
Under review as a conference paper at ICLR 2024

PUSHING GRADIENT TOWARDS ZERO: A NOVEL
PRUNING METHOD FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, large language models (LLMs) have attracted widespread attention due
to their dominating performance on some complex language modelling tasks.
However, because of their massive size, LLMs require huge amounts of GPU re-
sources in inference which limits their usability. In this paper, we propose an
effective pruning method termed PGZ(Pushing Gradient towards Zero), which
prunes LLMs in one-shot, without any retraining. The method consists of a new
gradual pruning method and a novel weight reconstruction method where gradi-
ent is pushed towards zero. More precisely, we construct a loss function based on
gradient information and optimize it leveraging second-order information implic-
itly. In addition, the inherent nature of PGZ makes it suitable for parallelization.
Notably, we conduct a thorough evaluation of PGZ on LLaMA-7B,13B,30B,65B
across various language benchmarks. Experimental results demonstrate that PGZ
consistently outperforms the existing pruning methods for LLMs in unstructured
pattern and semi-structured (2:4 and 4:8) pattern. PGZ is also competitive in terms
of zero-shot tasks and is compatible with weight quantization approaches.

1 INTRODUCTION

Recently, a growing number of Large Language Models (LLMs) demonstrate excellence in a wide
range of language tasks. However the computational and storage cost of LLMs makes them difficult
to deploy. Taking LLaMA-65b (Touvron et al., 2023) as an example, it has 65 billion parameters
and thus even it uses a compact float16 format for inference, its parameters still occupy 120 GB
of memory which makes inference on a single A100 GPU infeasible. Model compression (Hoefler
et al., 2021; Gholami et al., 2022) is the standard technique to reduce these overheads. There are
many pruning techniques suitable for the model with up to a few hundred million parameters. How-
ever, these methods are incapable of handling with billion-parameter models. One reason is that
these top-performing methods usually require model retraining to reduce loss of accuracy, which is
extremely expensive for billion-parameter models. We thus turn to post-training methods, which is
also highly challenging to scale to billions of parameters.

Contribution. In this paper, we propose PGZ(Pushing Gradient towards Zero), a novel one-shot
pruning method which works by reducing the pruning problem to a set of optimization sub-problems
which aim to push all modified gradients towards zero. It then solve these sub-problems via a
modified gradient descent method. PGZ is efficient enough to execute on models with billions of
parameters in at most a few hours. Additionally, we need only a single NVIDIA A100 GPU with
40GB of memory and PGZ is accurate enough and the accuracy loss is negligible.

Our experiments, as shown in Figure, lead to some conclusions. Firstly, PGZ (both unstructured
pruning and semi-structured pruning) can be applied to models with billions of parameters, with
less accuracy loss than existing one shot pruning methods. Secondly, we show that compared with
existing one shot pruning methods, PGZ can provide a more robust result in the joint sparsification
and quantization regime, where some components in models are pruned while the rest are quantized
to 4 bits.
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Figure 1: Pruning LLaMA family to different sparsity, comparing PGZ with the FP16 baseline and
SparseGPT.
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Figure 2: Joint doing pruning and int4 quantization on LLaMA family, comparing PGZ with the
FP16 baseline and SparseGPT.

2 RELATED WORK

Although pruning methods can date back to the 1980s (Mozer & Smolensky, 1988; Kruschke, 1988),
recent advances in deep learning and its potential for applications in embedded systems has led to
an increasing number and variety of algorithms for pruning deep neural networks. Pruning meth-
ods fall broadly into three categories: unstructured pruning, structured pruning and semi-structured
pruning (Zhou et al., 2021; Hubara et al., 2021; Anwar et al., 2017). Unstructured methods remove
individual weights at any location, which are fine-grained and can achieve extremely high compres-
sion ratio, but are unfriendly to modern hardware. Structured methods remove parameters in groups
which are friendly to hardware but limit the expressiveness of the models. Recently semi-structured
pruning methods are proposed, which can maintain the advantages of both unstructured pruning
methods and structured pruning methods simultaneously on specifically designed GPUs.

