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Abstract

One of the biggest challenges to modern deep
reinforcement learning (DRL) algorithms is sam-
ple efficiency. Many approaches learn a world
model in order to train an agent entirely in imag-
ination, eliminating the need for direct environ-
ment interaction during training. However, these
methods often suffer from either a lack of imagi-
nation accuracy, exploration capabilities, or run-
time efficiency. We propose HIEROS, a hierar-
chical policy that learns time abstracted world
representations and imagines trajectories at mul-
tiple time scales in latent space. HIEROS uses an
S5 layer-based world model, which predicts next
world states in parallel during training and itera-
tively during environment interaction. Due to the
special properties of S5 layers, our method can
train in parallel and predict next world states iter-
atively during imagination. This allows for more
efficient training than RNN-based world models
and more efficient imagination than Transformer-
based world models. We show that our approach
outperforms the state of the art in terms of mean
and median normalized human score on the Atari
100k benchmark, and that our proposed world
model is able to predict complex dynamics very
accurately. We also show that HIEROS displays
superior exploration capabilities compared to ex-
isting approaches.

1. Introduction

Learning behavior from raw sensory input is a challenging
task. Reinforcement learning (RL) is a field of machine
learning that aims to solve this problem by learning a policy
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that maximizes the expected cumulative reward in an envi-
ronment (Sutton & Barto, 2018). The agent interacts with
the environment by taking actions and receiving observa-
tions and rewards. The goal of the agent is to learn a policy
that maximizes the expected cumulative reward. The agent
can learn this policy by interacting with the environment and
observing rewards, which is called model-free RL. Some
agents also learn a model of their environment and learn a
policy based on simulated environment states. This is called
model-based RL (Moerland et al., 2023).

However, a significant hurdle encountered by RL algorithms
is the lack of sample efficiency (Micheli et al., 2023). The
demand for extensive interactions with the environment to
learn an effective policy can be prohibitive in many real-
world applications (Yampolskiy, 2018). In response to this
challenge, deep reinforcement learning (DRL) has emerged
as a promising solution. DRL leverages neural networks
to represent and approximate complex policies and value
functions, allowing it to tackle a wide array of problems and
environments effectively.

One such approach is the concept of “world models”. World
models aim to create a simulated environment within which
the agent can generate an infinite amount of training data,
thereby reducing the need for extensive interactions with
the real environment (Ha & Schmidhuber, 2018). However,
a key prerequisite for world models is the construction of
precise models of the environment, a topic that has gar-
nered substantial research attention (Hafner et al., 2022b;
2020; Kaiser et al., 2019). The idea of learning models of
the agent’s environment has been around for a long time
(Nguyen & Widrow, 1990; Schmidhuber, 1990; Jordan &
Rumelhart, 1992). After being popularized by Ha & Schmid-
huber (2018), world models have since evolved and diver-
sified to address the sample efficiency problem more effec-
tively. Most prominently, the DreamerV1-3 models (Hafner
et al., 2020; 2022c; 2023) have achieved state-of-the-art
results in multiple benchmarks such as Atari1l00k (Belle-
mare et al., 2013) or Minecraft (Kanitscheider et al., 2021).
These models use a recurrent state space model (RSSM)
(Hafner et al., 2022b) to learn a latent representation of the
environment. The agent then uses this latent representa-
tion to train in imagination. Recently, Transformers have
gained popularity as backbones for world models, due to
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Figure 1. On the left: Hierarchical subactor structure of HIEROS. Each layer of the hierarchy learns its own latent state world model and
interacts with the other layers via subgoal proposal. The action outputs of each actor/critic is the subgoal input of the next lower layer.
The output of the lowest level actor/critic is the actual action in the real environment. On the right: Training and imagination procedure of
the SSWM. HIEROS uses a stack of S5 blocks with their architecture shown above.

their ability to capture complex dependencies in data. We
will discuss some approaches using Transformer-based ar-
chitectures in Appendix B. One of the major drawbacks of
those architectures is the inherent lack of runtime efficiency
of the attention mechanism used in Transformers. Recently
proposed structured state space sequence (S4) models (Gu
et al., 2022) show comparable or superior performance in a
wide range of tasks while being more runtime efficient than
Transformer-based models, which makes them a promising
alternative (Deng et al., 2023; Lu et al., 2023).

Another avenue for improving RL sample efficiency is hier-
archical RL (HRL) (Dayan & Hinton, 1992; Parr & Russell,
1997; Sutton et al., 1999). This approach operates at dif-
ferent time scales, allowing the agent to learn and make
decisions across multiple levels of abstraction. The idea is
that higher level policies divide the environment task into
smaller subtasks or subgoals (also commonly called skills).
The lower level policy is then rewarded for fulfilling these
subgoals and is thus guided to fulfill the overall environ-
ment task. This approach has been shown to be effective
in a variety of tasks (Hafner et al., 2022a; Nachum et al.,
2018; Jiang et al., 2019; Nachum et al., 2019a). Hafner et al.
(2022a) proposes an HRL approach that builds on Dream-
erV2 (Hafner et al., 2022c) and achieves superior results in
the Atari100k benchmark.

Finding the right experience replay buffer sampling strategy

is key for many RL algorithms, as it has a great influence on
the final performance of the agent (Fedus et al., 2020; D’Oro
et al., 2023). Li et al. (2023) introduce a time balanced
replay dataset which empirically boosted the performance
of their imagination based RL agent. However, this replay
procedure relies on recomputing all probabilities in O(n)
at each iteration, which reduces its applicability for other
approaches.

LeCun (2022) theorizes that an HRL agent that learns a
hierarchy of world models and features intrinsic motivation
to guide exploration could potentially achieve human-level
performance in a wide range of tasks. Nachum et al. (2019c)
and Aubret et al. (2023) provide further reasoning that com-
bining HRL with other successful approaches such as world
models could lead to a significant improvement in sample
efficiency. Motivated by these findings, we propose HI-
EROS, a multilevel HRL agent that learns a hierarchy of
world models, which use S5 layers to predict next world
states. Specifically, our contributions are as follows:

¢ We introduce HIEROS, a Hierarchical Reinforcement
Learning (HRL) agent designed to learn a hierarchy
of world models, facilitating the acquisition of com-
plex and temporally abstract behaviors. This enables
HIEROS to project future environment states both far
into the future and accurately for near-term interac-
tions. Notably, our architecture is the first of its kind
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to employ hierarchical imagination within a multilevel
framework, characterized by more than two layers.

 Furthermore, we propose SSWM, a world model archi-
tecture that leverages S5 layers to forecast subsequent
world states. This model exhibits several advantageous
properties compared to the RSSM used in DreamerV3
(Hafner et al., 2023) and several proposed Transformer-
based alternatives (Micheli et al., 2023; Robine et al.,
2023; Chen et al., 2022) as well as a recently proposed
S4WM (Deng et al., 2023). Our novel contribution
lies in leveraging the efficient design of our SSWM,
capitalizing on its accessibility to the internal state, to
effectively model environment dynamics in the context
of imagination-based reinforcement learning.

* We derive efficient time-balanced sampling (ETBS) for
experience dataset sampling from the time-balanced
sampling method proposed by Robine et al. (2023)
with a sampling time complexity of O(1).

* We show that HIEROS achieves a new state-of-the-
art mean and median normalized human score in the
Atari100k benchmark (Bellemare et al., 2013).

* We conduct a thorough ablation study that combining
hierarchical imagination based learning and our SSWM
yields superior results. We also test the impact of
different design choices of HIEROS (e.g., world model
choice, hierarchy depth, sampling procedure).

We describe our method in detail in Section 2. In Sec-
tion 3, we evaluate HIEROS on the Ataril 00k benchmark
(Bellemare et al., 2013) and analyze our results. Concluding
remarks and ideas for future work are given in the final Sec-
tion 4. We provide a section explaining some background
concepts of the topic in Appendix A. In this introduction
we already discussed several related works, however, we
provide further comparisons with existing papers in Ap-
pendix B. In Appendix G we provide a wide range of abla-
tion studies.

