
A General Details about the Architecture

A.1 Hyperparameters and How to Set Them

Neural Interpeters introduce a number of components that are not present in Vision Transformers,
and accordingly, it introduces additional hyperparameters. While we found a large range of hyper-
parameters can work well in practice, there are patterns that warrant discussion. In this section, we
provide a detailed discussion of these hyperparameters, and how these are set in this work. We also
remark that there might be other hyperparameter settings that work well for different settings, and the
insights in this section should merely function as a guide.

A.1.1 Partitioning Depth between LOCs, Function Iterations and Script

There are three distinct ways of increasing the depth of Neural Interpreters.

1. Increasing the number of Function Iterations. Increasing ni, the number of function it-
erations, is a natural way of increasing the depth of Neural Interpreters without increasing
the number of parameters. Large ni encourages the recursive and iterative reuse of computa-
tion [15], but might result in a scarcity of parameters.

2. Increasing the number of Scripts. Increasing ns, the number of scripts, is a way of
increasing the depth of Neural Interpreters while increasing the number of parameters.
Larger ns tends to result in models that are easier to train, potentially due to a larger number
of good solutions in the parameter space [11] (owing to the larger number of parameters).
However, if ns is increased at the price of decreasing ni, one might forego some inductive
bias towards iterative reuse of computation.

3. Increasing the number of LOCs. Increasing nl, the number of LOCs, also increases the
depth while increasing the number of parameters. However, unlike increasing ns, increasing
nl results in a deeper block of layers being recursively applied. Increasing nl might come at
the price of decreasing ni, in which case some recursive inductive bias is foregone; or it might
come at the price of decreasing ns, which might result in models that are less consistent.

Recommendation. If training is less stable or in-distribution performance is important, one should
consider increasing the number of scripts ns. If the training is stable but out-of-distribution general-
ization or fast-adaptation performance is important for the application, one should consider increas-
ing the number of function iterations ni. If there is additional budget for hyper-parameter search, one
could consider tuning the number of LOCs (starting with nl ∈ {1, 2}).

A.1.2 Increasing the Number of Functions

Increasing nf , the number of functions, is a parameter efficient way of increasing the width of the
network in a model-parallelizable way. This is especially apparent from Equation 9, where the
index over functions (u) can be effectively folded in to the batch-axis. Further, we found benefits in
increasing the number of functions (also in terms of in-distribution performance), suggesting that the
distribution of parameters between interpreter and the codes (as described in Equation 4) is scalable.

Recommendation. The number of functions can be safely increased to match available resource
capacity.

A.1.3 Kernel Truncation Parameter and Dimension of Type Space

These hyperparameters (inherited from [46]) have to do with routing of information through the
network. The truncation parameter τ ∈ [0, 2) controls the hardness of the routing – if τ is small,
functions are only granted access to set elements whose types lie in the immediate vicinity of their
signatures. For larger τ , functions may be granted access to set elements whose types are less similar
to their signatures in type-space, albeit the said elements are down-weighted by the kernel. The type
space dimension dtype controls the amount of flexibility afforded to the routing mechanism. Intuitively,
larger dtype implies that there are more ways to how the signature and type vectors can be positioned
in the type space T (a hypersphere of dimension dtype) relative to each other.

Recommendation. These hyperparameters may vary with the problem at hand. If sparsity is desired,
one should consider lower values for τ . If training is less stable, larger values of τ might mitigate the

15



issue. We find τ ∈ [1.2, 1.7] to be a reasonable range for hyperparameter sweeps. As for dtype, we
find all values between 20 and 50 to work well in our experiments.

A.1.4 Learning Function Signatures and Code

When pre-training the model, one decision that must be made is whether or not the function signatures
and codes should be trained. Note that freezing these parameters at the pre-training stage does not
necessarily constrain the model in a significant way – if the function signatures are fixed, the type-
inference MLP can adapt (Equation 2); likewise, if function codes are frozen, the weight matrices
Wc (Equation 9) can adapt. Note that this applies in the pre-training phase, where the type inference
MLP and the interpreter parameters are allowed to adapt.