Semi-structured Pruning. The N:M pruning methods remove N weights out of consecutive
M weights. This constraint on sparsification allows for sparse representations similar in flexi-
bility to those of unstructured approaches but also permits efficient hardware implementation as
well (Holmes et al., 2021). Zhou et al. (2021) extends STE to tackle the problem of training N:M
sparse neural networks. Hubara et al. (2021) introduces a novel transposable fine-grained spar-
sity mask and formulate the problem of finding the optimal transposable-mask as a minimum-cost
flow problem. It achieves a 2× speed-up with no o accuracy degradation. Anwar et al. (2017) in-
troduces structured sparsity at various scales for convolutional neural networks: feature map-wise,
kernel-wise, and intra-kernel strided sparsity. This structured sparsity is very advantageous for direct
computational resource savings on embedded computers.

Post-training Pruning. Post-training compression methods originally are popular in model quan-
tization which contains the AdaRound method (Nagel et al., 2020), BRECQ (Li et al., 2021),
OBQ (Frantar & Alistarh, 2022). Frantar et al. (2022) proposes GPTQ, a quantization method
for models with billions of parameters. Hubara et al. (2021); Frantar & Alistarh (2022) extendes
post-training method to model pruning. While these approaches can produce good results for mod-
els up to 100 million parameters in a few GPU hours, scaling them to networks orders of magnitude
larger is challenging. Recently, some one-shot pruning methods for LLMs are proposed, the most
representative of which is SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun et al., 2023).
SparseGPT works by reducing the pruning problem to a set of extremely large-scale instances of
sparse regression. It then solves these instances via a new approximate sparse regression solver.
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Wanda removes weights with the smallest magnitudes multiplied by the corresponding input activa-
tions on a per-output basis.

3 BACKGROUND

Transformer. LLMs are typically built with transformers (Vaswani et al., 2017). A LLM model
consists of an embedding input layer and a number of decoder layers. Each decoder layer comprises
a self-attention module. The self-attention module maps input features into a set of queries, keys,
and values q,k,v, via linear projection layers with weight matrices Wq,Wk,Wv. Given q,k,v,
it computes the outputs o as

o = softmax(qkT )v (1)

The outputs are then projected by a linear layer with a weight matrix Wo. And MLP layers are
followed.

Layer-Wise Pruning. Post-training compression is usually done by splitting the full-model com-
pression problem into layer-wise sub-problems, whose solution quality, as shown in formula (2), is
measured in terms of the squared error between the output, for given inputs X, of the uncompressed
layer with weights W and that of the compressed one. Thus, the objective is to find a matrix of
pruned weights Ŵ which minimizes the squared error defined in (2).

F = ||WX− ŴX||2F (2)

where ||.||F is Frobenius norm, W is the origin weights, Ŵ is the weights of the pruned layer, X is
the input of the layer. Formula (2) can be restated as

F = ||WX− (W +∆W)X||2F
= ||∆WX||2F

(3)

where ∆W is the variation of weight during pruning. Formally, minimizing F can be rewrote as

argmin∆W||∆WX||2F . (4)

4 THE PGZ ALGORITHM

4.1 THE MODIFIED GRADIENT

The primary work during pruning is to minimize ||∆WX||2F . It is easily verified that (4) can be
converted into (5).

||∆WX||2F =

n∑
i=1

||XT [Ŵi −Wi]||22 (5)

where Ŵi and Wi is the i-th column of ŴT and WT respectively, n is the number of columns in
∆WT .

min
Ŵ
||∆WX||2F =

n∑
i=1

min
Ŵi

||XT [Ŵi −Wi]||22 (6)

Two different columns in the transposed weight matrix are independent. This feature help us divide
the problem into n independent quadratic optimization problems. These problems can be solved in
parallel. We extract one item from (6) and rewrite it as

w = argminw||XT [w −Wi]||22
= argminw(wT (XXT )w − 2WT

i XXTw)
(7)

Due to XXT is positive-definite(If it is not, we add λI to it), (7) is equal to pushing its gradient
towards zero.

grad(w) = 2(XXT )w − 2XXTWi = 0 (8)
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Some problems still exist when solving equation (8). The first is the numeric overflow problem,
which is caused by the huge gradient during weight reconstruction. In addition, XXT calculated
from each layer’s input usually has a large condition number and thus makes solving (8) a huge
challenge. The third is the number of equation (8) is equal to that of columns in the weight matrix
and thus it makes traditional methods of solving equations unfeasible due to its inefficiency and it
also limits pruning granularity.

