
Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL FOR:
BENCHMARKING UNSUPERVISED OBJECT REPRESENTATIONS
FOR VIDEO SEQUENCES
In this supplementary document, we first discuss the metrics used (Section A) and describe the data
generation process (Section B). We then describe the methods MONET, VIMON, TBA, IODINE,
OP3 and SCALOR (Section C). Section D contains information regarding the implementation details
and training protocols. Finally, we provide additional qualitative and quantitative experimental results
in Section E.

A EVALUATION PROTOCOL DETAILS

We quantitatively evaluate all models on three datasets using the standard CLEAR MOT metrics
(Bernardin & Stiefelhagen, 2008). Our evaluation protocol is adapted from the multi-object tracking
(MOT) challenge (Milan et al., 2016), a standard computer vision benchmark for supervised object
tracking. In particular, we focus on the metrics provided by the py-motmetrics package2.

A.1 MAPPING

In each frame, object predictions of each model in the form of binary segmentation masks are mapped
to the ground truth object segmentation masks. We require that each pixel is uniquely assigned to
at most one object in the ground truth and the predictions, respectively. Matching is based on the
intersection over union (IoU) between the predictions and the ground truth masks (Voigtlaender
et al., 2019). A valid correspondence between prediction and object has to exceed a threshold in
IoU of 0.5. Predictions that are not mapped to any ground truth mask are classified as false positives
(FPs). Ground truth objects that are not matched to any prediction are classified as misses. Following
(Bernardin & Stiefelhagen, 2008), ground truth objects that are mapped to two different hypothesis
IDs in subsequent frames are classified as ID switches for that frame.

A.2 MOT METRICS

MOT Accuracy (MOTA) measures the fraction of all failure cases, i.e. false positives (FPs), misses
and ID switches compared to total number of objects present in all frames. MOT Precision (MOTP)
measures the total accuracy in position for matched object hypothesis pairs, relative to total number
of matches made. We use percentage Intersection over Union (IoU) of segmentation masks as the
accuracy in position for each match. Mostly Tracked (MT) is the ratio of ground truth objects
that have been tracked for at least 80% of their lifespan.(i.e. 80% of the frames in which they are
visible). MT as implemented by py-motmetrics counts trajectories of objects as correctly tracked
even if ID switches occur. We use a strictly more difficult definition of MT that counts trajectories
with ID switches as correctly detected but not correctly tracked. Consequently, we add the Mostly
Detected (MD) measure which does not penalize ID switches. Match, Miss, ID Switches (ID S.)
and FPs are reported as the fraction of the number of occurrences divided by the total number of
object occurrences.

MOTA = 1�
PT

t=1 Mt + FPt + IDStPT
t=1 Ot

(1)

where Mt, FPt,and IDSt are the number of misses, false positives and ID switches, respectively, for
time t, and Ot is the number of objects present in frame t. Note that MOTA can become negative,
since the number of FPs is unbounded.

MOTP =

PT
t=1

PI
i=1 d

i
tPT

t=1 ct
(2)

where dit is the total accuracy in position for the ith matched object-hypothesis pair measured in IoU
between the respective segmentation masks and ct is the number of matches made in frame t.

2
https://pypi.org/project/motmetrics/

11

https://pypi.org/project/motmetrics/

Under review as a conference paper at ICLR 2021

Note that we exclude the background masks for VIMON and OP3 before evaluating tracking based
on IoU. The Video Object Room (VOR) dataset can contain up to three background segments, namely
the floor and up to two wall segments. In order to exclude all background slots regardless of whether
the model segments the background as one or as multiple masks, we remove all masks before the
tracking evaluation that have an IoU of more than 0.2 with one of the ground truth background masks;
we empirically tested that this heuristic is successful in removing background masks regardless of
whether the models segments it as one or as three separate ones.

B DATASET GENERATION DETAILS

B.1 VIDEO MULTI-DSPRITES (VMDS)

The Multi-DSprites Video dataset consists of 10-frame video sequences of 64⇥64 RGB images with
multiple moving sprites per video. In order to test temporal aggregation properties of the models,
the test set contains 20 frame-long sequences. Each video contains one to four sprites following the
dataset proposed in (Burgess et al., 2019) that move independently of each other and might partially or
fully occlude one another. The sprites are sampled uniformly from the dSprites dataset (Matthey et al.,
2017) and colored with a random RGB color. The background is uniformly colored with a random
RGB color. Random trajectories are sampled per object by drawing x and y coordinates from a
Gaussian process with squared exponential covariance kernel cov[xs, xt] = exp[�(xs�xt)

2/(2⌧2)]
and time constant ⌧ = 10 frames, and then shifted by an initial (x, y)-position of the sprite centroid,
which is uniformly sampled from [10, 54] to ensure that the object is within the image boundaries.
Trajectories that leave these boundaries are rejected. In occlusion scenarios, larger objects are always
in front of smaller objects to disambiguate prediction of occlusion. The training set consists of
10,000 examples whereas the validation set as well as the test set contain 1,000 examples each.
Additionally, we generated four challenge sets and three out-of-distribution test sets for VMDS that
contain specifically challenging scenarios. Each test set consists of 1,000 videos of length 10 frames,
which we describe in the following.

B.1.1 VMDS CHALLENGE SETS

Occlusion test set. In each video, one or more objects are heavily occluded and thus often are not
visible at all for a few frames. This is ensured by sampling object trajectories that cross path, i.e. at
least in one video frame, two objects are centered on the same pixel. The time step and spatial position
of occlusion is sampled randomly. Object trajectories are sampled independently as described above
and then shifted such that they are at the sampled position of occlusion at time t. Videos contain two
to four sprites (Fig. 5), since at least two objects are necessary for occlusion.

Small Objects. Videos contain one to four sprites with all sprites being of the smallest size present in
the original dSprites (Matthey et al., 2017) dataset (Fig. 5). Other than that, it follows the generation
process of the regular training and test set.

Large Objects. Videos contain one to four sprites with all sprites being of the largest size present in
the original dSprites (Matthey et al., 2017) dataset (Fig. 5). Other than that, it follows the generation
process of the regular training and test set.

Same Color. Videos contain two to four sprites which are identically colored with a randomly chosen
color. Other than that, it follows the generation process of the regular training and test set (Fig. 5).

B.1.2 VMDS OUT-OF-DISTRIBUTION TEST SETS

Rotation test set. Sprites rotate around their centroid while moving. The amount of rotation between
two video frames is uniformly sampled between 5 and 40 degrees, and is constant for each object
over the course of the video. Direction of rotation is chosen randomly. Rotation is not included as a
transformation in the training set (Fig. 6).

Color change test set. Sprites change their color gradually during the course of the video. The
initial hue of the color is chosen randomly as well as the direction and amount of change between
two frames, which stays the same for each object over the course of the video. Saturation and value
of the color are kept constant. Color changes are not part of the training set (Fig. 6).

12

Under review as a conference paper at ICLR 2021

Size change test set. Sprites change their size gradually during the course of the video. The original
dSprites dataset (Matthey et al., 2017) contains six different sizes per object. For each object, its
size is sampled as either the smallest or largest in the first frame as well as a random point in time,
at which it starts changing its size. At this point in time, it will either become larger or smaller,
respectively, increasing or decreasing each frame to the next larger or smaller size present in the
original dSprites dataset, until the largest or smallest size is reached. Size changes are not part of the
training set (Fig. 6).

B.2 SPRITES-MOT (SPMOT)

Sprites-MOT, originally introduced by (He et al., 2019), consists of video sequences of length
20 frames. Each frame is a 128⇥128 RGB image. It features multiple sprites moving linearly
on a black background. The sprite can have one of four shapes and one of six colors. For more
information, refer to the original paper (He et al., 2019). We generate a training set consisting of 9600
examples, validation set of 384 samples and test set of 1,000 examples using the author-provided
public codebase3. However, instead of using the default setting of 20 frames per sequence, we instead
generate sequences of length 10, in order to facilitate comparison to the other datasets in our study
which have only 10 frames per sequence.