Recommendation. While we did not find a large difference, runs with frozen function codes were
slightly less consistent than the ones with learned function codes. At the same time, runs with frozen
function signatures tended to perform at least as well as the ones that learned function signatures, if
not slightly better.2

A.1.5 Choice of an Optimizer and Scheduler

Like for most self-attention based models (including the transformer [58]), the choice of an optimizer
and learning rate schedule plays an important role. A common practice is to use Adam with a linear
learning rate warm-up and cosine annealing (once per optimization step). However, learning rate
warm-up is known to be a heuristic to control the variance of Adam learning rate in the early stages
of training, a problem that Rectified Adam [36] (RAdam) solves in a more principled way while
eliminating a sensitive hyperparameter (the number of warm-up steps). Further, for certain adaptation
tasks where the loss-landscape can potentially be challenging, we found Shampoo [25] to work
particularly well.

Recommendation. For pre-training Neural Interpreters, we can recommend the RAdam optimizer
with a cosine annealing schedule (without warm-up). We anneal the learning rate by ∼two orders
of magnitude over 80-90% of the training steps, and keep the learning rate at the minimum for the
remainder of the steps. While we found RAdam to also work well for most finetuning experiments,
Shampoo [25] with appropriately tuned learning rate can serve as a reasonable alternative in the event
that RAdam does not perform as expected.

A.2 Limitations and Future Work

Lack of Top-Down Processing. Like most self-attention based models, Neural Interpreters process
their inputs in a bottom-up manner where the input is encountered only once, which is at the first
(input) layer. However, top-down processing of information is known to be a useful prior [24, 28, 37],
and future work may explore incorporating this in the proposed architecture.

Higher Order Functions. While Neural Interpreters are a step towards models that can flexibly
compose computational primitives, they are (in their current form) missing certain notions from
functional programming that could potentially serve as useful inductive biases. One of these notions
is that of higher-order functions, i.e., functions that can manipulate other functions depending on the
context.3 Support for higher-order functions can enable the model to no longer rely on a discrete set
of pre-learned functions; instead, the model can learn to create new functions on the fly (i.e. at test
time). We nevertheless note that Neural Interpreters already posses some features that can facilitate
this inductive bias, the most important one being explicit representation of function codes (which can
be manipulated by functions, just like other set elements).

Lazy Function Execution. Another potentially powerful notion (borrowed from functional program-
ming) that is yet to be incorporated is that of lazy or deferred function executions. When imple-
mented, this can enable models that support functional representations, or abstractions as they are
known in the language of lambda calculus.

2This is less surprising in light of the fact that the type-inference MLP has a larger number of parameters that
can be adapted during training.

3In python, these are like decorators.

16



A.3 Broader Impact

Neural Interpreters is a general neural back-bone that can be used in a variety of applications that we
may not yet foresee. Nevertheless, the presented work provides an architecture that is computationally
scalable, implying that a user might be tempted to experiment with more compute than is strictly
necessary for obtaining good results; if not powered by nuclear or other renewable sources of energy,
this might result in a larger carbon footprint.

B Learning Fuzzy Boolean Expressions

B.1 Sampling Fuzzy Boolean Functions

0.0 0.2 0.4 0.6 0.8 1.0
a

0.0

0.2

0.4

0.6

0.8

1.0

b

a AND b

0.0 0.2 0.4 0.6 0.8 1.0
a

a OR b

0.0 0.2 0.4 0.6 0.8 1.0
a

a XOR b

0.0 0.2 0.4 0.6 0.8 1.0
a

a XNOR b

Figure 9: Visualization of fuzzy relaxations of binary operations mapping a ∈ [0, 1] and b ∈ [0, 1] to
a value in [0, 1]. From left to right: and, or, xor and xnor.