To solve these problems, we propose several simple and effective methods including input pre-
processing, matrix decomposition. In the rest of the section, we focus on the second method. We
denote H as XXT and leverage Cholesky decomposition H = LTL to reduce the condition number
of weight matrix. Then grad(w) can be rewrote as

grad(w) = 2Hw − 2HWi

= 2(LTL)w − 2(LTL)Wi

= LT(2Lw − 2LWi)

= LTS(w)

(9)

For convenience, b ≜ −2LWi, S(w) ≜ 2Lw + b. Due to L is non-singular, pushing grad(w)
towards zero is equivalent to pushing S(w) towards zero.

5 PRUNING METHOD

Typically, pruning method comprises mask selection and weight reconstruction. Mask selection
shifts S(w) away from zero and weight reconstruction pushes S(w) towards zero. We construct
pruning metric and develop weight reconstruction strategy based on S(w). The purpose of this
section is to introduce a novel pruning method, which consists of a new pruning metric, a new
pruning method and a new weight reconstruction strategy.

5.1 PRUNING METRIC

For each individual weight wj , we evaluate its importance by its score, which is defined as the
product of ∆S1 and ∆S2 introduced by removing wj . ∆S1 and ∆S2 is stated as formula (10).

∆S1 = ||S(w)− S(w|wj = 0)||2
∆S2 = |S(w|wj = 0)jwj |

(10)

It is easily verified that
∆S1 = 2||Lj||2|wj |
∆S2 = |Ljjw

2
j − (2Lw + b)jwj |

(11)

The score Sj for weight wj is defined as
Sj = ∆S1∆S2 (12)

We take the scores calculated at previous iterations into consideration. At (k + 1)-th iteration, the
score Sk+1

j is defined as

Sk+1
j = (1− α)Sj + αSk

j (13)

where Sj is calculated according to (12), Sk
j is the score at k-th iteration, α is a hyber-parameter,

we set α to be 0.1 in the paper.

5.2 GRADUAL PRUNING METHOD

In this subsection, we introduce a novel gradual pruning method in which the sparsity is increased
from the initial sparsity value s0 at a fixed step size ∆s. ∆s is also called sparsity step size. At step
t, the sparsity value is

st = s0 +∆s ∗ t (14)
The mask is updated per step according to the following formula.

maskt+1 = maskt |∆maskt (15)
0 = maskt & ∆maskt (16)

| is bitwise OR operator, & is bitwise AND operator.
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5.3 WEIGHT RECONSTRUCTION

Weight reconstruction aims to push the modified gradient S(w) towards zero, which is modelled as
an optimization problem. The new loss function is defined as

f(w) = α||S(w)||1 + βS(w)TS(w) (17)

where α and β is hyper-parameters, S(w) is the modified gradient, w is weight vector.

The goal of weight reconstruction is to minimize f(w). We leverage Taylor expansion and get the
approximation formula

f(w +∆w) ≈ f(w) +∇f(w)T∆w (18)
The key is to find out a direction ∆w such that ∇f(w)T∆w is negative from (18). After mathe-
matical derivation, the gradient of f(w) with respect to w is

∇f(w) = 2LT∇Sf (19)

−LT∇Sf is chosen to be the descent direction. Thus each iteration is depicted as

wt+1 = wt − λLT∇Sf

= wt − λLT(αsign(S) + 2βS)
(20)

where t is the optimizing step, λ is the learning rate. We learn from Lion optimizer (Chen et al.,
2023) and propose a modified gradient descent method. The method converges to high precision
solution rapidly. In addition, it can be extended to parallel scenarios, which speeds up pruning.

Finally, we present the full pseudocode for the modified gradient descent method.