Frames are downsampled to a resolution of 64⇥64 for training VIMON, OP3 and SCALOR.

B.3 VIDEO OBJECTS ROOM (VOR)

We generate a video dataset based on the static Objects Room dataset (Greff et al., 2019), with
sequences of length 10 frames each at a resolution of 128⇥128. This dataset is rendered with
OpenGL using the gym-miniworld4 reinforcement learning environment. It features a 3D room with
up to four static objects placed in one quadrant of the room, and a camera initialized at the diagonally
opposite quadrant. The objects are either static cubes or spheres, assigned one of 6 colors and a
random orientation on the ground plane of the room. The camera then follows one of five trajectories
moving towards the objects, consisting of a small fixed distance translation and optional small fixed
angle of rotation each time step. The wall colors and room lighting are randomized, but held constant
throughout a sequence. The training set consists of 10,000 sequences whereas the validation set and
the test set contain 1,000 sequences each.

Frames are downsampled to a resolution of 64⇥64 for training VIMON, OP3 and SCALOR.

C METHODS

In this section we describe the various methods in a common mathematical framework. For details
about implementation and training, please refer to Section D.

C.1 MONET

Multi-Object-Network (MONET) (Burgess et al., 2019) is an object-centric representation model
designed for static images. It consists of a recurrent attention network that sequentially extracts
attention masks of individual objects and a variational autoencoder (VAE) (Kingma & Welling, 2014)
that reconstructs the image region given by the attention mask in each processing step.

Attention Network: The attention network is a U-Net (Ronneberger et al., 2015) parameterized
by . At each processing step k, the attention network receives the full image x 2 [0, 1]H⇥W⇥3

as input together with the scope variable sk 2 [0, 1]H⇥W . The scope sk keeps track of the regions
of the image that haven’t been attended to in the previous processing steps and thus remain to be
explained. The attention network outputs a soft attention mask mk 2 [0, 1]H⇥W and the updated
scope with the current mask subtracted:

3
https://github.com/zhen-he/tracking-by-animation

4
https://github.com/maximecb/gym-miniworld

13

https://github.com/zhen-he/tracking-by-animation
https://github.com/maximecb/gym-miniworld

Under review as a conference paper at ICLR 2021

mk = sk�1↵ (x, sk�1) (3)
sk+1 = sk(1� ↵ (x, sk)) (4)

where ↵ (x, sk) 2 [0, 1]H⇥W is the output of the U-net and s0 = 1. The attention mask for the last
slot is given by mK = sK�1 to ensure that the image is fully explained, i.e.

PK
k=1 mk = 1.

VAE: The VAE consists of an encoder g : [0, 1]H⇥W⇥3 ⇥ [0, 1]H⇥W ! RL⇥2 and a decoder
h : RL ! [0, 1]H⇥W⇥3 ⇥ [0, 1]H⇥W which are two neural networks parameterized by � and
✓, respectively. The VAE encoder receives as input the full image x and the attention mask
mk and computes (µk, log�k), which parameterize the Gaussian latent posterior distribution
q�(zk|x,mk) = N (µk,�kI). Using the reparametrization trick (Kingma & Welling, 2014),
zk 2 RL is sampled from the latent posterior distribution. zk is decoded by the VAE decoder
into a reconstruction of the image component bxk 2 [0, 1]H⇥W⇥3 and mask logits, which are used to
compute the reconstruction of the mask bmk 2 [0, 1]H⇥W via a pixelwise softmax across slots. The
reconstruction of the whole image is composed by summing over the K masked reconstructions of
the VAE: bx =

PK
k=1 bmk � bxk.

Loss: MONET is trained end-to-end with the following loss function:

L(�; ✓; ;x) = � log

KX

k=1

mkp✓(x|zk) + �DKL(

KY

k=1

q�(zk|x,mk)kp(z))

+�
KX

k=1

DKL(q (mk|x)kp✓(mk|zk))

(5)

where p✓(x|zk) is the Gaussian likelihood of the VAE decoder and zk 2 RL is the latent representa-
tion of slot k.

GRU

VAE
Encoder

VAE
Dec.

K slots sequential

Attn.
Net

xt

mt,k

mt,k^

ht-1,k ht,k

zt,k

xt+1^xt^

Figure C.1: VIMON. Atten-
tion network followed by VAE
encoder and GRU computes
latent zt,k.

The first two loss terms are derived from the standard VAE objective,
the Evidence Lower BOund (ELBO) (Kingma & Welling, 2014), i.e.
the negative log-likelihood of the decoder and the Kullback–Leibler
divergence between the unit Gaussian prior p(z) = N (0, I) and
the latent posterior distribution q�(zk|x,mk) factorized across slots.
Notably, the decoder log-likelihood term p✓(x|zk) constrains only
the reconstruction within the mask, since it is weighted by the mask
mk. Additionally, as a third term, the Kullback–Leibler divergence
of the attention mask distribution q (mk|x) with the VAE mask
distribution p✓(bmk|zk) is minimized, to encourage the VAE to learn
a good reconstruction of the masks.

C.2 VIDEO MONET

We propose an extension of MONET (Burgess et al., 2019), called
Video MONet (VIMON), which accumulates evidence over time
about the objects in the scene (Fig. C.1).

VIMON processes a video recurrently by reconstructing one frame
at a time and predicting the next frame of the video. The processing
of each frame follows a logic similar to MONET with some notable
differences. In the following, we use t to indicate the time step in the
video and k to indicate the processing step within one video frame.

Attention Network: The attention network of VIMON outputs an
attention mask mt,k 2 [0, 1]H⇥W in each step k conditioned on
the full frame xt 2 [0, 1]H⇥W⇥3, the scope st,k 2 [0, 1]H⇥W and
additionally the mask bmt,k 2 [0, 1]H⇥W that was predicted by the

14

Under review as a conference paper at ICLR 2021

VAE in the previous time step, in order to provide it with information about which object it should
attend to in this specific slot k.

mt,k = st,k�1↵ (xt, st,k�1, bmt,k) (6)

VAE: The VAE of VIMON consists of an encoder g(xt,mt,k;�) and a decoder h(zt,k; ✓). In
contrast to MONET, the encoder in VIMON is followed by a gated recurrent unit (GRU) (Cho et al.,
2014) with a separate hidden state ht,k per slot k. Thus, the GRU aggregates information over time
for each object separately. The GRU outputs (µt,k, log�t,k) which parameterize the Gaussian latent
posterior distribution q�(zt,k|xt,mt,k) where zt,k 2 RL is the latent representation for slot k at
time t:

z0t,k = g(xt,mt,k;�) (7)

(µt,k, log�t,k),ht,k = f(GRU(z0t,k,ht�1,k))) (8)
q�(zt,k|xt,mt,k) = N (µt,k,�t,kI) 8t, k (9)

where g is the VAE encoder and f is a linear layer. The latent representation zt,k is sampled
from the latent posterior distribution using the reparametrization trick (Kingma & Welling, 2014).
Subsequently, zt,k is linearly transformed into bzt+1,k via a learned transformation A 2 RL⇥L:
bzt+1,k = Azt,k with bzt+1,k being the predicted latent code for the next time step t + 1. Both
zt,k and bzt+1,k are decoded by the shared VAE decoder h✓ into a reconstruction of the image
bxt,k 2 [0, 1]H⇥W⇥3 and a reconstruction of the mask bmt,k 2 [0, 1]H⇥W as well as bxt+1,k and
bmt+1,k, respectively.