2. Methodology

In the context of RL, an agent interacts with an environment
at discrete time steps, denoted as ¢. For the Atari 100K
benchmark, for instance, where the environment represents
a game like Pong, the agent’s interaction involves selecting
an action ¢ at time ¢ within the game, similar to making
in-game moves or pressing buttons. Subsequently, the agent
receives an observation o and a reward r from the environ-
ment. In the case of Pong, o typically takes the form of a
pixel image capturing the game’s visual state, while r repre-
sents the points earned as a result of the agent’s actions. The
agent’s primary goal is to learn an optimal policy 7, guiding
its interactions with the environment, with the overarching
objective of maximizing the expected cumulative reward,
expressed as E [>,2 v'r¢], where v < 1 represents the

discount factor and 7, stands for the reward at time step .

In this section we introduce HIERarchical imagination On
Structured state space sequence world models (HIEROS),
a hierarchical model-based RL agent, that learns on tra-
jectories generated by a Simplified Structured State Space
Sequence (S5) model (Smith et al., 2023). We mainly base
our approach upon DreamerV3 (Hafner et al., 2023) and
Director (Hafner et al., 2022a). In the following section, we
propose two major changes to the DreamerV3 architecture.
First, we describe a hierarchical policy, where each abstrac-
tion layer learns its own S5 world model and an actor-critic.
Second, we replace the world model with a world model
based on S5 layers. We also introduce efficient time-based
sampling (ETBS) method for true uniform sampling over
the experience dataset with O(1) time complexity.

2.1. Multilayered Hierarchical Imagination

HIEROS employs a goal conditioned hierarchical policy.
Each abstraction layer learns its own S5 world model, an
actor-critic and a subgoal autoencoder. We give some
background on hierarchical reinforcement learning in Ap-
pendix A.2. The overall design of the subgoal proposal and
the intrinsic reward computation is similar to the Director
architecture (Hafner et al., 2022b), which successfully im-
plements a hierarchical policy on the basis of DreamerV1.
In contrast to Director and many other works, our architec-
ture can easily be scaled to multiple hierarchy levels. Most
approaches apply only one lower level and one higher level
policy (Hafner et al., 2022a; Nachum et al., 2018; Jiang
et al., 2019; Nair & Finn, 2019).

In Figure 1, we illustrate the hierarchical structure and
interaction among subactors. Each subactor ¢ comprises
three modules: the world model (wé), an actor-critic com-
ponent (r},), and a subgoal autoencoder (g;,). The world
model imagines trajectories for the actor-critic training. The
subgoal autoencoder compresses and decompresses states
within the world model, with the decoder handling subgoal
decoding, computing subgoal rewards r,, and generating
novelty rewards r,,,,. Only the lowest layer (subactor 0)
interacts directly with the environment. The higher layers
receive k consecutive world model states from the lower
level as observations, train their world model on these states
and generate subgoals g;. This is also in contrast to Director,
which only provides the higher level policy with every k-th
world state. We show the effect of providing all intermediate
states as input for the higher level policy in Appendix G.5.

The subgoals represent world states that the lower layer is
tasked to achieve. They are kept constant for k steps of the
lower layer. So higher level subactors can only update their
proposed subgoal every k steps of the next lower level. The
actor-critic component is trained on imagined rollouts of the
word model. The reward r is a mixture of extrinsic rewards
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Textr (1.€. Observed rewards directly from the environment),
subgoal rewards 14, and novelty rewards r;,4,:

T=Teztr + Wg - Ty + Wnov * Thov (H

Here, wy and w,,,, are hyperparameters that control the
influence of the subgoal and novelty rewards on the overall
reward. The subgoal and novelty rewards r, and r,,,, are
computed as follows:

gt

o Jt ottt 2
max(lg L @

Tnow = || Rt _gfp(ht)”? y Tg =
with h, being the deterministic world model state, gfb the
subgoal autoencoder of subactor 4, g; the subgoal and || - ||2
being the L2 norm. Since the subgoal autoencoder is trained
to compress and decompress the world model state, it is able
to model the distribution of the observed model states. This
allows using its reconstruction error on the current world
model state as a novelty reward 7,,,,,. The subgoal reward is
computed using the cosine max similarity method between
the world model state and the decompressed subgoal, which
was proposed by (Hafner et al., 2022a).

The actor learns the policy:

ar ~ 74 ((he, 2t), 9o e o, H(po(2elme))) (3)

with h; and z; representing the current model state, g; being
the subgoal, r; being the reward, c; being the continue
signal, and H (pg(z¢|m:)) being the entropy of the latent
state distribution. The entropy term is used to encourage
exploration and make the actor aware of states with high
uncertainty. These additional inputs to the actor network are
motivated by findings of Robine et al. (2023) which show,
that providing the predicted reward as input improves the
learned policy. The actor is trained using the REINFORCE
algorithm (Williams, 1992). In the case of a higher level
subactor, a; is the subgoal g; for the next lower layer. The
actor-critic trains three separate value networks for each
reward term to predict their future mean return. The subgoal
autoencoder gfb is composed of an encoder and a decoder:

Encoder: g; ~ py(g:|h:) , Decoder: hy =~ fi(g:) (4)

The deterministic part h; of the model state is the only input
for the subgoal autoencoder. This choice is made because
the stochastic part z; is less controllable by the lower-level
actor, making the subgoal less achievable. Hafner et al.
(2022a) found that the full latent state space of the lower
level world model as action space would constitute a high
dimensional continuous control problem for the higher level
actor, which is hard for a policy to optimize on. Instead, the
gfb compresses the latent state into a discrete subgoal space
of 8 categorical vectors of size 8. This compressed action
space is much easier to navigate for the subgoal propos-
ing policy than the continuous world state. While Hafner

et al. (2022a) uses the decompressed goal as input for their
worker policy, our approach with HIEROS demonstrates
improved subgoal completion and overall higher rewards
when training subactors on the compressed subgoals. We
directly compare these two approaches in Appendix G.7.
The subgoal autoencoder is trained using a variational loss:

Ly =|[fp(2) = hill2 +5~KL[29¢(9¢Iht)||(J(gt)](5)

z is sampled from the encoder distribution z ~ py,(ge|he)
and ¢(g;) is a uniform prior. /3 is a hyperparameter con-
trolling the impact of KL divergence on the overall loss.
All experiment hyperparameters are listed in Appendix E.
Following DreamerV3 (Hafner et al., 2023), Hieros’ hyper-
parameters remain fixed unless otherwise specified (e.g., in
ablation experiments).

Subgoals from all hierarchy layers can be decoded into the
game’s original image space, enabling visualization of the
agent’s objectives and making HIEROS actions explainable.
Examples are presented in Appendix D.

2.2. S5-based World Model (SSWM)

The world model in HIEROS is responsible for imagining
a trajectory of future world states. For this task, we use
a similar architecture as DreamerV3 while swapping out
the RNN-based sequence model for an S5-based sequence
model. We give some background on world models and
S4/S5 layers in Appendices A.1 and A.3. Our world model
consists of the networks:

(my, he) = folhe—1, 2e—1, at—1)
ze ~ qo(2e | 0r)
2 ~ po(2 | mt)

Sequence model: )
(
(
7t ~ po(Te | he, 2¢)
(
(

Encoder:

Dynamics predictor:
Reward predictor:

¢t ~ po(Ce | he, 2t)

0y ~ po (04 | hy, Zt)

Continue predictor:

Decoder:

With o, being the observation at time step ¢, m, the output of
the sequence model, and h; the internal state of the S5 layers
in the sequence model, which we use as the deterministic
part of the world state. z; is the stochastic part of the latent
world state, a; the action taken, Z; the predicted latent state,
7¢ the predicted extrinsic reward, ¢; the predicted continue
signal and 6; the decoded observation. Figure 1 shows the
overall structure of the world model.