In what follows, we define a family of smooth functions mapping from the unit hyper-cube [0, 1]N to
[0, 1]. To this end, consider again the primitives defined in Equation 15. Where xi, xj ∈ [0, 1], we
define:

and(xi, xj) = xixj (16)
not(xi) = x̄i = 1− xi (17)

or(xi, xj) = xi ⊕ xj = 1− (1− xi)(1− xj) (18)

Observe that if xi, xj ∈ {0, 1}, these operations reduce to their Boolean namesakes, and Equation 18
is consistent with de Morgan’s law. In this sense, the primitives described above induce a relaxation
of Boolean logic to real numbers on the compact interval [0, 1]. We note that this relaxation, called
product fuzzy logic, is not unique: there exist other definitions of the and and not operations that
define other logics (examples being Łukasiewicz and Gödel-Dummett logics).

Given these primitives, it is now possible to construct functions that resemble boolean functions in
the cannonical disjunctive normal form (i.e., in the sum-of-products form). As an example, consider
a vector x ∈ [0, 1]5, whose components we call a, b, c, d, e ∈ [0, 1]. One may now define a function:

f(x) : [0, 1]5 → [0, 1], (a, b, c, d, e) 7→ ābcdē⊕ ab̄cd̄e⊕ abc̄dē (19)

If a, b, c, d, e were to be boolean (i.e., ∈ {0, 1}), the function f would have a truth table where
f = 1 only if a = 0, b = 1, c = 1, d = 1, e = 0, or a = 1, b = 0, c = 1, d = 0, e = 1, or
a = 1, b = 1, c = 0, d = 1, e = 0. Conversely, given this truth table, it is possible to reconstruct f in
the sum-of-products form described above.

The above fact makes randomly sampling a fuzzy boolean function like sampling from the Bernoulli
distribution: for all combinations of possible values of a, b, c, d, e ∈ {0, 1}5, we sample the value of a
boolean function f(a, b, c, d, e) ∼ Bernoulli(0.5) in order to populate the truth-table of f . Given the
randomly sampled truth table, we construct the expression for f in the sum-of-product form. Finally,
we interpret the boolean expression (mapping from {0, 1}5 → {0, 1}) as a fuzzy boolean expression
mapping from [0, 1]5 → [0, 1] using the corresponding primitives defined in Equation 16 et seq.

B.2 Hyperparameters

Please refer to Table 3.

17



Table 3: Hyperparameters for results in Table 1 (Learning Fuzzy Boolean Expressions).
Parameters Values
Batch size 128
Pretraining epochs 20
Finetuning epochs 3

Dimension of code vector (c) 128
Dimension of intermediate features 128
Number of scripts (ns) 2
Number of function Iterations (ni) 2
Number of LOCs (nl) 1
Number of functions (nf ) 4
Number of heads per LOC 1
Number of features per LOC head 32
Type Inference MLP Depth 2
Type Inference MLP Width 128
Frozen Function Signatures False
Frozen Function Codes False
Truncation Parameter (τ ) 1.6
Type Space Dimension (dtype) 24

Optimizer RAdam [36]
Adam: learning rate (pre-training) 0.006
Adam: learning rate (finetuning) 0.05
Adam: β1 0.9
Adam: β2 0.999
Adam: ε 1e-8
Learning rate scheduler None

C Multi-Task Image Classification

C.1 The Digits Dataset

Figure 10: Augmented Samples from the Digits Dataset.