Loss: VIMON is trained in an unsupervised fashion with the following objective adapted from
the MONET loss (Eq. (5)) for videos. To encourage the model to learn about object motion, we
include a prediction objective in the form of a second decoder likelihood on the next-step prediction
p✓(xt+1|bzt+1,k) and an additional mask loss term, which encourages the predicted VAE mask
distribution p✓(bmt+1,k|bzt+1,k) to be close to the attention mask distribution q (mt+1,k|xt+1) of the
next time step for each slot k:

L(�; ✓; ;x) =
TX

t=1

LnegLL + �Lprior + �Lmask

LnegLL = �(log

KX

k=1

mt,kp✓(xt|zt,k) + log

KX

k=1

mt+1,kp✓(xt+1|bzt+1,k))

Lprior = DKL(

KY

k=1

q�(zt,k|xt,mt,k)kp(z))

Lmask =

KX

k=1

DKL(q (mt,k|xt)kp✓(mt,k|zt,k)) +DKL(q (mt+1,k|xt+1)kp✓(mt+1,k|bzt+1,k))

C.3 TRACKING BY ANIMATION

Tracking by Animation (TBA) (He et al., 2019) is a spatial transformer-based attention model which
uses a simple 2D rendering pipeline as the decoder. Objects are assigned tracking templates and pose
parameters by a tracker array, such that they can be reconstructed in parallel using a renderer based
on affine spatial transformation (Fig. C.2). In contrast to VIMON, TBA uses explicit parameters
to encode the position, size, aspect ratio and occlusion properties for each slot. Importantly, TBA
is designed for scenes with static backgrounds, and preprocesses sequences using background
subtraction (Bloisi & Iocchi, 2012) before they are input to the tracker array.

15

Under review as a conference paper at ICLR 2021

Feature
Extractor

Tracker
Array

MLP

Spatial
Transformer

(x,y)...

K slots parallel

xt

xt^

zt,k

ct

ht-1,k ht,k

yt,k

Figure C.2: TBA. Feature ex-
tractor CNN f and tracker ar-
ray g to get latent zt,k. MLP
h outputs mid-level represen-
tation yt,k, and Spatial Trans-
former renders reconstruction.

Tracker Array: TBA uses a tracker array to output a latent repre-
sentation zt 2 RL⇥K at time t using a feature extractor f(xt;) and
a recurrent ’state update’, where ct 2 RM⇥N⇥C is a convolutional
feature representation. The convolutional feature and latent repre-
sentation have far fewer elements than xt, acting as a bottleneck:

ct = f(xt;), (10)
ht,k = RAT (ht�1,k, ct;⇡), (11)
zt = g(ht;�). (12)

Though the state update could be implemented as any generic recur-
rent neural network block, such as an LSTM (Hochreiter & Schmid-
huber, 1997) or GRU (Cho et al., 2014), TBA introduces a Reprior-
itized Attentive Tracking (RAT) block that uses attention to achieve
explicit association of slots with similar features over time. Firstly,
the previous tracker state ht�1,k is used to generate key variables
kt,k and �t,k:

{kt,k, b�t,k} = Tht�1,k, (13)

�t,k = 1 + ln(1 + exp(b�t,k)), (14)

where T is a learned linear transformation, kt,k 2 RS is the ad-
dressing key, and b�t,k 2 R is an un-normalized version of a key
strength variable �t,k2(1,+1). This key strength acts like a tem-
perature parameter to modulate the feature re-weighting, which is
described in the following. Each feature vector in ct, denoted by
ct,m,n 2RS , where m 2 {1, 2, . . . ,M} and n 2 {1, 2, . . . , N} are
the convolutional feature dimensions, is first used to get attention
weights:

Wt,k,m,n =
exp(�t,kSim(kt,k, ct,m,n))P

m0,n0 exp(�t,kSim(kt,k, ct,m0,n0))
. (15)

Here, Sim is the cosine similarity defined as Sim(p,q) = pqT/(kpkkqk), and Wt,k,m,n is an
element of the attention weight Wt,k 2 [0, 1]M⇥N , satisfying

P
m,nWt,k,m,n = 1. Next, a read

operation is defined as a weighted combination of all feature vectors of ct:

rt,k =

X

m,n

Wt,k,m,n ct,m,n (16)

where rt,k2RS is the read vector, representing the associated input feature for slot k. Intuitively, for
slots in which objects are present in the previous frame, the model can suppress the features in rt,k
that are not similar to the features of that object, helping achieve better object-slot consistency. On
the other hand, if there are slots which so far do not contain any object, the key strength parameter
allows rt,k to remain similar to ct facilitating the discovery of new objects.

The tracker state ht,k of the RAT block is updated with an RNN parameterized by ⇡, taking rt,k
instead of ct as its input feature:

ht,k = RNN(ht�1,k, rt,k;⇡) (17)

The RAT block additionally allows for sequential prioritization of trackers, which in turn allows only
a subset of trackers to update their state at a given time step, improving efficiency. For full details
on the reprioritization and adaptive computation time elements of the RAT block, please refer to the
original paper (He et al., 2019).

16

Under review as a conference paper at ICLR 2021

Mid-Level Representation: The key feature of TBA is that each latent vector zt,k is further decoded
into a mid-level representation yt,k = {yct,k,yl

t,k,y
p
t,k,Y

s
t,k,Y

a
t,k} corresponding to interpretable,

explicit object properties, via a fully-connected neural network h(zt,k; ✓) as follows:

yt,k = h(zt,k; ✓). (18)

h✓ is shared by all slots, improving parameter efficiency. The different components of the mid-level
representation are:

• Confidence yct,k2 [0, 1]: Probability of existence of an object in that slot.

• Layer yl
t,k 2 {0, 1}O: One-hot encoding of the discretized pseudo-depth of the object

relative to other objects in the frame. Each image is considered to be composed of O object
layers, where higher layer objects occlude lower layer objects and the background is the
zeroth (lowest) layer. E.g., when O = 4, yl

t,k = [0, 0, 1, 0] denotes the third layer. For
simplicity and without loss of generality, we can also denote the same layer with its integer
representation ylt,k = 3.

• Pose yp
t,k=[bsxt,k, bs

y
t,k,btxt,k,bt

y
t,k]2 [�1, 1]4: Normalized object pose for calculating the scale

[sxt,k, s
y
t,k] = [1+ ⌘xbsxt,k, 1+ ⌘ybsyt,k] and the translation [txt,k, t

y
t,k] = [

W
2
btxt,k, H

2
btyt,k], where

⌘x, ⌘y > 0 are constants.
• Shape Ys

t,k2{0, 1}U⇥V and Appearance Ya
t,k2 [0, 1]U⇥V⇥3: Object template, with hyperpa-

rameters U and V typically set much smaller than the image dimensions H and W . Note
that the shape is discrete (for details, see below) whereas the appearance is continuous.

In the output layer of h✓, yct,k and Ya
t,k are generated by the sigmoid function, yp

t,k is generated
by the tanh function, and yl

t,k as well as Ys
t,k are sampled from the Categorical and Bernoulli

distributions, respectively. As sampling is non-differentiable, the Straight-Through Gumbel-Softmax
estimator (Jang et al., 2017) is used to reparameterize both distributions so that backpropagation can
still be applied.