During training, SSWM processes sequential observations
0o - - -0 and actions ag - --as—1. The encoder computes
posterior z; from o;, while the sequence model predicts
output m, and deterministic state h;. Using h; alongside m;
in predicting dynamics would be possible but doesn’t add
extra information. The posterior z; represents the stochastic
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state with knowledge of the actual observation o;, while
the prior Z; is the stochastic state predicted solely from the
deterministic sequence model output. During imagination,
the actor only has access to the prior 2.

The RSSM encoder in DreamerV3 computes the posterior
from both o; and the deterministic model state h;, which
makes the parallel computation of z; impossible. However,
Chen et al. (2022) show, that accurate representation can
also be learned by making the posterior z; independent of
h: and only predict the distribution p(z¢|o).

As detailed in Appendix A.3,S5 and S4 layers allow for both
parallel sequence modeling and iterative autoregressive next
state prediction. This makes them more efficient than RNNs
for model training and more efficient than Transformer-
based models for imagination. While Deng et al. (2023) pro-
pose S4WM, an S4-based world model, our use of S5 layers
is advantageous. S5 layers excel in modeling longer-term
dependencies and are more memory-efficient. Moreover,
the direct accessibility of the latent state x; in S5 layers
enables HIEROS to utilize the recurrent model state as the
deterministic component of the world state h;. This con-
trasts with other approaches that rely on using the sequence
model output as deterministic world model states (Chen
et al., 2022; Deng et al., 2023; Micheli et al., 2023), which
proves less effective in our experiments (Appendix G.2).

We use a modified version of an S5 layer, which was pro-
posed by Lu et al. (2023). They introduce a reset mechanism,
which allows setting the internal state h; to its initial value
ho during the parallel sequence prediction by also passing
the continue signal ¢ - - - ¢, to the sequence model. This
allows the actor to train on trajectories that span multiple
episodes without leaking information from the end of one
episode to the beginning of the next. We employ the same
mechanism for our SSWM, as trajectories spanning episode
borders are commonly encountered during training. It is
unclear if the S4WM proposed in Deng et al. (2023) faced
the same challenge and if and how they solved it.

The sequence model of our SSWM uses a stack of multiple
S5 blocks, as depicted in Figure 1. The design of this
block is inspired by the deep sequence model architecture
proposed by Smith et al. (2023) but we selected a different
norm layer, dropout and activation function. The number of
blocks used is listed in Appendix E. All parts of SSWM are
optimized jointly using a loss function that follows the loss
function of DreamerV3:

L(0) = Lprea(t) + cayn * Layn(0) + ctrep - Lrep(0) (6)

Lprea(0) = —In(pa(relhe, 20)) — In(po(celhe, 2))  (7)
— In(pg (0t |ht, 2t))

Layn(0) = max(1, KL [sg(go(2e|or)) || po(zelme)])  (8)

Lrep(0) = max(1, KL [go(2¢|or) || sg(po(zelmu))])  (9)

For Lgy» and L., we use the method of free bits introduced
by Kingma et al. (2016) and used in DreamerV3 (Hafner
et al., 2023) to prevent the dynamics and representations
from collapsing into easily predictable distributions. gy,
and a.., are hyperparameters that control the influence of
the dynamics and representation loss.

2.3. Efficient Time-balanced Sampling

When interacting with the environment, HIEROS collects
observations, actions, and rewards in an experience dataset.
After a fixed number of interactions, trajectories are sam-
pled from the dataset in order to train the world model, actor,
and subgoal autoencoder. DreamerV3 (Hafner et al., 2023)
uses a uniform sampling. This, however, leads to an over-
sampling of the older entries of the dataset, as the iterative
uniform sampling can select these entries more often than
newer ones. As explained in Section 1 Robine et al. (2023)
solve this using a time-balanced replay buffer with a O(n)
sampling runtime complexity with n being the size of the
replay buffer.

We propose an efficient time-balanced sampling method
(ETBS), which produces similar results with O(1) time
complexity. When iteratively adding elements to the ex-
perience replay dataset and afterward sampling uniformly,
the expected number of times /V;, an element z; has been
drawn after n iterations is
1 1 1
E(N.,)=~- --++—=H, —H; 10

(Na) i + 141 Tt n (10)
with H; being the i-th harmonic number. The probability of
sampling z;, i = 1,...,n, is

1 H, - H; —In(7
pi=—E(Ny,) = ~ - Y

i

n n

We use the approximation H, = In(z) to remove the need
to compute harmonic values. The idea is, to compute the
CDF of this probability distribution between 0 and n to trans-
form samples from the imbalanced distribution into uniform
samples via probability integral transformation (David &
Johnson, 1948). How we derive the CDF of this distribution
is shown in Appendix H. With the CDF we compute the
ETBS probabilities as follows:

Petvs(r) = CDF(p(x)) -7 +p(x)-(1-7)  (12)

with p being the original sampling distribution, C D F’ being
the CDF of the original distribution and 7 being a tem-
perature hyperparameter that controls the influence of the
original distribution on the overall distribution. We set 7 to
0.3 in our experiments. Empirically, a slight oversampling
of earlier experiences seems to have a positive influence on
the actor performance. The time complexity of this sam-
pling method is O(1), as the CDF can be precomputed and
the sampling is done in constant time. For further details,
see Appendix H.
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3. Experiments

We evaluate the performance of HIEROS on the Ataril00k
test suite (Bellemare et al., 2013), which contains a wide
range of games with different dynamics and objectives. In
each of these environments, the agent is only allowed 100k
interaction with the environment, which amounts to roughly
2 hours of total gameplay. We evaluate HIEROS on a subset
of 25 of those games. We compare HIEROS to the fol-
lowing baselines: DreamerV3 (Hafner et al., 2023), Di-
rector (Hafner et al., 2022a), IRIS (Micheli et al., 2023),
TWM (Robine et al., 2023), and SimpPLe (Kaiser et al.,
2019). SimPLe trains a policy on the direct pixel input of
the environment using PPO (Schulman et al., 2017), while
TWM, IRIS, Director and DreamerV3 train a policy on
imagined trajectories of a world model. TWM and IRIS use
a Transformer-based world model. IRIS, however, trains
the agent not in the latent space of the world model but in
the decoded state space of the environment, which is one
of the main differences to other approaches that leverage a
Transformer-based world model (e.g. TWM).

Director is a HRL agent that also builds upon the Dreamer
(Hafner et al., 2020) architecture. They do not report results
on the Ataril00k benchmark in their paper, so the reported
scores are from our own experiments. Also, in their original
version, Director does not condition the lower level policy
on the extrinsic environment rewards. In their ablation,
they show this approach often leads to worse performance
compared to rewarding the lower level policy also with the
extrinsic rewards. Since all subactors in HIEROS receive
the extrinsic reward, we ran the experiments on Director
with the lower level policy also conditioned on the extrinsic
reward in order to provide a better comparability between
Director and HIEROS.

Hafner et al. (2023) recently published an updated version
of DreamerV3 and updated results on the Atari100k bench-
mark. However, they use a larger model with 200 million
parameters to achieve these results. In order to provide bet-
ter comparability, we compare HIEROS with the results of
the original 18 million parameter version of DreamerV3.

Ye et al. (2021) propose EfficientZero, which holds the
current absolute state of the art in the Ataril00k test suite.
However, this method relies on look-ahead search during
policy inference and is thus not comparable to the other
methods.

