that all response-optimized259

models retain signatures of individual voxel-level idiosyncracies as indicated by the prominent260

diagonal nature of the voxel identifiability matrices (Supplementary Figure A.5); this illustrates that261

the predicted response for a voxel best matches the measured response for the same voxel in the same262

subject. This enables us to perform population-level analysis with these predictive models.263

B.4 Variability in voxel response predictivity is driven by the noise ceiling264

We visualized the raw predictive accuracy (R) for every voxel, as achieved using the proposed265

response-optimized model, against that voxel’s corresponding noise ceiling to see if there was a266

systematic trend. We observed that a large proportion of the variance in predictive accuracy across267

voxels is driven by their noise ceiling, as shown in Supplementary Figure A.6.268

B.5 Quantifying the complexity of synthesized images269

We measured the complexity of synthesized images optimized to maximally activate individual270

voxels (as shown in Figure 4A) using a measure based on compression ratios, that was previously271

adopted to quantify complexity of synthesized images [14]. Briefly, this metric, based on the discrete272

cosine transform, estimates the minimum number of coefficients (corresponding to different spatial273

frequencies) needed to accurately reconstruct an image, which in turn indicates the ‘compressibility’274

(or inversely, complexity) of the image. We quantified the complexity of all images in Figure 4A as275
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Figure A.5: Voxel identifiability matrix for every ROI is computed by correlating the predicted
response for every voxel against the measured response of every other voxel in that ROI. To account
for higher variability in measured versus predicted responses, we normalize the rows and columns of
this correlation matrix.

Figure A.6: Each scatter plot depicts the raw prediction accuracy (R) for all voxels (obtained using the
proposed response-optimized model) belonging to one of the five ROIs against their corresponding
noise ceiling.

the inverse of their respective compression ratios and found that the complexity does indeed increase276

along the ventral visual hierarchy A.3.277

We also extracted the top 3 natural images among the THINGS database (⇠27,000 images) that278

produce the highest predicted response for each V1 or VO voxel (the two ends of the hierarchy) visu-279

alized in Figure 4A. The natural images contain similar featural configurations as their corresponding280

synthesized counterparts A.7: the natural images for V1 voxels contain objects at specific orientations281

or high frequency spatial patterns reminiscent of the orientation preferences visible in the synthesizes282

images, whereas the images for VO contain complex shapes like concentric circles, rectangles and283

hexagons, again in agreement with their respective synthesized images.284

285

B.6 Human behavioral data from ‘nsdmeadows’286

We also employ the T-distributed Stochastic Neighbor Embedding (t-SNE) algorithm to visualize287

human behavioral data from the ‘nsdmeadows’ experiment where NSD participants performed a288

Multiple arrangement Task [1]. Supplementary Figure A.9 depicts the t-SNE visualization of the mean289

pairwise dissimilarity matrix across all 8 NSD subjects. The pairwise dissimilarity matrix (RDM) for290
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Figure A.7: A and B show the synthesized and natural images (among the THINGS database) that
most highly activate each of the 4 individual voxels visualized in Figure 4A, belonging to V1 and VO,
respectively. The natural images are reminiscent of the patterns in their corresponding synthesized
counterparts. For V1 voxels, we also visualize the Gabor filter (among a filter bank of 4 sine and
cosine gabors) that produces the highest model-predicted response for each voxel.

Model ROI Complexity
V1 0.439+/-0.041
V2 0.433+/-0.012
V4 0.449+/-0.034
LO 0.536+/-0.079
VO 0.637+/-0.012

Table A.3: Complexity of the synthesized images for each visual region.

Figure A.8: pRF estimation with task-optimized CORnet-S encoding models. A Scatter plots showing
predicted and localizer-estimated retinotopic parameters for all voxels in all 4 subjects. Inset correlations are
computed using voxels from all 4 subjects. C Agreement between estimated and measured retinotopic maps as a
function of training examples (stimulus-response pairs) from novel subjects used to train their linear readout.
Error bars depict the 95% CI around estimated mean.
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Figure A.9: Human
behavioral data T-SNE
plot depicting human
similarity assessments
for the 100 images used
in the ‘nsdmeadows’ ex-
periment.

each participant was released with NSD. We see that even qualitatively, pairwise similarities from291

human behavioral data appear remarkably similar to pairwise similarities estimated from model-292

predicted VO responses (shown in the main text Figure 5A); in both cases, faces and scenes appear293

clustered together. This is in contrast to the pairwise similarities estimated from model-predicted V1294

responses, as shown below in Supplementary Figure A.10.295

C Supplemental Discussion296

C.1 Relationship to concurrent work297

Concurrent with the present work, recent papers [15, 16] have demonstrated that when trained with298

large amounts of data such as NSD, the response-optimization approach can perform competitively299

with state-of-the-art task-optimized models. Khosla et al. [16] adopt similar neural network ar-300

chitectures and compare asymptotic performance and sample complexity in models of specialized301

category-selective regions of the brain, such as FFA and EBA, and do not study the ventral visual302

cortical hierarchy (the ROIs investigated in this study). St. Yves et al. [15] study the early to303

intermediate visual cortex (V1-V4), specifically the role played by the brain hierarchy in training304

brain-optimized models that are not hierarchical by design, presenting alternate evidence against305

the hierarchical nature of neural representations. Our work differs from these studies in several306

respects: (i) We develop models for regions along the entire ventral visual hierarchy, including307

higher-order ROIs like LO and VO (the human analogues of IT). (ii) We study the generalization308

of response-optimized models to datasets beyond NSD and compare against a richer battery of309

task-optimized models. (iii) We demonstrate the denoising capability of models, showing that the310

predicted activity not only serves as a useful surrogate for the measured activity, but also yields a311

better match to neural data in other datasets and human behavior. (iv) While St. Yves et al. [15] also312

demonstrate the ability of response-optimized models to recover the retinotopic organization in early313

visual cortex, they do so at the qualitative level of capturing size-eccentricity relationships. In the314

present study, we perform rigorous quantitative comparisons and sample complexity analysis on the315

ability of response-optimized models to capture the precise spatial receptive field tuning of individual316

voxels. (v) St. Yves et al.[15] focus on network architectures and ask if hierarchy, at the level of317
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Figure A.10: V1 T-
SNE plot depicting the
similarity structure of
model-predicted V1 re-
sponses for the 100 im-
ages used in the ‘nsd-
meadows’ experiment.

model architecture, is needed to explain brain activity. Here, on the other hand, we ask: what features318

emerge spontaneously in networks optimized to explain brain activity and what kinds of biases do319

these networks exhibit (shape v/s texture)? We demonstrate increasing separability of categorical320

information and alignment with human perception in the optimized models of ventral visual visual321

stream regions, providing a model abstraction of this key neural phenomenon. In the future, we322

hope these can be richly interrogated to generate mechanistic hypotheses. The strong shape bias in323

response-optimized, but not task-optimized models, further has interesting implications for computer324

vision models. Altogether, these studies and our work invite a shift from the task-optimized modeling325

framework, providing an alternate modeling strategy to understand neural representations.326
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