Renderer: To obtain a frame reconstruction, the renderer scales and shifts Ys
t,k and Ya

t,k according
to yp

t,k via a Spatial Transformer Network (STN) (Jaderberg et al., 2015):

mt,k = STN(Ys
t,k,y

p
t,k), (19)

bxt,k = STN(Ya
t,k,y

p
t,k). (20)

where mt,k 2 {0, 1}D and bxt,k 2 [0, 1]D⇥3 are the spatially transformed shape and appearance
respectively. To obtain the final object masks bmt,k, an occlusion check is performed by initializing
bmt,k = yct,kmt,k, then removing the elements of bmt,k for which there exists an object in a higher
layer. That is, for k=1, 2, . . . ,K and 8j 6= k where ylt,j > ylt,k:

bmt,k = (1�mt,j)� bmt,k. (21)

In practice, the occlusion check is sped up by creating intermediate ‘layer masks’, partially paral-
lelizing the operation. Please see the original paper for more details (He et al., 2019). The final
reconstruction is obtained by summing over the K slots, bxt =

PK
k=1 bmt,k � bxt,k.

Loss: Learning is driven by a pixel-level reconstruction objective, defined as:

L(�; ;⇡; ✓;x) =
TX

t=1

MSE(bxt,xt) + � · 1

K

KX

k=1

sxt,k syt,k

!
, (22)

where MSE refers to the mean squared error and the second term penalizes large scales [sxt,k, s
y
t,k]

in order to make object bounding boxes more compact.

17

Under review as a conference paper at ICLR 2021

C.4 IODINE

VAE
Dec.

Re�ne
Net

LSTM

+ Dyn.
Net

M refinements
sequential

K slots parallel

xt

xt
^

at,k

zt,k

ht-1,k ht,k

(�t,m-1,k , �t,m-1,k) (�t+1,1,k , �t+1,1,k)

Figure C.3: OP3. Refinement network f followed
by LSTM and dynamics network d compute la-
tent zt,k.

The Iterative Object Decomposition Inference
NEtwork (IODINE) (Greff et al., 2019), sim-
ilar to MONET (Burgess et al., 2019), learns
to decompose a static scene into a multi-slot
representation, in which each slot represents an
object in the scene and the slots share the under-
lying format of the independent representations.
In contrast to MONET, it does not recurrently
segment the image using spatial attention, rather
it starts from an initial guess of the segmenta-
tion of the whole image and iteratively refines
it. Thus, the inference component of both mod-
els differ, while the generative component is the
same.

Iterative Inference. As with MONET, IO-
DINE models the latent posterior q(zk|x)
per slot k as a Gaussian parameterized by
(µm,k,�m,k) 2 RL⇥2. To obtain latent rep-
resentations for independent regions of the input
image, IODINE starts from initial learned pos-
terior parameters (µ1,k,�1,k) and iteratively re-
fines them using the refinement network f� for
a fixed number of refinement steps M . f� con-
sists of a convolutional neural network (CNN)
in combination with an LSTM cell (Hochreiter
& Schmidhuber, 1997) parameterized by �. In
each processing step, f� receives as input the image x 2 [0, 1]H⇥W⇥3, a sample from the current
posterior estimate zm,k 2 RL and various auxiliary inputs ak, which are listed in the original pa-
per (Greff et al., 2019). The posterior parameters are concatenated with the output of the convolutional
part of the refinement network and together form the input to the refinement LSTM. The posterior
parameters are additively updated in each step m in parallel for all K slots:

(µm+1,k,�m+1,k) = (µm,k,�m,k) + f�(zm,k,x,ak) (23)

Decoder. In each refinement step m, the image is represented by K latent representations zm,k.
Similar to MONET, each zm,k is independently decoded into a reconstruction of the image bxm,k 2
[0, 1]H⇥W⇥3 and mask logits emm,k, which are subsequently normalized by applying the softmax
across slots to obtain the masks mm,k 2 [0, 1]H⇥W . The reconstruction of the whole image at
each refinement step m is composed by summing over the K masked reconstructions of the decoder:
bx =

PK
k=1 mm,k � bxm,k.

Training. IODINE is trained by minimizing the following loss function that consists of the the
Evidence Lower BOund (ELBO) (Kingma & Welling, 2014) unrolled through N iterations:

L(✓,�, (µ1,k,�1,k);x) =
MX

m=1

m

M

"
� log

KX

k=1

mm,kp✓(x|zm,k) +DKL

KY

k=1

q�(zm,k|x)kp(z)
!#

(24)

where p✓(x|zm,k) is the decoder log-likelihood weighted by the mask mk and DKL is the Kullback-
Leibler divergence between the unit Gaussian prior p(z) = N (0, I) and the latent posterior distribu-
tion q(zm,k|x) factorized across slots.

18

Under review as a conference paper at ICLR 2021

C.5 OBJECT-CENTRIC PERCEPTION, PREDICTION, AND PLANNING (OP3)

Object-centric Perception, Prediction, and Planning (OP3) (Veerapaneni et al., 2019) extends IO-
DINE to work on videos and in a reinforcement learning (RL) setting. It uses the above described
IODINE as an observation model to decompose visual observations into objects and represent them
independently. These representations are subsequently processed by a dynamics model that models
the individual dynamics of the objects, the pairwise interaction between the objects, as well as the
action’s effect on the object’s dynamics, predicting the next frame in latent space (Fig. C.3). By
modeling the action’s influence on individual objects, OP3 can be applied to RL tasks.

OP3 performs M refinement steps after each dynamics step.

Refinement network. The refinement steps proceed as in the description for IODINE in Section C.4.
The input image xt 2 [0, 1]H⇥W⇥3, which is the frame from a video at time t, is processed by the
refinement network f� conditioned on a sample from the current posterior estimate zt,m,k 2 RL.
The refinement network outputs an update of the posterior parameters (µt,m,k,�t,m,k) (see Eq. (23)).
The posterior parameters (µ1,1,k,�1,1,k) are randomly initialized.

Dynamics model. After refinement, samples from the current posterior estimate zt,M,k for each
slot k are used as input to the dynamics network. The dynamics model d consists of a series of
linear layers and nonlinearities parameterized by . It models the individual dynamics of the objects
per slot k, the pairwise interaction between all combinations of objects, aggregating them into a
prediction of the posterior parameters for the next time step t+1 for each object k. The full dynamics
model additionally contains an action component that models the influence of a given action on each
object, which we do not use in our tracking setting. The predicted posterior parameters are then used
in the next time step as initial parameters for the refinement network.

(µt,1,k,�t,1,k) = d (zt�1,M,k, zt�1,M,[6=k])) (25)

Training. OP3 is trained end-to-end with the ELBO used at every refinement and dynamics step,
with the loss L(✓,�;x) given by:

TX

t=1

1

T

M+1X

m=1

min(m,M)

M

� log

KX

k=1

mt,m,kp✓(xt|zt,m,k) +DKL(

KY

k=1

q�(zt,m,k|xt)kq(zt,1,k|xt))

!

(26)

where for time step 1, q(z1,1,k|x1) = N (0, I).

C.6 SCALABLE OBJECT-ORIENTED REPRESENTATION (SCALOR)

SCALable Object-oriented Representation (SCALOR) (Jiang et al., 2020) is a spatial transformer-
based model that extends SQAIR (Kosiorek et al., 2018) to scale to cluttered scenes. Similar to
TBA is factors the latent representations in pose, depth and appearance per object and uses spatial
transformers (Jaderberg et al., 2015) to render objects in parallel. In contrast to TBA, it can handle
dynamic backgrounds by integrating a background RNN that models background transitions.

Proposal-Rejection Module:: SCALOR uses a proposal-rejection module g to discover new objects.
All frames up to the current time step x1:t are first encoded using a convolutional LSTM f . The
resulting features are then aggregated with an encoding of propagated object masks and divided into
H ⇥W grid cells.

cimg
t = f(x1:t;) (27)

cmask
t = MaskEncoder(MP

t) (28)

caggt = Concat([cimg
t , cmask

t], (29)

Per grid cell a latent variable zt,h,w is proposed. Proposal generation is done in parallel. Each zt,h,w
consists of existence, pose, depth and appearance parameters (zprest,h,w, z

pose
t,h,w, z

depth
t,h,w , zwhat

t,h,w).