Comparing our SSWM against the S4WM proposed by
Deng et al. (2023) would be interesting, as both models
are based on structured state spaces. However, Deng et al.
(2023) only report results on their proposed set of memory
testing environments and their code base is not public yet.
So we are not able to compare our results directly to theirs.
We do however compare our SSWM to the RSSM used in

Task Mean Median IQM Optimality Gap
Random 0 0 0 100
Human 100 100 100 0
SimPLe 34 11 13 73

TWM 96 50 46 52

IRIS 105 29 50 51
Director 52 18 14 71
DreamerV3 112 49 N/A N/A
Hieros (ours) | 120 56 53 49

Table 1. Aggregate scores of HIEROS and baselines on the
Atari100k test suite. Higher scores for Mean, Median and IQM are
better. For Optimality Gap, lower scores are better. DreamerV3
does not report the scores for IQM or Optimality Gap. We show
the best results for each row in bold font.

DreamerV3 in Section 3.2. The used computation resources,
implementation details and a link to the source code can
be found in Appendix F. We use the hyperparameters as
specified in Appendix E for all experiments.

3.1. Results for the Ataril00k Test Suite

All scores are the average of three runs with different seeds.
To aggregate the results, we compute the normalized hu-
man score (Bellemare et al., 2013), which is defined as
(scoreqgent —SCOT€random )/ (SCOT€Ruman —SCOT€random)-
We show the achieved aggregated mean and median normal-
ized human score in Table 1. The full table with scores for
all games can be found in Appendix C.

Our model achieves a new state of the art in regard to the
mean and median normalized human score. We also achieve
a new state of the art in regard to the achieved reward on 9
of the 25 games. Adhering to Agarwal et al. (2021), we also
report the optimality gap and the interquartile mean (IQM)
of the human normalized scores and achieve state-of-the-art
results in both of those metrics. HIEROS outperforms the
other approaches while having significant advantages with
regard to runtime efficiency during training and inference,
as well as resource demand. For training on a single Atari
game for 100k steps, TWM takes roughly 0.8 days on a
A100 GPU, while DreamerV3 takes 0.5 days and IRIS takes
7 days. Hieros takes roughly 14 hours ~ 0.6 days and is
thus significantly faster than IRIS while being on par with
DreamerV3 and TWM.

Significant improvements were achieved in Frostbite, James-
Bond, and PrivateEye. These games feature multiple levels
with changing dynamics and reward distributions. In or-
der for the SSWM to learn to simulate these levels, the
actor needs to employ a sufficient exploration strategy to
discover these levels. This shift in the state distribution
poses a challenge for many imagination-based approaches
(Micheli et al., 2023). HIEROS is able to overcome this



Hieros: Hierarchical Imagination on Structured State Space Sequence World Models

Figure 2. Trajectories for Breakout (top) and Frostbite (bottom). For each, the upper frame is the image observed in the environment and
the lower frames are the imagined trajectories of the SSWM of the lowest level subactor.

challenge by using the proposed subgoals on different time
scales to guide the agent towards the next level. We show
in Appendix D different proposed subgoals which guide
the lower level actor to finding the way to the next level by
building the igloo in the upper right part of the image.

HIEROS seems to perform significantly worse than other ap-
proaches in Breakout or Pong, which feature no significant
shift in states or dynamics. It seems as if the hierarchical
structure makes it harder to grasp the relatively simple dy-
namics of these games, as the dynamics remain the same
across all time abstractions. This is backed by our find-
ings in Appendix G.3 that HIEROS with only one subactor
performs significantly better on Breakout. We also show em-
pirically in Section 3.2 that using the SSWM also seems to
deteriorate the performance of HIEROS in those games com-
pared to the RSSM used for DreamerV3. Figure 5 shows
some proposed subgoals for Breakout. The subgoals seem
only to propose to increase the level score, which is does
not provide the lower level agent any indication on how to
do so. So the lower level actor is not able to benefit from
the hierarchical structure in these games.

Interestingly, Director seems to show similar weaknesses
and strengths, as its performance is significantly worse than
the non-hierarchical approaches in tasks showcasing simpler
dynamics like Pong or Breakout, while showing comparable
results on tasks which contain more complex dynamics and
distributions shifts like Frostbite, Freeway or Krull. This
indicates that indeed, the hierarchical structure has a signif-
icant influence on the difference in performances on these

groups of tasks. The deeper hierarchy and improved world
model architecture help HIEROS to both perform even bet-
ter in complex environments with shifting distributions and
not lose too much of performance in simple environments
that seem to be naturally difficult for the tested hierarchical
algorithms.

Figure 3 shows the partial rewards 7y, Tnov, and 7,4 for
the lowest level subactor for Breakout and Krull, another
game featuring multiple levels similar to Frostbite. As can
be seen, the extrinsic rewards for Breakout are very sparse
and do not provide any indication on how to increase the
level score. So the subactor learns to follow the subgoals
from the higher levels more closely instead, which in the
case of Breakout or Pong does not lead to a better perfor-
mance. In Krull however, the extrinsic rewards are more
frequent and provide a better indication on how to increase
the level score. So the subactor is able to learn to follow the
subgoals from the higher levels more loosely, treating them
more like a hint, and is able to achieve a better performance.

3.2. Imagined Trajectories

In Figure 2, we show an observed trajectory for the games
Frostbite and Breakout alongside the imagined trajectories
of the SSWM of the lowest level subactor. As can be seen,
the world model is not able to predict the movement of
the ball in breakout. This indicates that the model is not
able to model the very small impact of the ball movement
to the change in the image. We found that during random
exploration at the beginning of the training the events where
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Figure 3. Extrinsic, subgoal, and novelty rewards per step for Krull
(top) and Breakout (bottom) for the lowest level subactor.

the ball bounces back from the moving plateau are very rare
and most of the time the ball is lost before it can bounce
back. This makes it difficult for the world model to learn
the dynamics of the ball movement and their impact on the
reward distribution. We make similar observations for the
game Pong.

S4-based models are shown to perform worse than Trans-
former models on short term sequence modeling tasks (Zuo
et al., 2022; Mehta et al., 2022; Dao et al., 2022) while
excelling on long term modeling tasks. This could also give
some reasoning why our SSWM seems to perform worse on
Breakout or Pong compared to Frostbite or Krull. Freeway
poses a similar challenge, with sparse rewards that are only
achieved after a complex series of environment interaction.
However, unlike with Breakout and Pong, in Freeway HI-
EROS is able to profit from its hierarchical structure in order
to guide exploration. An example of this can be seen in
Figure 5, where the subgoals are able to guide the agent
across the road. SSWM is able to accurately capture the
multiple levels of Frostbite, despite only having access to
train on these levels after discovering them, which usually
happens after roughly 50k interactions. As the reaching of
the next level is directly connected to a large increase in
rewards, the SSWM is able to correctly predict the next level
after only a few interactions. This is also reflected in the
significantly higher reward achieved by HIEROS.

To directly compare the influence of our SSWM architecture
to the RSSM used in DreamerV3, we replace the SSWM
with an RSSM and train HIEROS on four different games.

Krull

Step

Breakout

Step

= rssm = sbwm

Figure 4. World model losses for the SSWM and RSSM for Krull
and Breakout. The SSWM is able to achieve an overall lower world
model loss compared to the RSSM for Krull, while those roles are
reversed for Breakout.

The results are shown in Appendix G.1. The RSSM is not
able to achieve the same performance as the SSWM for
Krull, Battle Zone and Freeway, but is slightly better com-
pared to using the SSWM for Breakout. In Figure 4 we show
the world model losses for SSWM and RSSM for Krull and
Breakout. The SSWM consistently achieves lower overall
loss than the RSSM in Krull, whereas this trend reverses
for Breakout. Given the substantially higher absolute loss
values for the more complex Krull compared to Breakout,
we infer that the larger SSWM excels in environments with
complex dynamics and substantial input distribution shifts.
In contrast, the smaller RSSM is better suited for environ-
ments with simple dynamics and a stable input distribution.