The Digits dataset is a concatenation of three datasets of labelled images of digits: SVHN [41],
MNISTM [20], and MNIST [35]. All images are up-sampled to RGB images of size 32× 32, and the
combined training set has 193257 samples, whereas the validation set has 46032 samples. In addition

18



Table 4: Hyperparameters for pre-training the Neural Interpreter Model used in Figure 5.
Parameters Values
Batch size 128
Pre-training epochs 100

Dimension of code vector (c) 192
Dimension of intermediate features 192
Number of scripts (ns) 1
Number of function iterations (ni) 8
Number of LOCs (nl) 1
Number of functions (nf ) 5
Number of heads per LOC 4
Number of features per LOC head 128
Type Inference MLP Depth 2
Type Inference MLP Width 192
Frozen Function Signatures True
Frozen Function Codes False
Truncation Parameter (τ ) 1.4
Type Space Dimension (dtype) 24

Optimizer RAdam [36]
Adam: β1 0.9
Adam: β2 0.999
Adam: ε 1e-8
Learning rate scheduler Cosine (no warm-up)
Scheduler: ηmax (Max LR) 0.0008
Scheduler: ηmin (Min LR) 0.000001
Scheduler: Number of decay steps 120000

Number of parameters 6.43× 105

Accuracy on SVHN 96.2 %
Accuracy on MNISTM 98.4 %
Accuracy on MNIST 99.4 %

to the images and labels, we also preserve information about which of the constituent datasets a
sampled image originates from.

We use RandAugment [14] to augment the input images before feeding them to the model, and use
the implementation from Pytorch Image Models [60]. Figure 10 shows augmented samples from the
dataset.

C.2 Hyperparameters

C.2.1 Pre-training

Table 4 shows the hyperparameters used for pre-training the Neural Interpreter model considered in
Figure 5. Table 5 shows the same, but for the Vision Transformer model.

C.2.2 Finetuning

Both models shown in Figure 5 (top) were fine-tuned for 10 epochs with varying number of samples.
We used the same batch-size as in pre-training (128). The error bands are with respect to 6 random
seeds, where the random seed also determines the subset of K-MNIST that was used. We used
RAdam optimizer with a constant learning rate, which was found with a grid search (0.03 for ViT
and 0.05 for NI).

For the results shown in Figure 5 (bottom), the function codes and signatures were trained for 10
epochs on 8192 samples with Shampoo [25]. We again used 6 random seeds, and for each set
of trainable parameters, we grid-searched the learning rate. We did not see good performance

19



Table 5: Hyperparameters for pre-training the ViT Model used in Figure 5.
Parameters Values
Batch size 128
Pretraining epochs 100

Dimension of intermediate features 192
Number of MLP Features 192
Depth 8
Number of heads 3
Number of features per head 64

Optimizer RAdam [36]
Adam: β1 0.9
Adam: β2 0.999
Adam: ε 1e-8
Learning rate scheduler Cosine (no warm-up)
Scheduler: ηmax (Max LR) 0.0008
Scheduler: ηmin (Min LR) 0.000001
Scheduler: Number of decay steps 120000

Number of parameters 1.80× 106

Accuracy on SVHN 96.3 %
Accuracy on MNISTM 98.3 %
Accuracy on MNIST 99.6 %

with RAdam in this particular setting, suggesting that the loss landscape might necessitate the pre-
conditioning that is present in Shampoo (but not in RAdam).

C.2.3 Positional Encoding

We use a variant of the relative positional encoding scheme presented in [13], which we now describe.
Consider an array X of shape C ×H ×W , where C is the number of channels, and H and W can be
interpreted as height and width. Note that the array X need not be an image; it could (for instance) be
a collection of embedding vectors of patches, i.e., X·,ij could be the embedding vector (of dimension
C) of the patch that is i-th from top and j-th from left.