19

Under review as a conference paper at ICLR 2021

zprest,h,w ⇠ Bern(·|g1(caggt)) (30)

zdeptht,h,w ⇠ N (·|g2(caggt)) (31)

zposet,h,w ⇠ N (·|g3(caggt)) (32)

where g1, g2 and g3 are convolutional layers.

The appearance parameters zwhat
t,h,w are obtained by first taking a glimpse from frame xt of the area

specified by zposet,h,w via a Spatial Transformer Network (STN) (Jaderberg et al., 2015) and subsequently
extracting features from it via a convolutional neural network:

cattt,h,w = STN(xt, z
pose
t,h,w) (33)

zwhat
t,h,w ⇠ N (·|GlimpseEnc(cattt,h,w)) (34)

ot,h,w,mt,h,w = STN�1
(GlimpseDec(zwhat

t,h,w), z
pose
t,h,w) (35)

where ot,h,w is the object RGB glimpse and mt,h,w is the object mask glimpse.

MLP

Feature
Extractor

(x,y)...

K slots parallel

Reject-
ion

Tracker
RNNs

BG-
Network

Spatial
Transformer

Proposal

x1:t

xt^

ht-1,k

xbgt^

zt,k

xfg^t,k

zt,h,w

Figure C.4: SCALOR Feature extractor CNN f
followed by tracker RNNs or proposal-rejection
module to compute latent zt,k. Spatial Transformer
in addition to background module renders recon-
struction.

In the rejection phase, objects that overlap more
than a threshold ⌧ in pixel space with a prop-
agated object from the previous time step are
rejected.

Propagation Module:: During propagation, for
each object k from the previous time step t� 1

a feature attention map at,k from the encoded
frame features cimg

t is extracted centered on the
position of the object in the previous time step
and used to update the hidden state ht,k of the
tracker RNN for object k.

at,k = att(STN(cimg
t , zposet�1,k) (36)

ht,k = GRU([at,k, zt�1,k],ht�1,k) (37)
zt,k = update(at,k,ht,k, zt�1,k) (38)

where STN is a spatial transformer module
(Jaderberg et al., 2015). If zprest,k = 1 the la-
tent representation zt,k of the respective object
k will be propagated to the next time step.

Background:: The background of each frame
xt is encoded using a convolutional neural net-
work conditioned on the masks Mt of the ob-
jects present at time step t and decoded using a
convolutional neural network.

(µbg,�bg
) = BgEncoder(xt, (1�Mt))

(39)

zbgt ⇠ N (µbg,�bg
) (40)

bxbg
t = BgDecoder(zbgt) (41)

Rendering:: To obtain frame reconstructions
bxt foreground object appearances and masks

20

Under review as a conference paper at ICLR 2021

are scaled and shifted using via a Spatial Trans-
former Network (STN):

bxfg
t,k = STN�1

(ot,k, z
pose
t,k) (42)

�t,k = STN�1
(mt,k · zprest,k �(�zdeptht,k), zposet,k) (43)

bxfg
t =

X

K

bxfg
t,k�t,k (44)

Subsequently, foreground objects and background reconstruction are combined as follows to obtain
the final reconstruction:

bxt = bxfg
t + (1�Mt)� bxbg

t (45)

Training:: SCALOR is trained on frame reconstruction using the evidence lower bound (ELBO):

TX

t=1

� log p✓(xt|zt) +DKL(q�(zt|z<t,xt)kq(zt|z<t)) (46)

D MODEL IMPLEMENTATION DETAILS

D.1 VIDEO MONET

VAE: Following (Burgess et al., 2019), the VAE encoder is a CNN with 3x3 kernels, stride 2, and
ReLU activations (Table D.1). It receives the input image and mask from the attention network
as input and outputs (µ, log �) of a 16-dimensional Gaussian latent posterior. The GRU has 128
latent dimensions and one hidden state per slot followed by a linear layer with 32 output dimensions.
The VAE decoder is a Broadcast decoder as published by (Watters et al., 2019b) with no padding,
3x3 kernels, stride 1 and ReLU activations (Table D.2). The output distribution is an independent
pixel-wise Gaussian with a fixed scale of � = 0.09 for the background slot and � = 0.11 for the
foreground slots.

Attention Network: The attention network is a U-Net (Ronneberger et al., 2015) and follows the
architecture proposed by (Burgess et al., 2019). The down and up-sampling components consist each
of five blocks with 3x3 kernels, 32 channels, instance normalisation, ReLU activations and down- or
up-sampling by a factor of two. The convolutional layers are bias-free and use stride 1 and padding 1.
A three-layer MLP with hidden layers of size 128 connect the down- and the up-sampling part of the
U-Net.

Training: MONET and VIMON are implemented in PyTorch (Paszke et al., 2019) and trained with
the Adam optimizer (Kingma & Ba, 2015) with a batch size of 64 for MONET and 32 for VIMON,
using an initial learning rate of 0.0001. Reconstruction performance is evaluated after each epoch
on the validation set and the learning rate is decreased by a factor of 3 after the validation loss
hasn’t improved in 25 consecutive epochs for MONET and 100 epochs for VIMON, respectively.
MONET and VIMON are trained for 600 and 1000 epochs, respectively. The checkpoint with
the lowest reconstruction error is selected for the final MOT evaluation. MONET is trained with
� = 0.5 and � = 1 and VIMON is trained with � = 1 and � = 2. K = 5 for SpMOt, K = 6 for
VMDS and K = 8 for VOR. Due to the increased slot number for VOR, batch size for VIMON
had to be decreased to 24 to fit into the GPU memory. Respectively, the initial learning rate is set to
0.000075 for VIMON on VOR. We initialize the attention network and the VAE in VIMON with the
pre-trained weights from MONET to facilitate learning and speed up the training. Note that for all
evaluations, the reconstructed masks bm from the VAE were used.

Sprites-MOT Initialization: When training MONET and Video MONET on Sprites-MOT from
scratch, MONET struggles to learn the extreme color values of the objects that Sprites-MOT features.
Instead it completely focuses on learning the shapes. To circumvent that, we initialized the weights
of the models with MONET weights that were trained for 100 epochs on Multi-dSprites.

21

Under review as a conference paper at ICLR 2021

Table D.1: Architecture of VIMON VAE Encoder.

Type Size/Ch. Act. Func. Comment

Input 4 RGB + Mask
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 64 ReLU
Conv 3x3 64 ReLU
MLP 256 ReLU
MLP 32 Linear

Table D.2: Architecture of VIMON VAE Decoder.

Type Size/Ch. Act. Func. Comment

Input 16
Broadcast 18 + coordinates
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 3x3 32 ReLU
Conv 1x1 4 Linear RGB + Mask

D.2 TRACKING BY ANIMATION

Preprocessing: TBA expects its input frames to contain only foreground objects. In (He et al.,
2019), the authors use Independent Multimodal Background Subtraction (IMBS) (Bloisi & Iocchi,
2012) to remove the background from datasets consisting of natural videos with static backgrounds.
Background subtraction algorithms maintain a spatio-temporal window around each pixel in the
sequence, and remove the dominant mode based on a histogram of color values. Since the default
implementation of IMBS has several hand-tuned thresholds corresponding to natural videos (e.g., for
shadow suppression), it cannot be directly applied to synthetic datasets like VMDS without significant
hyper-parameter tuning. We instead re-generate all of the VMDS datasets with identical objects and
motion but a black background for our experiments with TBA, to mimic a well-tuned background
subtraction algorithm.