As both models are trained with the same number of gra-
dient updates, it makes sense that the larger model has dif-
ficulties matching the performance of the smaller model
in non-shifting environments with simple dynamics. So a
smaller SSWM might achieve better results for Breakout.
We test this hypothesis in Appendix G.6. Lu et al. (2023)
and Deng et al. (2023) find that structured state space mod-
els generally surpass RNNs in terms of memory recollection
and resilience to distribution shifts, which we can confirm
with our results. Moreover, we perform further ablations in
Appendix G.

4. Conclusion

In this paper, we introduce the HIEROS architecture, a mul-
tilayered goal conditioned hierarchical reinforcement learn-
ing (HRL) algorithm with hierarchical world models, an
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S5 layer-based world model (SSWM) and an efficient time-
balanced sampling (ETBS) method which allows for a true
uniform sampling over the experience dataset. We evaluate
HIEROS on the Ataril00k test suite (Bellemare et al., 2013)
and achieve a new state of the art mean human normalized
score for model-based RL agents without look-ahead search.
The option to decode proposed subgoals gives some explain-
ability to the actions taken by HIEROS. A deeper evaluation
on which subgoals are proposed and how the lower level
workers are able to achieve these subgoals is left for future
research. The SSWM poses multiple improvements com-
pared to RNN-based world models (Hafner et al., 2023)
(i.e. efficiency during training, prediction accuracy during
imagination) and Transformer-based world models (Chen
et al., 2022; Robine et al., 2023; Micheli et al., 2023) (i.e.
prediction accuracy and efficiency during imagination). A
thorough comparison between our SSWM and the S4WM
proposed by Deng et al. (2023) remains for future research.
We delve deeper into further directions for future research
in Appendix I.

For now, we only evaluated Hieros on the Ataril00k bench-
mark (Ye et al., 2021), but experiments on further bench-
marks are necessary. BSuite (Osband et al., 2020) is a col-
lection of low dimensional experiments directed at creating
a detailed profile of an RL algorithm in several categories,
e.g. long term memory, exploration or robustness against
stochasticity. The Deep Mind Control Suite (Tassa et al.,
2018) contains several continuous control tasks for robots
in different sizes and shapes. Also, Crafter (Hafner, 2021),
a complex 2D environment with difficult exploration tasks,
would give deeper insights in how Hieros’ exploration capa-
bilities compare with other state-of-the-art approaches. For
now, we leave these further evaluations to future work.

With our work, we hope to provide a new perspective on the
field of HRL and to inspire future research in this field.

Reproducibility Statement

We describe all important architectural and training de-
tails in Section 2 and provide the used hyperparameters
in Appendix E. We provide the source code in the supple-
mentary material and under the following link: https:
//github.com/Snagnar/Hieros. The material also
gives an explanation on how to install and use the Atari100k
benchmark for reproducing our results. The computational
resources we used for our experiments are described in Ap-
pendix F.

Impact Statement

Autonomous agents pose many ethical concerns, as they are
able to act in the real world and can cause harm to humans.
In our work, we only use simulated environments and do

not see any potential for misuse of our work. We propose a
new world model architecture which could be used to train
agents in imagination rather than in the real world. This
could be used to train agents for real-world applications,
such as autonomous driving, without the need to train them
in the real world. This could reduce the risk of harm to
humans and the environment.
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A. Background
A.1. Learning a World Model in DreamerV3

Our method is build on top of DreamerV3 (Hafner et al., 2023). DreamerV3 learns a world model in a latent space in order
to increase efficiency:

(ht, 2e) = RSSM(h¢—1,a1—1, 01) (13)

with h; being the deterministic part of the latent state and z, being the stochastic part of the latent state. The world model is
trained to predict the next latent state (h¢41, 2¢:+1) given the world model state (h¢, z;) and the current action a;. Specifically,
the world model learns a distribution pg(z¢|h¢, o) predicting the stochastic state from the last deterministic state and an
observation o; and another distribution gy (2, |h;) predicting the stochastic state purely from the last deterministic state. gy is
used during imagination. It then predicts the reward r, the continue signal c and the decoded observation o given the current
world state, which enables DreamerV3 to train an actor critic entirely on imagined trajectories in latent space. The world
model is trained with a loss function that is a weighted sum of the loss of the dynamic, observation, continue, and reward
prediction.

The RSSM dynamic prediction model uses a GRU (Cho et al., 2014) to predict the next deterministic state h;y; and a
discrete categorical distribution to sample z;. There are several works that replace the GRU with different, more complex
models (Chen et al., 2022; Robine et al., 2023; Deng et al., 2023).

For imagining the trajectories, the world model starts with an initial observation oy and an initial state h¢. It then computes
the first world state (hg, 29). The agent interacts with this model, which simulates the original environment:

ay = W(ht,Zt) (14)
(ht+17 Zt+1) = RSSM(ht, Qg, Zt+1) (15)

A.2. Hierarchical Reinforcement Learning

Hierarchical models have been shown to be a powerful tool in RL (Dayan & Hinton, 1992; Parr & Russell, 1997; Sutton
et al., 1999). The idea is to break down a complex task into easily achievable subtasks. This subtask definition can be done
manually (Tessler et al., 2017) or automatically (Li et al., 2022; Nair & Finn, 2019; Kujanpéi et al., 2023). This typically
involves learning a high level actor that works at larger timescale and a low level actor that executes proposed subgoals
(Hafner et al., 2022a; Nachum et al., 2018; Jiang et al., 2019; Nachum et al., 2019a):

gt = 7Thigh(5t) (16)
at = Tow(St, gt) (17)

with s; being the current environment state, g; being the proposed subgoal and a; being the action taken by the low level
actor. The low level actor is often encouraged to fulfill the subgoal by adding a subgoal reward r, to the extrinsic reward
Textr- Lhis subgoal reward is often a function of the distance between the current state and the proposed subgoal (Hafner
et al., 2022a; Nachum et al., 2019a).

A.3. Structured State Space Sequence Models

Structured state space sequence models (S4) were initially introduced by Gu et al. (2022) as a sequence modeling method
that is able to achieve superior long-term memory tasks than Transformer-based models while having a lower runtime
complexity (O(n?) for the attention mechanism of Transformers and O(n logn) for S4, n being the sequence length). State
Space models are composed of four matrices: A, B, C' and D. They take in a signal u(¢) and output a signal y(¢):

z(t+1) = Az(t) + Bu(t) (18)
y(t) = Cx(t) + Du(t) (19)

with z(t) being the state of the model at time ¢. The matrices A, B, C, and D are learned during training. Gu et al.
(2022) propose various techniques to increase stability, performance and training speed of these models in order to model
long sequences. They utilize special HIPPO initialization matrices for this. Another major advantage of S4 layers over
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Transformer models is, besides their better runtime efficiency, that they can be used both as a recurrent model, which
allows for fast autoregressive single step prediction, and as a convolutional model, which allows for fast parallel sequence
modelling. Smith et al. (2023) propose a simplified version of S4 layers (S5) that is able to achieve similar performance
while being more stable and easier to train. Their version utilizes parallel scans and different matrix initialization in order to
further boost the parallel sequence prediction and runtime performance. Lu et al. (2023) propose a resettable version of S5
layers, which allow resetting the internal state x(¢) during the parallel scans, in order to apply S5 layers in a RL setting
where the state input sequence might span episode borders.

B. Further Related Work

B.1. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) is a field of RL that breaks down complex tasks in time and state abstracted
subproblems on multiple time scales (Hutsebaut-Buysse et al., 2022; Sutton et al., 1999). This allows the agent to learn
subtasks on different time scales and to reuse these subtasks in different contexts. This is especially useful in sparse reward
environments, where the agent can learn subtasks that are easier to solve and then combine them to solve the overall task
(Nair & Finn, 2019). Nachum et al. (2019¢) show that one of the main benefits of HRL is improved exploration, more than
inherent hierarchical structures of the problem task itself or larger model sizes. LeCun (2022) argue that HRL is a promising
direction for future research in RL, as complex dependencies often are only discoverable by abstraction, as learned skills are
often reusable in different contexts. Also, they show that HRL has deep rooting in human cognition.