Algorithm 1 Modified Lion Optimizer, β1 = 0.9, β2 = 0.99, ρ = 1.4, µ = 0.01, λ = 8e− 4

for k=0,1,2,... do
g ← ∇f
c← β1m+ (1− β1) g
m← β2m+ (1− β2) g
v ← ρsign (c) + (2− ρ) g
θ ← (1− µλ) θ − λ v

k+1
end for

5.4 JOINT SPARSIFICATION QUANTIZATION

The algorithm 1 indicates that pruning and quantization can be merged into a single compression
procedure in which we do pruning and quantization alternately. Quantization is inserted between
mask selection and weight reconstruction and we deduce from this that later pruning strategy is
influence by earlier quantization, which is different from the prior technique (Frantar & Alistarh,
2022). Due to pruning and quantization is excuted simultaneously in a single pass, it has no more
costs than PGZ.

6 EXPERIMENTS

6.1 SETUP

Models, Datasets and Evaluation We primarily evaluate PGZ on the LLaMA model family includ-
ing LLaMA-7B/13B/30B/65B. All pruning experiments are conducted on a single A100 GPU with
40G of memory. Similar to SparseGPT, we prune Transformer layers sequentially in order, which
can significantly reduce memory requirements. Our calibration set consists of 320 sequences (2048
tokens each) sampled from the first shard of the C4 (Raffel et al., 2020) training data according to
the observation of increasing the amount of calibration data improves the performance of our pruned
models . We measure the performance of the pruned networks via perplexity computed on WikiText-
2 (Merity et al., 2016) validation set. We also provide the perplexity metric on other validation sets in
Appendix C. As a supplement to perplexity evaluations, We evaluate zero-shot ability of the pruned
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models with GPTQ’s (Frantar et al., 2022) implementation, which is based on the public evaluation
benchmark EleutherAI LM Harness. For zero-shot performance, we evaluate on six common sense
benchmarks: BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), WinoGrande (Sakaguchi et al.,
2021), ARC Easy and Challenge (Boratko et al., 2018), and OpenbookQA (Mihaylov et al., 2018).
We report the accuracy on each benchmark as well as the overall mean accuracy.

Baselines. We compare PGZ against SparseGPT which is a novel pruning method applied to LLMs.
It scales existing second-order based approaches (Frantar & Alistarh, 2022) to LLMs. We use
the implementation of SparseGPT provided by IST-DASLab to reproduce the pruning method in
SparseGPT.

6.2 SPARSITY PATTERN.

For all pruning methods, we follow the setup of SparseGPT, where a uniform sparsity is imposed
for all layers and there is no subsequent retraining. We skip the first embedding layer and the
final classification head, as is common in pruning Transformers. Our primary approach to induce
sparsity is through unstructured pruning. Considering the potential need for practical speedup, we
also conduct evaluations on structured N:M sparsity (Zhou et al., 2021) (Hubara et al., 2021).
Specifically, we provide comparisons on 4:8 and 2:4 sparsity patterns.

6.3 PREPROCESSING OPERATION

In experiments, we find that there are some outliers (Dettmers et al., 2022) in input which causes the
numerical stability issues. To address the problem, we modify the input according to the following
formula.

X =
X−mean(X)√

mean(XXT ) + eps
(21)

6.4 LANGUAGE MODELING

Unstructured Sparsity. For each of the LLaMA models, we adopt different approaches to prune
it to unstructured 50% sparsity. we evaluate two methods (SparseGPT, PGZ) on several validation
datasets including WikiText2, PTB and C4. Results on WikiText2 are reported in Table 1 and results
on other datasets can be found in Appendix. Experimental results illustrate that PGZ outperforms
the existing pruning approaches.

Structured N:M Sparsity. We now turn our eyes to structured N:M sparsity. Results for structured
4:8 and 2:4 sparsity are shown in the lower parts of Table 1. We can see that PGZ can be easily
generalized to structured N:M sparsity. Across 4:8 and 2:4 sparsity, PGZ consistently outperforms
baseline approaches.

Table 1: LLaMA perplexity results on WikiText2.