Architecture: For SpMOT, we follow the same architecture as in (He et al., 2019), while we increase
the number of slots from K = 4 to K = 5 and number of layers from O = 3 to O = 4 for VMDS.
Since TBA does not model the background, this makes the number of foreground slots equal to the
other models in our study.

Further, we increase the size prior parameters U ⇥ V used for the shape and appearance templates
from 21⇥ 21 which is used for SpMOT, to 64⇥ 64 for VMDS, which we empirically found gave the
best validation loss among 48⇥ 48, 56⇥ 56, 64⇥ 64 and 72⇥ 72. All other architectural choices are
kept fixed for both datasets, and follow (He et al., 2019). Note that due to this, we trained the TBA
models at its default resolution of 128⇥128 unlike the 64⇥64 resolution used by MONET and OP3.

Training and Evaluation: We train for 1000 epochs using the same training schedule as in (He
et al., 2019). The checkpoint with the lowest validation loss is selected for the final MOT evaluation.
Further, we observed that the discrete nature of the shape code used in TBA’s mid-level representation
leads to salt-and-pepper noise in the reconstructed masks. We therefore use a 2⇥ 2 minimum pooling
operation on the final output masks to remove isolated, single pixel foreground predictions and
generate 64⇥ 64 resolution outputs, similar to MONET and OP3 before evaluation.

Deviation of SpMOT results compared to original publication: Our results were generated with
100k training frames, while the original TBA paper (He et al., 2019) uses 2M training frames for
the simple SpMOT task. Further, we report the mean of three training runs, while the original paper
reports one run (presumably the best). Our best run achieves MOTA of 90.5 (Table E.1). Third, we
evaluate using intersection over union (IoU) of segmentation masks instead of bounding boxes.

22

Under review as a conference paper at ICLR 2021

D.3 OP3

Training: The OP3 loss is a weighted sum over all refinement and dynamics steps (Eq. (26)).
For our evaluation on multi-object tracking, we weight all time steps equally. In contrast to the
original training loss, in which the weight value is linearly increased indiscriminately, thus weighting
later predictions more highly, we perform the linear increase only for the refinement steps between
dynamics steps, thus weighting all predictions equally.

OP3, as published by (Veerapaneni et al., 2019), uses curriculum learning. For the first 100 epochs,
M refinement steps are taken, followed by a single dynamics step, with a final refinement step
afterwards. Starting after 100 epochs, the number of dynamics steps is incremented by 1 every 10
epochs, until five dynamics steps are reached. Thus, only 5 frames of the sequence are used during
training at maximum.

We chose to use an alternating schedule for training, where after each dynamics step, M = 2

refinement steps are taken, and this is continued for the entire sequence. Thus, the entire available
sequence is used, and error is not propagated needlessly, since the model is enabled to refine previous
predictions on the reconstruction before predicting again. Note that this is the schedule OP3 uses by
default at test-time, when it is used for model predictive control. Note that we still use 4 refinement
steps on the initial observation to update the randomly initialized posterior parameters, as in the
released implementation. We split all 10-step sequences into 5-step sequences to avoid premature
divergence.

We train OP3 with a batch size of 16 for 300 epochs using an learning rate of 0.0003 for VMDS and
VOR and 0.0001 for SpMOT. K = 5 for SpMOT, K = 6 for VMDS and K = 8 for VOR are used.
Larger learning rates for SpMOT led to premature divergence. Note OP3 by default uses a batch size
of 80 with the default learning rate of 0.0003, this led to suboptimal performance in our experiments.
Finally, training OP3 is very unstable, leading to eventual divergence in almost all experiments that
have been performed for this study.

The checkpoint prior to divergence with the lowest KL loss is selected for the final MOT evaluation,
as the KL loss enforces consistency in the latents over the sequence. Interestingly, the checkpoint
almost always corresponded to the epochs right before divergence.

D.4 SCALOR

Architecture: We follow the same architecture as in (Jiang et al., 2020). We use a grid of 4⇥ 4 for
object discovery with a maximum number of objects of 10. The standard deviation of the image
distribution is set to 0.1. Size anchor and variance are set to 0.2 and 0.1, respectively.

For SpMOT, background modeling is disabled and the dimensionality of the latent object appearance
is set to 8.

For VMDS, the dimensionality of background is set to 3 and the dimensionality of the latent object
appearance is set to 16. For object discovery, a grid of 3⇥ 3 cells with a maximum number of objects
of 8 is used.

For VOR, the dimensionality of background is set to 8 and the dimensionality of the latent object
appearance is set to 16.

Hyperparameter tuning: For VMDS, we run hyperparameter search over number of grid cells
{3⇥ 3, 4⇥ 4}, background dimension {1, 3, 5}, maximum number of objects {5, 8, 10} (dependent
on number of grid cells), size anchor {0.2, 0.25, 0.3, 0.4}, zwhat dimenisonality {8, 16, 24} and end
value of tau {0.3, 0.5}.

For SpMOT, we run hyperparameter search over maximum number of objects {4, 10}, size anchor
{0.1, 0.2, 0.3}, zwhat dimensionality {8, 16} and whether to model background (with background
dimensionality 1) or not.

For VOR, we run hyperparameter search over size anchor {0.2, 0.3} and background dimensionality
{8, 12}.

We picked best hyper parameters according to the validation loss.

23

Under review as a conference paper at ICLR 2021

Figure E.1: Distribution of failure cases dependent on number of objects in VMDS videos split by
failure class. Mean of three training runs. Error bars: SD.

Training: We train SCALOR with a batch size of 16 for 300 epochs using a learning rate of 0.0001
for SpMOT and VOR and for 400 epochs for VMDS. For the final MOT evaluation, the checkpoint
with the lowest loss on the validation set is chosen.

E ADDITIONAL RESULTS

Table E.1 lists the individual results for the three training runs with different random seeds per model
and dataset. The results of VIMON and SCALOR are coherent between the three runs with different
random seed, while TBA has one run on SpMOT with significantly lower performance than the
other two and shows variation in the three training runs on VMDS. OP3 exhibits one training run on
SpMOT with lower performance than the other two.

Fig. E.1 shows the fraction of failure cases dependent on the number of objects present in the video
for the three different failure cases separately; ID switches, FPs and misses. For VIMON, TBA and
SCALOR, the number of failures increase with the number of objects present regardless of the type
of failure. In contrast, OP3 shows this pattern for ID switches and misses, while it accumulates a
higher number of false positives (FPs) in videos with fewer (only one or two) objects.

Fig. E.2 shows a comparison between MONET and VIMON on VMDS. MONET correctly finds and
segments objects, but it does not assign them to consistent slots over time, while VIMON maintains
a consistent slot assignment throughout the video.

Figure E.2: Comparison of MONET and VIMON on VMDS. Example sequence of dataset shown
with corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the attention masks. Color-coded segmentation maps in third row signify slot-assignment.
Note how the object-slot assignment changes for consecutive frames (3rd row) for MONET, while
VIMON maintains a consistent slot assignment throughout the video.

Fig. E.4 shows failures cases of OP3 on VOR.

24

Under review as a conference paper at ICLR 2021

Table E.2 and Table E.3 list the results for the four models, VIMON, TBA, OP3 and SCALOR, on
the VMDS challenge sets and out-of-distribution (o.o.d.) sets respectively. Results are shown as the
mean and standard deviation of three training runs with different random seed per model.

Table E.1: Analysis of SOTA object-centric representation learning models for MOT. Results for
three runs with different random training seeds.