Goal-conditioned HRL (Florensa et al., 2017; Nachum et al., 2018; 2019b;a) is a subfield of HRL that uses goal-conditioned
policies to learn subtasks. The agent learns a policy that takes a goal as input and outputs actions that lead to the goal. The
agent can then learn a policy that takes a goal as input and outputs a subgoal that leads to the goal. This allows the agent to
learn subtasks on different time scales and to reuse these subtasks in different contexts. The higher order policy proposes
subgoals in frequent intervals that the lower order policy has to fulfill, which is often incentivized by giving an intrinsic
reward to the lower level policy (Hafner et al., 2022a; Rosete-Beas et al., 2023). Hafner et al. (2022a) combine a hierarchical
policy with a world model, building on the DreamerV?2 architecture (Hafner et al., 2022c). They show that the combination
of a hierarchical policy and a world model outperforms the original DreamerV2 model on several tasks. The low level policy
receives only subgoal rewards in this architecture, while the higher level policy receives the actual task reward. This is
similar to our approach, but we use a different architecture for the world model, and we let the higher level policies learn a
separate world model.

Gumbsch et al. (2023) deploy a hierarchy of world models with a look ahead trajectory search approach called THICK. The
higher level world model is only updated if there are significant changes in the lower level world model states. This allows
their higher level representation space to be highly informative, interpretable and temporally abstract. The time adaptive
character lets THICK capture patterns in the environment over arbitrary time spans. However, they do not deploy single step
predictive actor networks as e.g. Hieros, DreamerV3 (Hafner et al., 2023) or IRIS (Micheli et al., 2023) use it, which makes
THICK not directly comparable with the other approaches discussed in our paper.

B.2. World Models

Environment interactions are typically expensive to train an RL agent. E.g., in robotic applications it is impossible to let the
agent interact with the real environment, as this would be too expensive and potentially dangerous. Therefore, it is desirable
to train the agent in a simulated environment (Ha & Schmidhuber, 2018; Poudel et al., 2022; Hafner et al., 2020; 2022c;
2023; 2022b). Ha & Schmidhuber (2018) introduced learning an RNN-based model of the environment and using this
model to train the agent. This allows the agent to learn from simulated data, which is much cheaper than learning from real
environment interactions and can in principle be generated in an infinite amount. Hafner et al. (2020) introduced Dreamer, a
model-based RL agent that learns a world model based on PlaNet (Hafner et al., 2022b) and uses this world model to train
the agent. PlaNet uses an RNN architecture which predicts the next world state from the last world state and the next action
from the learned policy. It uses an RNN-based architecture. To increase computational efficiency, all learning is done in a
compact latent state. They show that Dreamer outperforms state of the art model-free RL agents on several tasks.

Hafner et al. (2022c) introduced DreamerV2, an improved version of Dreamer featuring a discrete stochastic latent state.
They show that DreamerV?2 outperforms Dreamer on several tasks. With DreamerV3 (Hafner et al., 2023) they propose
some additional improvements with which they were able to solve the Minecraft Diamond challenge (Kanitscheider et al.,
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2021) without any pretraining. DreamerV3 still uses a PlaNet-based world model, but the model states are composites of a
discrete valued stochastic and a continuous valued deterministic part.

Several authors propose improvements to this architecture, mostly by proposing improvements to the used world model.
Chen et al. (2022) propose replacing the RNN with a Transformer model that takes in a context (sq, ag), ---, (Sn, @n) of
state action pairs (s;, a;) in order to compute the next world state. Robine et al. (2023) propose a similar architecture,
but in contrast to the previous work, the Transformer model is not used during inference, which makes their model more
computationally efficient. Deng et al. (2023) propose S4WM, utilizing S4 layers for the next state prediction. Since S4
layers can be used both for predicting sequences in parallel and predicting only the next value in an RNN like fashion,
their model also proved to be more computationally efficient than the Transformer-based architectures and outperforms
them in memorization capabilities. Agarwal et al. (2023) use Transformer style networks for both world modelling and
actor networks. Their architecture takes a history of past world states and predicts the next action from that sequence of
so-called world tokens. On the Ataril00K benchmark, their approach achieves competitive results. Zhang et al. (2024)
implement several changes to the TWM architecture, e.g. taking observations, rewards and actions as single tokens for
the sequence model prediction or reconstructing the image input without use of the hidden state. Their model STORM
achieves state-of-the-art performance on the Atari1l00k benchmark, which promises that adopting their changes in Hieros
might produce even better results.

We would also like to point out that the model-free SR-SPR recently proposed by D’Oro et al. (2023) achieves superior
scores on the Ataril00k benchmark by increasing the replay train ratio and regular resets of all model parameters. They
tackle the often observed inability of RL agents to learn new behavior after having been already trained for some time in
an environment. However, since this approach is not model based and does not train in imagination, we did not include it
into our comparison. Nonetheless, scaling the train ratio and employing model resets for the actor/critic or the SSWM of
HIEROS are promising directions for future research.
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C. Full Ataril00k Benchmark

Task Random Human | SimPLe TWM IRIS Director DreamerV3 Hieros (ours)
Alien 228 7128 617 675 420 365 959 828
Amidar 6 1720 74 123 143 26 139 127
Assault 222 742 527 683 1524 451 706 1764
Asterix 210 8503 1128 1117 854 350 932 899
BankHeist 14 753 34 467 53 12 649 177
Battle Zone 2360 37188 4031 5068 13074 11500 12250 15140
Boxing 0 12 8 78 70 13 78 65
Breakout 2 30 16 20 84 7 31 10
Chop.Command 811 7388 979 1697 1565 801 420 1475
CrazyClimber 10780 35829 62584 71820 59324 68 050 97190 50857
DemonAttack 152 1971 208 350 2034 322 303 1480
Freeway 0 30 17 24 31 22 0 31
Frostbite 65 4335 237 1476 259 920 909 2901
Gopher 258 2412 597 1675 2236 835 3730 1473
Hero 1027 30826 2657 7254 7037 2117 11161 7890
JamesBond 29 303 100 362 463 144 445 939
Kangaroo 52 3035 51 1240 838 402 4098 6590
Krull 1598 2666 2205 6349 6616 7308 7782 8130
KungFuMaster 258 22736 14862 24555 21760 15663 21420 18793
Ms.Packman 307 6952 1480 1588 999 658 1327 1771
Pong 21 15 13 18 15 -18 18 5
PrivateEye 25 69571 35 86 100 761 882 1507
Qbert 164 13455 1289 3331 746 305 3405 770
RoadRunner 12 7845 5641 9109 9615 4556 15565 16950
Seaquest 68 42055 683 774 661 492 618 560
Mean 0 100 34 96 105 52 112 120
Median 0 100 11 50 29 18 49 56
QM 0 100 13 46 50 14 N/A 53
Optimality Gap 100 0 73 52 51 71 N/A 49

Table 2. Scores of HIEROS and baselines on the Ataril00k test suite. Higher scores for Mean, Median and IQM are better. For Optimality
Gap, lower scores are better. DreamerV3 does not report the scores for IQM or Optimality Gap. We show the best results for each row in
bold font.
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D. Visualization of Proposed Subgoals

Figure 5 shows the proposed subgoals for one observation in Frostbite and one observation in Breakout.

Observed Image Subgoal 1 Subgoal 2

Figure 5. Proposed subgoals for Breakout (top row), Frostbite (middle row), and Freeway (bottom row). The left most frame is the original
observation from the environment, and the following frames are the proposed subgoals from the higher level actor. For Breakout, the
subgoals are only to increase the level score (marked with the red rectangles) and the ball is not simulated at all, while for Frostbite
the subgoals guide the actor towards building up the igloo in the upper right part of the image in order to advance to the next level (red
rectangles). For Freeway, which also features a single level and sparse rewards, the subgoals are much more meaningful than for Breakout
and guide the actor to move across the road (red rectangles).