We now denote with erow[i2− i1] a vector that is a learned embedding of the difference of row-indices
i2 and i1. Likewise, we let ecol[j2 − j1] be a learned embedding of the difference of column-indices
j2 and j1. Where h indexes attention heads, we define:

ehrow[i2 − i1] = wh
row · erow[i2 − i1] (20)

ehcol[j2 − j1] = wh
col · ecol[j2 − j1] (21)

Here, wh
row and wh

row are learned weight vectors, and ehrow[i2 − i1] and ehcol[i2 − i1] are scalars, one
per attention head. This set-up allows each attention head to develop a positional bias independently
from other heads, a feature we inherit from [13]. In the context of Neural Interpreters, we additionally
allow functions to have their own positional bias, conditioned on its code cu. We have:

puhrow[i2 − i1] = ModLinhrow(erow[i2 − i1]; cu) (22)

puhcol [j2 − j1] = ModLinhcol(ecol[j2 − j1]; cu) (23)

Here, puhrow[i2 − i1] and puhcol [j2 − j1] are scalars specific to function u and attention head h. Finally,
the overall positional bias is given as following, where broadcasting operations are implied:

buh[i2 − i1, j2 − j1] = (puhrow[i2 − i1] + ehrow[i2 − i1]) + (puhcol [j2 − j1] + ehcol[j2 − j1]) (24)

Here, buh[i2 − i1, j2 − j1] is the positional bias that is added to the pre-softmax dot-product attention
weights coupling the embedding vectors X·,i1j1 and X·,i2j2 at function fu and attention head at index
h. We remark that this scheme only differs from [13] in that we allow each function to develop its
own positional bias.

20



C.3 Additional Results and Ablations

In order to understand the effect of various hyperparameters, we analyze the results of a random sweep
over 100 runs on the Digits dataset. The distributions over sweep parameters are presented in Table 6.

Table 6: Distribution over hyperparameters used in the sweep. U denotes the uniform distribution.
Parameters Distribution
Truncation parameter (τ ) U([0.7, 1.7])
Dimension of type space (dtype) U({4 ∗ i | i ∈ {2, 3, ..., 12}})
Number of functions (nf ) U({1, 2, 3, 4, 5})
Num. of scripts, function iterations, and LOCs (ns, ni, nl) U({(2, 2, 2), (2, 4, 1), (4, 2, 1), (1, 8, 1)})
Frozen function signatures U({True, False})
Frozen function codes U({True, False})
Frozen patch embeddings [10, 56] U({True, False})

Kernel Truncation and Dimension of Type Space. In Figure 11, we select for each dataset the top
10% of all runs (w.r.t. validation performance), and plot a Kernel Density Estimate of their type space
dimensions (dtype) and truncation parameters (τ ). We find that while the optimal τ and dtype only
somewhat depend on each other, there are minor variations between the SVHN and MNIST-M vs.
MNIST. We speculate that this is due to SVHN and MNIST-M having cluttered backgrounds; the
flexibility afforded by a larger type space is less desirable when the model must learn to suppress
background clutter by routing noisy patches through similar functions.

0 20 40 60
Type Space Dimension

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
un

ca
tio

n 
P

ar
am

et
er

(a) SVHN

0 20 40 60
Type Space Dimension

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
un

ca
tio

n 
P

ar
am

et
er

(b) MNIST-M

10 0 10 20 30 40 50 60
Type Space Dimension

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Tr
un

ca
tio

n 
P

ar
am

et
er

(c) MNIST

Figure 11: Kernel Density Estimates of truncation parameters τ and type space dimensions dtype of
the top 10% of runs for each dataset.

Number of Functions. Figure 12 shows the kernel density estimate of the validation performance
of all 100 runs, conditioned on the number of functions. We read that on the one hand, runs with 5
functions perform consistently well; on the other hand, there exist runs with a single function that
perform well, but most of these runs fail. This is consistent with the recommendation in Section A.1.2.

Frozen Patch Embeddings, Function Signatures and Codes. Figure 13 shows the validation
performance of top 10% of runs (for the respective dataset), with or without frozen patch embeddings,
function signatures and codes. As elaborated in Section A.1.4, it is not surprising that Neural
Interpreters can work well even when function codes and signatures remain frozen during training.
We find that freezing function signatures can be marginally beneficial, but freezing function codes
less so. We also experimented with freezing the patch embeddings, as recommended in [10, 56], and
find that it slightly improves performance.