Model Run MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #
SpMOT

1 70.0 90.6 92.8 49.4 74.7 4.1 21.2 4.7 10.4
MONET 2 69.4 90.0 92.7 48.1 74.2 4.1 21.6 4.8 13.4

3 71.3 88.1 91.6 53.8 77.1 4.9 18.0 5.8 15.2
1 92.7 92.0 87.5 87.0 94.9 4.9 0.2 2.2 10.5

VIMON 2 92.8 92.0 86.9 86.3 94.8 5.0 0.2 2.0 11.8
3 93.2 91.6 88.8 88.3 95.2 4.6 0.2 2.0 10.9
1 90.5 71.4 90.2 89.8 94.4 5.3 0.3 3.9 10.3

TBA 2 58.4 70.7 69.6 60.8 75.0 18.1 6.9 16.6 14.6
3 90.1 71.5 90.3 89.4 94.0 5.5 0.5 3.9 10.9
1 92.4 80.0 94.5 93.7 97.3 2.4 0.4 4.8 4.3

OP3 2 81.9 74.9 86.9 86.5 92.8 6.8 0.3 10.9 30.1
3 92.9 80.1 95.9 95.2 97.6 2.0 0.4 4.7 5.6
1 94.4 80.1 96.5 92.3 95.4 2.4 2.2 1.0 3.3

SCALOR 2 94.7 80.2 96.4 93.1 95.8 2.4 1.8 1.1 3.4
3 95.5 80.2 96.3 94.0 96.4 2.4 1.2 0.9 3.6

VOR
1 28.0 81.3 73.8 26.7 57.4 18.0 24.6 29.4 14.1

MONET 2 44.5 82.4 78.2 45.4 68.7 15.0 16.3 24.2 11.8
3 38.5 81.6 78.7 39.8 67.0 14.4 18.5 28.5 10.8
1 89.0 88.9 90.2 89.8 92.9 6.8 0.3 3.9 7.1

VIMON 2 89.0 89.8 89.9 89.6 93.0 6.8 0.2 4.0 6.2
3 89.0 89.9 91.0 90.6 93.8 6.0 0.2 4.8 5.9
1 64.8 89.5 87.2 85.1 90.3 8.8 0.9 25.5 3.1

OP3 2 66.2 88.1 88.6 85.1 90.7 7.9 1.4 24.5 2.9
3 65.3 89.3 88.2 86.1 91.1 8.0 0.9 25.8 3.0
1 74.1 85.8 75.6 75.5 77.4 22.6 0.0 3.3 6.4

SCALOR 2 74.6 86.0 75.9 75.9 78.1 21.9 0.1 3.5 6.4
3 75.1 86.1 76.5 76.4 78.2 21.7 0.0 3.1 6.3

VMDS
1 51.7 79.6 75.1 36.7 67.6 12.9 19.5 15.9 20.8

MONET 2 44.3 76.1 71.8 34.8 65.9 15.0 19.1 21.5 25.3
3 52.2 80.2 75.6 35.5 66.5 13.0 20.5 14.2 20.4
1 87.0 86.8 86.7 85.4 92.4 6.8 0.7 5.5 10.6

VIMON 2 87.1 86.8 86.1 85.1 92.3 7.1 0.6 5.3 10.8
3 86.5 86.7 86.0 84.6 92.1 7.2 0.7 5.6 10.6
1 68.5 76.1 69.3 65.3 80.7 16.5 2.8 12.2 26.0

TBA 2 38.9 73.8 55.1 50.5 70.2 26.6 3.2 31.3 30.8
3 56.0 75.0 64.3 59.2 76.7 19.8 3.5 20.8 27.5
1 93.1 94.2 97.2 96.7 98.0 1.9 0.2 4.9 4.0

OP3 2 92.7 93.4 96.9 96.3 97.8 2.0 0.2 5.1 4.3
3 89.4 93.3 96.2 95.8 97.6 2.2 0.2 8.3 4.6
1 75.7 88.1 69.4 68.3 79.8 19.4 0.8 4.0 13.9

SCALOR 2 72.7 87.2 66.7 65.6 77.6 21.6 0.8 4.9 14.2
3 73.7 87.6 67.5 66.2 77.9 21.2 0.9 4.2 14.0

25

Under review as a conference paper at ICLR 2021

Table E.2: Performance on VMDS challenge sets. Results shown as mean ± standard deviation for
three runs with different random training seeds. Examples sequences for each challenge set shown
below.

Occlusion Same Color Small Objects Large Objects
Model MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT MOTA MOTP MT

VIMON 67.1 ± 0.4 82.5 ± 0.0 63.0 ± 0.1 72.2 ± 0.1 83.6 ± 0.1 70.4 ± 0.3 86.3 ± 0.2 83.3 ± 0.2 83.4 ± 0.4 70.7 ± 0.5 85.1 ± 0.1 76.1 ± 0.7
TBA 37.5 ± 10.4 72.8 ± 0.8 38.3 ± 4.6 47.2 ± 9.4 73.0 ± 0.7 45.2 ± 3.9 74.3 ± 0.7 71.9 ± 0.4 65.3 ± 1.6 25.6 ± 15.0 73.4 ± 0.9 44.7 ± 6.7
OP3 85.3 ± 1.0 91.6 ± 0.4 89.6 ± 0.9 51.5 ± 1.3 86.5 ± 0.3 66.3 ± 1.3 93.3 ± 1.6 93.0 ± 0.4 97.0 ± 0.2 83.8 ± 2.0 92.2 ± 0.4 93.5 ± 0.4
SCALOR 58.8 ± 1.0 86.6 ± 0.4 46.8 ± 1.2 53.7 ± 1.1 83.4 ± 0.3 46.2 ± 1.1 74.4 ± 0.7 86.1 ± 0.4 67.6 ± 1.3 66.1 ± 1.9 86.6 ± 0.5 62.4 ± 1.4

Table E.3: Performance on VMDS OOD test sets. Results shown as mean ± standard deviation for
three runs with different random training seeds. Examples sequences for each o.o.d. set shown below.

Size Color Rotation
Model MOTA MOTP MD MT MOTA MOTP MD MT MOTA MOTP MD MT

VIMON 61.4 ± 2.5 78.0 ± 0.3 71.3 ± 2.1 66.8 ± 1.9 87.4 ± 0.4 86.2 ± 0.2 86.4 ± 0.1 85.0 ± 0.2 -10.4 ± 4.0 70.5 ± 0.4 39.5 ± 2.6 29.8 ± 1.0
VIMON* 80.3 ± 0.9 82.1 ± 0.5 82.5 ± 0.4 79.8 ± 0.5 84.5 ± 0.6 84.6 ± 0.5 83.4 ± 0.5 81.8 ± 0.3 78.7 ± 1.6 82.0 ± 0.6 79.2 ± 0.4 76.4 ± 0.6
TBA 52.3 ± 8.7 73.3 ± 0.7 59.8 ± 4.9 51.8 ± 4.9 56.1 ± 11.4 75.1 ± 0.9 63.7 ± 5.4 59.0 ± 5.2 52.4 ± 9.9 73.6 ± 0.8 59.3 ± 6.2 49.8 ± 5.5
TBA* 1.3 ± 7.8 68.4 ± 1.9 30.6 ± 4.5 24.8 ± 3.4 -16.5 ± 8.1 69.6 ± 1.5 29.1 ± 3.8 25.4 ± 3.3 -7.5 ± 7.9 69.4 ± 1.4 26.6 ± 4.0 20.6 ± 3.4
OP3 87.0 ± 1.9 90.8 ± 0.4 96.4 ± 0.1 95.3 ± 0.1 90.8 ± 1.2 93.5 ± 0.5 97.3 ± 0.1 95.8 ± 0.1 54.7 ± 5.7 84.2 ± 0.7 87.1 ± 1.7 80.5 ± 2.5
OP3* 84.0 ± 2.8 91.2 ± 1.0 95.9 ± 0.8 94.5 ± 1.2 83.6 ± 3.7 91.6 ± 1.3 95.5 ± 0.5 92.9 ± 1.6 74.5 ± 2.2 89.8 ± 0.7 94.8 ± 0.6 93.3 ± 0.8
SCALOR 68.1 ± 1.7 84.9 ± 0.4 63.3 ± 1.7 60.0 ± 2.0 75.5 ± 1.1 89.9 ± 0.5 67.0 ± 1.4 65.7 ± 1.6 46.5 ± 1.8 82.1 ± 0.5 41.9 ± 1.7 37.1 ± 1.3
SCALOR* 67.5 ± 1.2 85.2 ± 0.6 61.2 ± 1.2 57.1 ± 0.7 73.3 ± 0.7 89.8 ± 0.5 64.8 ± 1.1 63.0 ± 0.9 61.6 ± 1.4 83.5 ± 0.4 53.4 ± 1.5 50.2 ± 1.1

* Models trained on a dataset that featured color, size and orientation changes of objects during the sequence.