To give more insight into how Hieros formulates subgoals in different contexts, we show some more subgoals in Figure 6.
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Figure 6. Proposed subgoals for (from left to right) Pong, Gopher, Assault, Krull and Kung Fu Master. The bottom row is the actual
observation, the middle row the proposed subgoal from subactor 1 and the top row the proposed subgoal from subactor 2.

E. Hyperparameters

F. Computational Resources and Implementation Details

In our experiments we use a machine with an NVIDIA A100 graphics card with 40 GB of VRAM, 8 CPU cores and 32 GB
RAM. Training HIEROS on one Atari game for 100k steps took roughly 14 hours in our setup.

We base our implementation on the Pytorch implementation of DreamerV3 (NM512, 2023) and on the Pytorch im-
plementation of the S5 layer (C2D, 2023). As this version does not implement the resettable version of S5 and
Lu et al. (2023) do not provide an open source implementation of their method, we implemented the reset mech-
anism ourselves in the provided source code. The source code is publicly available under the following URL:
https://github.com/Snagnar/Hieros

G. Ablations

In the following, we provide additional ablation studies exploring the effect of different components of HIEROS. We conduct
all ablations on four games: (i) Krull, a game that features multiple levels, (ii) Breakout, a game with a single level and
simple dynamics, (iii) Battle Zone, a game with a single level and complex hierarchical dynamics and (iv) Freeway, a game
with difficult exploration properties (Micheli et al., 2023). We use the same hyperparameters as described in Appendix E for
all ablations. We show the collected reward of the lowest level subactor of HIEROS with SSWM and all hyperparameters as
specified in Appendix E in red and the collected reward of HIEROS with the ablation in blue. We use the same color scheme
for all ablation studies, except those where the graphs contain more than two lines. We conducted three training runs for
each ablation, and the graphs illustrate the average performance across those runs as a line. The shaded area around the line,
in the same color, represents the range of values observed during the three runs. In every interaction with the environment,
the actor’s action is repeated for four frames, aligning with the methodology adopted in other papers such as Hafner et al.
(2022c¢; 2023); Micheli et al. (2023); Robine et al. (2023). Consequently, the plots display results up to 400k steps, but
it’s important to note that only 100k interactions were actually conducted in the specified environments due to the frame
repetition.
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Training parameters:

learning rate 1077
weight decay 0
optimizer AdamW
learning rate scheduler None
warmup episodes 1000
ETBS temperature 7 0.3
batch size 16
trajectory length for training 64
imagination horizon 16

Hierarchy parameters:

hierarchy layers 3
subgoal proposal intervals k 4
extrinsic reward weight 1
subgoal reward weight 0.3
novelty reward weight 0.1
subgoal shape 8x8
World Model parameters:

S5 model dimension 256
S5 state dimension 128
Number of HIPPO-N initialization blocks J 4
Number of S5 blocks 8
dynamic loss weight aqyn 0.5
representation loss weight a,¢p 0.1
h; dimension 256
z; dimension 32x32
MLP units 256
gy KL loss weight 3 0.5
Total parameters 37.1 M

G.1. SSWM vs. RSSM

In Section 3.2, we compare the model losses and partial rewards of HIEROS in the game of Krull and Breakout using either
RSSMs or SSWMs as world models. In Figure 7, we compare the collected rewards of HIEROS using either RSSMs (blue)
or SSWMs (red) for Krull, Breakout, Battle Zone, and Freeway against each other. The RSSM is not able to achieve the
same performance as the SSWM for Krull, Battle Zone and Freeway. However, for Breakout, the RSSM exhibits a slight
improvement compared to the SSWM. This aligns with the observation made in Section 3.2, where it was noted that the
world model losses for Breakout were lower when employing an RSSM as the dynamics model compared to using the
SSWM.

G.2. Internal S5 Layer State as Deterministic World State

In Section 2.2, we describe the SSWM, which uses the S5 layer to predict the next world state. In this section, we explore
the effect of using the internal state z; of the stacked S5 layers of SSWM as the deterministic part of the latent state h;
instead of the output of the S5 layers. Other comparable approaches that swap out the GRU in the RSSM with a sequence
model usually use the output of the sequence model as h; (Chen et al., 2022; Micheli et al., 2023; Robine et al., 2023; Deng
et al., 2023). So, testing this ablation provides valuable insight into how the learned world states can be enhanced in order to
boost prediction performance. Figure 8 shows the influence of using the internal state as h; vs. using the output of the S5
layers as h; for HIEROS. Using the internal S5 layer state as deterministic world model state seems to boost the performance
for Krull and Battle Zone while having no clear benefit for Breakout and Freeway.
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Figure 7. Collected rewards per step for Krull, Breakout, Battle Zone, and Freeway of the lowest level subactor for HIEROS with an RSSM
(blue) and HIEROS with an SSWM (red).

G.3. Hierarchy Depth

In this section, we show the effect of using different model hierarchy depths. We compare HIEROS with SSWM using a
model hierarchy depth of 1, 2, 3, and 4. Figure 9 shows the collected reward of HIEROS with SSWM using a model hierarchy
depth of 1 (purple), 2 (red), 3 (green), and 4 (light blue) for Krull, Breakout, Battle Zone, and Freeway. Most remarkably,
we can see that HIEROS with just one layer achieves significantly better results in Breakout than with two or more subactors.
This indicates that a single layer algorithms, like DreamerV3, Iris, or TWM have a significant advantage over multi-layer
algorithms, like HIEROS in games with no distribution shifts and easy to predict dynamics like Pong or Breakout while
deeper hierarchies showcase a better performance for games with an intrinsic hierarchical structure like Krull.

G.4. Uniform vs. Time-Balanced Replay Sampling

In Section 2.3, we describe the efficient time-balanced sampling method. In this section, we compare the effect of using
uniform sampling vs. our efficient time-balanced sampling for the experience dataset. Figure 10 shows the collected reward
of HIEROS with SSWM using uniform sampling (red) and time-balanced sampling (blue) for Krull, Breakout, Battle Zone,
and Freeway. As can be seen, in the case of Freeway and Breakout, the time balanced sampling did not provide a significant
advantage, while it boosted the performance considerably for Krull and Battle Zone, two games that both display hierarchical
challenges. This indicates, that in cases where the model hierarchy can contribute a lot to the overall performance, the actor
is more sensitive to overfitting on older training data, containing subgoals produced by less trained higher level subactors.

G.5. Providing k World States vs. Only the k-th World State as Input for the Higher Level World Model

In Section 2.1, we describe how HIEROS provides k consecutive world states of the lower level world model as input for the
higher level subactor. However, many approaches such as Director (Hafner et al., 2022a) only provide the k-th world state as
input for the higher level world model. In this section, we explore the effect of providing only the k-th world state as input
for the higher level world model. Figure 11 shows the collected reward of HIEROS with SSWM using k consecutive world
states as input for the higher level world model (red) and only the k-th world state as input for the higher level world model
(blue) for Krull, Breakout, Battle Zone, and Freeway. Providing only the k-th world state as input seems to deteriorate the
performance for Battle Zone and Freeway while being beneficial for Krull.

G.6. Using a Smaller Version of SSWM

In Section 3.2, we propose a theory that suggests larger SSWM models yield superior results in complex environments,
whereas smaller dynamic models may be more advantageous in simpler dynamic environments such as Breakout. In
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Figure 8. Comparison of the collected reward per step of HIEROS with SSWM using the internal state z; of the stacked S5 layers as the
deterministic part of the latent state h; (red) and using the output of the stacked S5 layers as h; (blue) for Krull, Breakout, Battle Zone,
and Freeway.