Number of Scripts, Function Iterations and LOCs. Figure 16 shows the conditional kernel density
estimates of validation performance, conditioned on the number of scripts. We again find that all
evaluated configurations can work well. A larger number of scripts can stabilize training and lead to
consistent in-distribution performance, as expected from Section A.1.1.

21



0.0 0.2 0.4 0.6 0.8 1.0
SVHN Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of Functions
1
2
3
4
5

(a) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
MNISTM Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of Functions
1
2
3
4
5

(b) MNIST-M

0.0 0.2 0.4 0.6 0.8 1.0
MNIST Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of Functions
1
2
3
4
5

(c) MNIST

Figure 12: Conditional Kernel Density Estimates of validation performance, conditioned on the
number of functions nf .

False True
Frozen Function Signatures

0.964

0.965

0.966

0.967

0.968

S
V

H
N

 A
cc

ur
ac

y

Top 10% of All Runs

False True
Frozen Function Signatures

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

M
N

IS
TM

 A
cc

ur
ac

y

Top 10% of All Runs

False True
Frozen Function Signatures

0.9961

0.9962

0.9963

0.9964

0.9965

0.9966

0.9967

0.9968

M
N

IS
T 

A
cc

ur
ac

y

Top 10% of All Runs

(a) Frozen Function Signatures

False True
Frozen Function Codes

0.964

0.965

0.966

0.967

0.968

S
V

H
N

 A
cc

ur
ac

y

Top 10% of All Runs

False True
Frozen Function Codes

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

M
N

IS
TM

 A
cc

ur
ac

y

Top 10% of All Runs

False True
Frozen Function Codes

0.9961

0.9962

0.9963

0.9964

0.9965

0.9966

0.9967

0.9968

M
N

IS
T 

A
cc

ur
ac

y

Top 10% of All Runs

(b) Frozen Function Codes

False True
Frozen Patch Embeddings

0.964

0.965

0.966

0.967

0.968

S
V

H
N

 A
cc

ur
ac

y

Top 10% of All Runs

False True
Frozen Patch Embeddings

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

M
N

IS
TM

 A
cc

ur
ac

y

Top 10% of All Runs

False True
Frozen Patch Embeddings

0.9961

0.9962

0.9963

0.9964

0.9965

0.9966

0.9967

0.9968

M
N

IS
T 

A
cc

ur
ac

y

Top 10% of All Runs

(c) Frozen Patch Embeddings

Figure 13: Box plots of validation performance of top 10% of all runs.

0.0 0.2 0.4 0.6 0.8 1.0
SVHN Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty Number of Scripts

1
2
4

(a) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
MNISTM Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty Number of Scripts

1
2
4

(b) MNIST-M

0.0 0.2 0.4 0.6 0.8 1.0
MNIST Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty Number of Scripts

1
2
4

(c) MNIST

Figure 14: Conditional Kernel Density Estimates of validation performance, conditioned on the
number of scripts ns.

0.0 0.2 0.4 0.6 0.8 1.0
SVHN Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty Function Iterations

2
4
8

(a) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
MNISTM Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty Function Iterations

2
4
8

(b) MNIST-M

0.0 0.2 0.4 0.6 0.8 1.0
MNIST Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty Function Iterations

2
4
8

(c) MNIST

Figure 15: Conditional Kernel Density Estimates of validation performance, conditioned on the
number of function iterations ni.

22



0.0 0.2 0.4 0.6 0.8 1.0
SVHN Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of LOCs
1
2

(a) SVHN

0.0 0.2 0.4 0.6 0.8 1.0
MNISTM Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of LOCs
1
2

(b) MNIST-M

0.0 0.2 0.4 0.6 0.8 1.0
MNIST Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

D
en

si
ty

Number of LOCs
1
2

(c) MNIST

Figure 16: Conditional Kernel Density Estimates of validation performance, conditioned on the
number of LOCs nl.