Models Sparsity Dense SparseGPT PGZ

LLaMA-7b 50% 5.68 7.23 7.04
LLaMA-13b 50% 5.09 6.21 6.17
LLaMA-30b 50% 4.77 5.31 5.16
LLaMA-65b 50% 3.56 4.57 4.52
LLaMA-7b 2:4 5.68 11.00 9.71
LLaMA-13b 2:4 5.09 9.11 8.24
LLaMA-30b 2:4 4.77 7.16 6.40
LLaMA-65b 2:4 3.56 6.28 5.69
LLaMA-7b 4:8 5.68 8.60 7.96
LLaMA-13b 4:8 5.09 7.40 6.94
LLaMA-30b 4:8 4.77 6.17 5.72
LLaMA-65b 4:8 3.56 5.38 5.10
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6.5 ZERO-SHOT EXPERIMENTS

To complement the perplexity evaluations, we employ Language Model Evaluation Harness to con-
duct test on more datasets, including BoolQ, RTE, WinoGrande, ARC-e, ARC-c and OBQA. In
these experiments, we set sparsity step size ∆s 0.1. Results are summarized in Table 2. Averaging
the accuracy over the 6 tasks under consideration, our method is competitive with SparseGPT.

Table 2: Accuracies (%) for 6 zero-shot tasks with unstructured 50% sparsity.

Models Methods BoolQ RTE WinoGrande ARC-e ARC-c OBQA Mean

LLaMA-7B
Dense 71.7 53.4 68.0 67.7 38.6 28.0 55.1

SparseGPT 71.5 56.8 65.8 64.3 36.0 25.0 53.2

PGZ 72.3 62.8 63.9 63.1 36.7 24.2 53.8

LLaMA-13B
Dense 68.3 65.3 70.0 73.6 44.0 30.6 58.9

SparseGPT 66.7 52.0 70.9 66.9 39.2 26.0 53.8

PGZ 66.6 49.5 71.0 69.4 41.7 28.8 54.6

LLaMA-30B
Dense 66.9 61.4 72.4 75.3 46.9 29.4 59.6

SparseGPT 71.0 61.4 72.0 73.9 46.0 31.2 59.2

PGZ 71.1 61.0 70.8 75.2 46.5 31.6 59.4

LLaMA-65B
Dense 81.8 71.8 76.9 75.4 47.2 36.4 65.0

SparseGPT 81.2 70.4 74.1 74.8 44.7 32.2 62.8

PGZ 83.0 70.0 76.7 73.9 47.1 33.0 64.0

6.6 JOINT SPARSIFICATION & QUANTIZATION

The combination of pruning and quantization is another attractive research direction, which can
have the advantages of both approaches: computational speedups from sparsity and memory savings
from quantization. Specifically, if we compress one model to 50% sparsity + 4-bit weight, and use
a bitmask to indicate their positions, then this has the same overall memory consumption as 3-bit
quantization. Hence, in table 6, we compare PGZ 50% + 4-bit with state-of-the-art GPTQ 3-bit
numbers. It can be seen that 50% + 4-bit models are more accurate than their respective 3-bit
versions for LLAMA-7B/13B/30B/65B. We also tested 2:4 and 4:8 in combination with 4-bit on
LLAMA.

Table 3: Comparing joint PGZ + 4-bit quantization with 3bit GPTQ on WikiText2.

Models sparsity pattern Dense 3bit GPTQ PGZ + 4-bit

LLaMA-7b 50% 5.68 8.07 7.04
LLaMA-13b 50% 5.09 6.63 6.24
LLaMA-30b 50% 4.77 5.69 5.20
LLaMA-65b 50% 3.56 5.04 4.56
LLaMA-7b 2:4 5.68 - 9.70
LLaMA-13b 2:4 5.09 - 8.37
LLaMA-30b 2:4 4.77 - 6.50
LLaMA-65b 2:4 3.56 - 5.77
LLaMA-7b 4:8 5.68 - 8.04
LLaMA-13b 4:8 5.09 - 7.01
LLaMA-30b 4:8 4.77 - 5.77
LLaMA-65b 4:8 3.56 - 5.15
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6.7 ABLATION STUDY

In this section, we will answer the following questions about PGZ:

• What is the relationship between sparsity step size and perplexity?
• What is the relationship between sparsity and perplexity?
• what is the relationship between the number of calibration data and the performance of

these pruned models?