E.1 OUT-OF-DISTRIBUTION TEST SETS

To test whether the models can in principle learn additional object transformations as featured in the
VMDS o.o.d. sets, we additionally train the models on a new training set that includes size and color
changes as well as rotation of objects. VIMON, OP3 and SCALOR are able to learn additional
property changes of the objects when they are part of the training data while TBA fails to learn
tracking on this more challenging dataset (Fig. E.3; for absolute values Table E.3).

E.2 STABILITY OF TRAINING AND RUNTIME

Figure E.3: Performance on out-of-distribution
sets relative to VMDS test set (100%). * indicates
that models were trained on a dataset that included
color, size and orientation changes of objects.

To assess runtime in a fair way despite the mod-
els being trained on different hardware, we re-
port the training progress of all models after one
hour of training on a single GPU (Table E.4). In
addition, we quantify inference time on the full
VMDS test set using a batch size of one.

E.3 VIMON ABLATIONS

Removing the GRU or the mask conditioning
of the attention network reduces tracking perfor-
mance (MOTA on VMDS from 86.8% to 70.6%
and 81.4%, respectively; Table E.5)

F SUPPLEMENTARY FIGURES

See figures F.1 – F.8 for additional, randomly
picked examples of reconstruction and segmentation for VIMON, TBA, OP3 and SCALOR on the
three datasets (VMDS, SpMOT and VOR).

26

Under review as a conference paper at ICLR 2021

Table E.4: Runtime analysis (using a single RTX 2080 Ti GPU). Training: models trained on VMDS
for one hour. Inference: models evaluated on VMDS test set with batch size=1 (10 frames).

Training Inference
Model Resolution No. Param. Batch Size Memory [MiB] No. Iters Epochs Memory [MiB] Avg. runtime / batch Total runtime

VIMON 64⇥64 714,900 18 10,860 3687 6.63 910 0.28 s/it 4min 39s
TBA 128⇥128 3,884,644⇤ 64 10,564 4421 28.29 972 0.24 s/it 4min 05s
OP3 64⇥64 876,305 10 10,874 2204 2.20 4092 0.54 s/it 9min 04s
SCALOR 64⇥64 2,763,526 48 10,942 2547 12.23 930 0.29 s/it 4min 48s
* The TBA parameter count scales with the feature resolution, which is kept fixed using adaptive pooling. This makes the parameter count

independent of input resolution.

Table E.5: Ablation experiments for VIMON on VMDS.

Model MOTA " MOTP " MD " MT " Match " Miss # ID S. # FPs # MSE #
VIMON W/O MASK CONDITIONING 70.6 87.8 75.7 66.0 81.4 13.4 5.2 10.8 16.9
VIMON W/O GRU 81.4 86.9 79.8 77.3 88.2 10.3 1.4 6.8 18.9

G
ro

un
d

Tr
ut

h
R
ec

on
.

Se
gm

.
G

ro
un

d
Tr

ut
h

R
ec

on
.

Se
gm

.
G

ro
un

d
Tr

ut
h

R
ec

on
.

t=1

Se
gm

.

t=3 t=5 t=7 t=9

Figure E.4: Failure cases of OP3 on VOR. Exam-
ple sequences of VOR test set shown with corre-
sponding outputs of the model after final refine-
ment step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.

27

Under review as a conference paper at ICLR 2021

Figure F.1: Results of VIMON on VMDS. Random example sequences of VMDS test set shown
with corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the reconstructed masks from the VAE. Binarized colour-coded segmentation maps in
third row signify slot-assignment.

28

Under review as a conference paper at ICLR 2021

Figure F.2: Results of VIMON on SpMOT. Random example sequences of SpMOT test set shown
with corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the reconstructed masks from the VAE. Binarized colour-coded segmentation maps in
third row signify slot-assignment.

29

Under review as a conference paper at ICLR 2021

Figure F.3: Results of VIMON on VOR. Random example sequences of VOR test set shown with
corresponding outputs of the model. Reconstruction shows sum of components from all slots,
weighted by the reconstructed masks from the VAE. Binarized colour-coded segmentation maps in
third row signify slot-assignment.

30

Under review as a conference paper at ICLR 2021

Figure F.4: Results of TBA on VMDS. Random example sequences of VMDS test set shown with
corresponding outputs of the model. Binarized colour-coded segmentation maps in third row signify
slot-assignment. Note that background subtraction is performed in the preprocessing of TBA, hence
the black background in the reconstructions.

31

Under review as a conference paper at ICLR 2021

Figure F.5: Results of TBA on SpMOT. Random example sequences of SpMOT test set shown with
corresponding outputs of the model. Binarized colour-coded segmentation maps in third row signify
slot-assignment.

32

Under review as a conference paper at ICLR 2021

Figure F.6: Results of OP3 on VMDS. Random example sequences of VMDS test set shown with
corresponding outputs of the model after final refinement step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.

33

Under review as a conference paper at ICLR 2021

Figure F.7: Results of OP3 on SpMOT. Random example sequences of SpMOT test set shown with
corresponding outputs of the model after final refinement step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.

34

Under review as a conference paper at ICLR 2021

Figure F.8: Results of OP3 on VOR. Random example sequences of VOR test set shown with
corresponding outputs of the model after final refinement step. Binarized colour-coded segmentation
maps in third row signify slot-assignment.

35

Under review as a conference paper at ICLR 2021

Figure F.9: Results of SCALOR on VMDS. Random example sequences of VMDS test set shown
with corresponding outputs of the model. Binarized colour-coded segmentation maps in third row
signify slot-assignment.

36

Under review as a conference paper at ICLR 2021

Figure F.10: Results of SCALOR on SpMOT. Random example sequences of SpMOT test set shown
with corresponding outputs of the model. Binarized colour-coded segmentation maps in third row
signify slot-assignment.

37

Under review as a conference paper at ICLR 2021

Figure F.11: Results of SCALOR on VOR. Random example sequences of VOR test set shown with
corresponding outputs of the model. Binarized colour-coded segmentation maps in third row signify
slot-assignment.

38

	Introduction
	Related work
	Object-Centric Representation Benchmark
	Datasets
	Metrics
	Models

	Results
	Discussion
	Evaluation Protocol Details
	Mapping
	MOT Metrics

	Dataset Generation Details
	Video Multi-dSprites (VMDS)
	VMDS Challenge Sets
	VMDS Out-of-Distribution Test Sets

	Sprites-MOT (SpMOT)
	Video Objects Room (VOR)

	Methods
	MONet
	Video MONet
	Tracking by Animation
	IODINE
	Object-centric Perception, Prediction, and Planning (OP3)
	SCALable Object-oriented Representation (SCALOR)

	Model Implementation Details
	Video MONet
	Tracking by Animation
	OP3
	SCALOR

	Additional Results
	Out-of-distribution test sets
	Stability of training and runtime
	ViMON Ablations

	Supplementary Figures