D Abstract Reasoning with PGMs

Progressively Generated Matrices (PGMs) [5] have been used as a diagnostic dataset to study the
compositional generalization capability of machine learning models [54, 59]. The dataset consists
of complex visual analogical reasoning tasks that require relational reasoning between attributes of
different objects. The ‘object types’ include shape and line comprising of the ‘attribute types’: size,
type, color, position, and number, where each attribute can take one of a finite number of discrete
values. The ‘relationship types’ consist of progression, XOR, OR, AND, and consistent union. The
structure of a PGM task is governed by triples, which are defined by applying a certain relationship
type to the attributes of the objects. On an average, one to four relationships are used per task.

To study the various aspects of generalization in models, [5] introduced 8 different sub-datasets,
corresponding to different generalization regimes of compositional reasoning. Except for the Neutral
regime, the test dataset in each regime measures the out-of-distribution generalization i.e., the test and
the training datasets are different in a clearly defined manner. We use 6 of such regimes in this work,
namely: Interpolation, Extrapolation, Held-out (H.O.) triples, H.O. pairs of triples, H.O. Attribute
Pairs, and Neutral. The details on these regimes are provided below.

D.0.1 Generalization Regimes

Neutral: The neutral regime measures the in-distribution generalization, i.e., the training and the test
sets consist of any triples.

Interpolation: In the training dataset of interpolation regime, the discrete values of the attributes are
restricted to even numbers whereas the test set consists of odd-valued attributes.

Extrapolation: For the training dataset of extrapolation regime, the attribute values were restricted
to the lower half of the discrete set whereas the test set consists of values sampled from the upper
half of the discrete set.

Held-out Triples: The PGM dataset contains 29 unique triples. In the test set of held-out triples, 7
of such triples were held-out, while the rest of the triples are used to create the training dataset.

Held-out Pairs of Triples: All tasks contain at least two triples, leading to 400 viable triple pairs [5].
In Held-out Pairs of Triples, 360 such pairs are randomly allocated to the training dataset and rest to
the test dataset.

Held-out Attribute Pairs: Here, each task consists of at least two triples, where there are 20 viable
pairs of attributes. Of these 20 pairs, 16 have been used to create the training set while the remaining
4 are used in the test set.

D.1 Details of PGM Experiments

For each PGM sub-dataset, we train multiple models for both Vision Transformers and Neural
Interpreters. Each model is trained for 30 epochs and the model selection is done by evaluating its
performance on validation datasets. The reported test accuracy in Table 2 corresponds to the best

23



Table 7: Hyperparameters and their values that are kept the same in all the PGM experiments.
Parameters Values
Batch size 72
Epochs 30

Dimension of code vector (c) 192
Dimension of intermediate features 192
Number of scripts (ns) 2
Number of function iterations (ni) 8
Number of LOCs (nl) 1
Number of functions (nf ) 5
Number of heads per LOC 4
Number of features per LOC head 32
Type Inference MLP Depth 2
Type Inference MLP Width 192
Variable Features dimensions 192
Frozen Function Codes False

Optimizer RAdam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 0.0004
Learning Rate Scheduler Cosine
Cosine Scheduler Eta Max 0.0004
Cosine Scheduler Eta Min 0.0001

Number of parameters 1.6M

Table 8: Hyperparameters whose values are randomly sampled from the given ranges for each
experiment.

Parameters Ranges
Kernel truncation parameter (τ ) [1.3, 1.7]
Type features dimensions [20, 24, 28, 32, 36, 40]
Detach Function Signatures [True, False]
Number of scripts (ns) [1, 2, 4]
Function Iterations [4, 8, 16]

validation performance. We perform hyper-parameter sweeps to find the best configuration of Neural
Interpreters in each regime.