Figure 12, we compared HIEROS using the standard-sized SSWM (in red) with HIEROS using a smaller SSWM, which
consists of only 4 S5 blocks and is thus half the size (in blue). In the case of Battle Zone, a game characterized by complex
dynamics, the larger SSWM significantly enhances performance. Conversely, for Breakout, we observe that the smaller
SSWM performs better during certain stages of training but exhibits a decline towards the end. This suggests that the
smaller SSWM could potentially outperform the larger counterpart in this environment, provided additional measures are
implemented to prevent actor degeneration during later training stages.

G.7. Providing Decoded Subgoals as Actor Input

In Section 2.1, we explain that in HIEROS, the encoded subgoal g° from the higher-level policy is passed as input to the
lower-level input policy. This differs from the approach in Hafner et al. (2022a), where decoded subgoals from the subgoal
autoencoder are passed to the worker policy in their hierarchical model. In Figure 13, we directly compare the impact of
using encoded (in red) and decoded (in blue) subgoals as input for the lower-level subactor. Notably, utilizing encoded
subgoals appears to enhance performance in Krull and Breakout but leads to a significant degradation in performance for
Freeway. In practical terms, a tradeoff must be considered based on the specific environment. It’s worth noting that passing
decompressed subgoals increases the overall parameter count of the model, but in cases like Freeway, the additional model
size contributes to further improvements in rewards.

G.8. Further Ablations Left for Future Work

There are multiple other interesting directions for further ablation studies: One of the main novelties of HIEROS is its use of
hierarchical world models. Architectures like Dreamer (Hafner et al., 2022a) however train both the higher and the lower
level policy on the same world model, so exploring this might give valuable insights, how much the hierarchical world
models contribute to the performance of HIEROS. Another interesting direction is to explore the effect of using differently
sized subactors, with the lowest level subactor having the largest amount of trainable parameters and the higher levels having
less and less trainable parameters. This could potentially lead to a more efficient use of the available parameters. The higher
levels are trained fewer times and with fewer data than the lower levels, so smaller networks might speed up training in
those cases.

For HIEROS we relied on the proven world model architecture used by the DreamerV3 model, which features a world state
composed of a deterministic and a stochastic part. However, other approaches like IRIS (Micheli et al., 2023) do not rely on
this stochastic world state and achieve comparable result. So exploring the effect of using only a deterministic world state
might be interesting.
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Figure 9. Comparison of the collected reward per step of HIEROS with SSWM using a model hierarchy depth of 1 (purple), 2 (red), 3
(green), and 4 (light blue) for Krull, Breakout, Battle Zone, and Freeway.

H. CDF of Imbalanced Replay Sampling

In Section 2.3, we use the CDF of the skewed sampling distribution that arises when iteratively adding elements to a dataset
and sampling uniformly from it. The distribution is defined as follows:
H,—H, Inn)—In(z _
=  1nn) ~ Inf) = p(x) (20)
n n
with n being the size of the dataset. Since the inequality In(z) < H, < 1+ In(z) holds for all z > 2 we assume without

loss of generality that 2 < 2 < n. However, since p(x) does not sum up to 1 over the interval [2, n], we need to divide it by
its integral:

p(x)

~ In(n)—In(z
an ﬁ(x)da: —21In(n)+n+21n(2)—2

B In(n) — In(z)

~ —2In(n) +n+2In(2) -2

with p, being the approximate probability density function of the skewed sampling distribution. The CDF of this distribution

is defined as follows:

ps()

CDFy(x) = /21 ps(z)dr = Py(x) — Ps(2) (22)

with Ps(z) being the antiderivative of p,(z):

B _ x-(In(z) —In(n) - 1)
Pu(a) = /ps(a:)dx - 2In(n) —n—2In(2) +2 @3)
With this, we can derive C D F(x) in closed form:
CDF.(x) = z-(In(z) —In(n) —1)+2(n(n) —1In(2) +1) (24)

2In(n) —n—2In(2) 4+ 2

This can be computed in O(1) time and is therefore very efficient. With the CDF;(x) we can calculate the efficient
time-balanced sampling distribution p.s(x) as described in Section 2.3. It is also important to mention that we assume,
that we only add one item to the dataset and then sample one time after each step. However, if we add k items before
sampling s times, the expected number of draws for one element becomes E(N,,) = W This additional factor % is

canceled out when computing the probabilities for one element from the expected value, which is why we can ignore this in
our computations. Figure 14 shows the sampling counts for different temperatures 7 for ETBS.
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Figure 10. Comparison of the collected reward per step of HIEROS with SSWM using uniform sampling (red) and time-balanced sampling
(blue) for Krull, Breakout, Battle Zone, and Freeway.

1. Further Future Work

Another possible future direction would be to use the S5-based actor network proposed by Lu et al. (2023) for HIEROS.
Right now, the imagination procedure still relies on a single step prediction of the world model due to the single step
architecture of the actor network. Using the S5-based actor network would allow for a multistep imagination procedure,
which could further improve the performance of HIEROS. This would also open the door to more efficient look-ahead search
methods.

Since S4/S5-based models and Transformer-based models show complementary strengths in regard to short and long-term
memory recall, many hybrid models have been proposed (Dao et al., 2022; Zuo et al., 2022; Mehta et al., 2022; Gupta et al.,
2022). Exploring these more universal models might also be a promising direction for future research.

LeCun (2022) describes a modular RL architecture, which combines HRL, world models, intrinsic motivation, and look-
ahead planning in imagination as a potential candidate architecture for a true general intelligent agent. They propose learning
a reconstruction free latent space to prevent a collapse of the learned representations, which is already explored in several
works for RL (Okada & Taniguchi, 2021; Schwarzer et al., 2021). They also describe two modes of environment interaction:
reactive (Mode 1) and using look-ahead search (Mode 2). HIEROS implements several parts of this architecture, namely
the hierarchical structure, hierarchical world models and the intrinsic motivation. HIEROS, like most RL approaches, uses
the reactive mode, while approaches like EfficientZero (Ye et al., 2021) could be interpreted as Mode 2 actors. Koul et al.
(2020) implement a Monte Carlo Tree Search (MCTS) planning method in the imagination of a Dreamer world model.
Implementing similar methods for the hierarchical structure of HIEROS, combined with the more efficient S5-based world
model (potentially also an S5 based actor network) could yield a highly efficient planning agent capable of learning complex
behavior in very dynamic and stochastic environments.

Since Figure 9 demonstrates that for some environments a deeper hierarchy can deteriorate performance, a possible future
research could include an automatic scaling of the hierarchy depending on the current environment. E.g. if the accumulated
reward stagnates and the agent cannot find a policy that further improves performance, the agent might automatically add
another hierarchy layer, perform a model parameter reset and retrain on the collected experience dataset.
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Figure 11. Comparison of the collected reward per step of HIEROS with SSWM using & consecutive world states as input for the higher
level world model (red) and only the k-th world state as input for the higher level world model (blue) for Krull, Breakout, Battle Zone and

Freeway.
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Figure 12. Comparison of the collected reward per step of HIEROS with the standard SSWM (red) and HIEROS using a smaller version of
S5WM (blue) for Krull, Breakout, Battle Zone and Freeway.
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Figure 13. Comparison of the collected reward per step of HIEROS when passing encoded (red) and when passing subgoals decoded by
the subgoal autoencoder (blue) to the lower level subactors for Krull, Breakout, Battle Zone and Freeway.
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Figure 14. The number of times an entry ¢ is sampled in a dataset of final size 4000 with iteratively adding one element to the dataset and

sampling over the dataset afterwards. Compared are the original uniform sampling method implemented in DreamerV3 (Hafner et al.,
2023) and our proposed ETBS with different temperatures 7. For our final experiments, we use a temperature of 7 = 0.3.
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