Varying Sparsity Step Size. We conduct experiments with varying sparsity step size ∆s for un-
structured pruning at different sparsity level, the result of which are depicted in Figure 3. The
sparsity is set to 50
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Figure 3: Sparsity step size-vs-perplexity at 50%, 60%, 70% sparsity. The reduction of sparsity step
size can improve the performance of the pruned models.

Varying Sparsity. We conduct experiments with varying sparsity for unstructured pruning, the
results of which are depicted in Figure 4. It can be seen that PGZ and SparseGPT shows similar
trends of perplexity increase as the sparsity level gets higher. However, SparseGPT displays a more
severe degradation trend.

The number of calibration samples. Figure 4 demonstrates that increasing the number of calibra-
tion samples improves the model’s accuracy performance.
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Figure 4: The left shows that the relationship between sparsity and perplexity. The right shows that
the relationship between calibration samples and perplexity.
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A APPENDIX

A.1 ADDITIONAL LANGUAGE GENERATION RESULTS

Tables 6, 7, 8 and 9 show additional results for language generation tasks.

Table 4: Comparing PGZ with SparseGPT on PTB.

Models Sparsity SparseGPT PGZ

LLaMA-7b 50% 78.16 56.13
LLaMA-13b 50% 37.24 35.35
LLaMA-30b 50% 26.23 25.72
LLaMA-65b 50% 28.21 27.94
LLaMA-7b 2:4 151.07 102.22
LLaMA-13b 2:4 70.06 55.36
LLaMA-30b 2:4 32.12 31.04
LLaMA-65b 2:4 33.14 32.63
LLaMA-7b 4:8 108.29 75.21
LLaMA-13b 4:8 47.12 41.58
LLaMA-30b 4:8 29.27 27.71
LLaMA-65b 4:8 31.07 31.55

Table 5: Comparing PGZ with SparseGPT on C4.

Models Sparsity SparseGPT PGZ

LLaMA-7b 50% 9.27 9.15
LLaMA-13b 50% 8.12 8.09
LLaMA-30b 50% 7.34 7.19
LLaMA-65b 50% 6.66 6.57
LLaMA-7b 2:4 13.73 12.11
LLaMA-13b 2:4 11.29 10.30
LLaMA-30b 2:4 9.42 8.71
LLaMA-65b 2:4 8.38 7.80
LLaMA-7b 4:8 10.98 10.32
LLaMA-13b 4:8 9.40 8.95
LLaMA-30b 4:8 8.20 7.83
LLaMA-65b 4:8 7.41 7.14
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Table 6: Comparing joint PGZ + 4-bit quantization with SparseGPT + 4-bit quantization on PTB.

Models Sparsity SparseGPT + 4bit PGZ + 4bit

LLaMA-7b 50% 103.02 55.53
LLaMA-13b 50% 39.94 36.63
LLaMA-30b 50% 27.29 25.86
LLaMA-65b 50% 27.62 26.69
LLaMA-7b 2:4 210.51 102.23
LLaMA-13b 2:4 65.66 55.89
LLaMA-30b 2:4 36.19 32.16
LLaMA-65b 2:4 37.49 34.07
LLaMA-7b 4:8 132.74 74.96
LLaMA-13b 4:8 46.47 41.83
LLaMA-30b 4:8 30.64 28.34
LLaMA-65b 4:8 34.16 31.76

Table 7: Comparing joint PGZ + 4-bit quantization with SparseGPT + 4-bit quantization on C4.

Models Sparsity SparseGPT + 4bit PGZ + 4bit

LLaMA-7b 50% 11.37 9.16
LLaMA-13b 50% 8.43 8.20
LLaMA-30b 50% 7.57 7.26
LLaMA-65b 50% 6.92 6.62
LLaMA-7b 2:4 18.17 12.11
LLaMA-13b 2:4 11.72 10.47
LLaMA-30b 2:4 9.74 8.80
LLaMA-65b 2:4 8.83 7.87
LLaMA-7b 4:8 13.48 10.35
LLaMA-13b 4:8 9.71 9.07
LLaMA-30b 4:8 8.45 7.89
LLaMA-65b 4:8 7.75 7.20
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