D.1.1 Hyperparameter Settings

We perform random sweeps to find the optimal hyperparameters for each PGM regime. Due to the
huge computational overload and the massive size of the datasets, the number of experiments in each
sweep is limited to 35. We carried forward the knowledge that we learned from the digits experiments
(Section 4.2), and perturbed only those hyperparameters that had significant influence on the model’s
performance. Apart from changing these selected hyperparameters, the models are identical in all
aspects. Table 7 provides the hyperparameters that are kept the same in all the models, whereas Table
8 shows the hyperparameters that we perturb and the ranges from which their values are randomly
sampled.

For the sake of consistency, we make sure that the number of computational steps remain the same in
all the experiments. For PGM sweeps, the number of computational steps are set to be 16. We varied
the numbers of scripts ns and function iterations ni such that their product comes out to be 16.

24



D.1.2 Optimal Neural Interpreters Configuration for PGMs

After running the set of experiments, we found that the one configuration that outperformed all other
configurations was with 2 scripts i.e., ns = 2 and 8 function iterations. There are small fluctuations
in the selection of kernel truncation parameter τ and dimensions of type space dtype that we detail
below in Table 9.

Table 9: Hyperparameters of Neural Interpreters for the considered PGM datasets.

Regime Neutral Interpolation Attribute P. Triple P. Triples Extra.

Number of scripts (ns) 2 2 2 2 2 2
Function iterations (ni) 8 8 8 8 8 8
Kernel truncation parameter (τ ) 1.62 1.62 1.40 1.66 1.42 1.42
Type space dimensions (dtype) 20 20 32 24 24 24
Frozen function signatures False False True False True True

E Diversity in Routing Mechanism

We further investigate whether the learned routing in neural interpreters is meaningfully diverse
i.e. whether certain samples get routed through certain functions? To answer it, we visualize the t-
SNE embeddings of the variable types in Figure 17. The color-codes represent the close affinities
between variables and certain functions in type space. We compare it against the case where the
routing is fixed at initialization Figure 18. It can be seen that in the randomly initialized routing the
type-function assignments (given by the colors assigned to a dot) exhibit less structure and diversity,
especially at the later function iterations. This suggests that the learning process in neural interpreters
indeed induces non-trivial patterns in how information is routed between modules.

Figure 17: t-SNE embeddings of the inferred types of set elements as they progress through a Neural Interpreter
with two scripts with two function iterations each. The color identifies the closest function in type space, and the
progression from left to right is over the function iterations. Gist: Types are more clustered in the later function
iterations, suggesting that the input set elements gradually develop a type as they progress through the network.

Figure 18: Same plot as above, but now with routing fixed at initialization. Gist: Inferred types of set elements
exhibit less structure and diversity at initialization, especially at later function iterations. This suggests that the
learning process indeed induces non-trivial patterns in how information is routed through the network.

25


	Introduction
	Neural Interpreters
	Related Work
	Experiments
	Learning Fuzzy Boolean Expressions
	Multi-Task Image Classification
	Abstract Reasoning

	Conclusion
	General Details about the Architecture
	Hyperparameters and How to Set Them
	Partitioning Depth between LOCs, Function Iterations and Script
	Increasing the Number of Functions
	Kernel Truncation Parameter and Dimension of Type Space
	Learning Function Signatures and Code
	Choice of an Optimizer and Scheduler

	Limitations and Future Work
	Broader Impact

	Learning Fuzzy Boolean Expressions
	Sampling Fuzzy Boolean Functions
	Hyperparameters

	Multi-Task Image Classification
	The Digits Dataset
	Hyperparameters
	Pre-training
	Finetuning
	Positional Encoding

	Additional Results and Ablations

	Abstract Reasoning with PGMs
	Generalization Regimes
	Details of PGM Experiments
	Hyperparameter Settings
	Optimal Neural Interpreters Configuration for PGMs


	Diversity in Routing Mechanism

