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APPENDIX

A ANONYMIZED CODE

For an anonymized version of our code, please see: anonymous.4open.science/r/polysona

B WEIGHT-MIXING IMPLEMENTATION

PyTorch-Style Forward Pass of Weight-Mixing Mixture-of-LoRA Layer

expert_alphas = router(...) # (b, num_experts)

expert_weight_A = (expert_alphas[..., None, None] * self.
expert_weight_A[None]).sum(
dim=1

) # (b, r, in_features)
expert_weight_B = (expert_alphas[..., None, None] * self.

expert_weight_B[None]).sum(
dim=1

) # (b, out_features, r)

output = torch.einsum(
"bi,bri->br", x, expert_weight_A

) # (b, in_features) @ (b, r, in_features) -> (b, r)
output = torch.einsum(

"br,bor->bo", output, expert_weight_B
) # (b, r) @ (b, out_features, r) -> (b, out_features)
output = self.dropout(output) # (b, out_features)

output = F.linear(x, w0, b0) + output # w0x + BAx + b0
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C QUALITATIVE RESULTS ON ARGOVERSE

(a) Expert 1 (prior=0.3) (b) Expert 2 (prior=0.6) (c) Expert 3 (prior=0.1)

Figure 5: Qualitative result: Rollouts on a lane change scenario with different experts on
Ours+CAT. We show how different experts behave under the same lane change scenario, where
the goal is to lane change between two agents. While rollouts from Expert 1 and 2 are very similar
(maintaining at least one vehicle length from the leading vehicle), Expert 3, which has the lowest
prior probability, predicts a trajectory with much smaller headway distance. Animations of these
scenarios are better visualized on our project website, linked in the abstract.

D STYLE CONSISTENCY METRIC VISUALIZATION

Input
Trajactory 

Prediction Model

Prediction_1

Prediction_2

Prediction_(n-1)

Prediction_n

n Style Predictor

Normal

Aggressive

Prediction_1

Prediction_2

Prediction_(n-1)

Prediction_n

Grand-TruthGrand-Truth

n 

Miss

Miss

Miss

Hit

Hit

Figure 6: Style Consistency Metric. Given a driving scenario (“Input”), the black-box trajectory
predictor generates n candidate futures (Prediction1, . . . ,Predictionn). A learned style predictor
then assigns each candidate—and the true future (“Ground-Truth”)—to one of two clusters (e.g.
“Normal” vs. “Aggressive”). If at least one of the n predicted trajectories shares the same style
label as the ground-truth, the sample is marked a Hit; otherwise it is a Miss. This hit/miss outcome
directly measures whether the model’s multi-modal outputs cover the driver’s actual style, beyond
conventional displacement errors.

E STYLE CONSISTENCY METRIC

To explicitly measure a model’s ability to cover the correct driving style, as shown in Figure 6, we
propose the Style Miss Rate a style consistency metric based on kinematic clustering following the
clustering methodology introduced in (Zheng et al., 2025), and a hit/miss criterion:

Extract kinematic static: For each trajectory τ , compute a feature vector

ϕ(τ) =
[
max

t

∣∣a(t)∣∣, V ar(a), V ar(v), γ
]T ∈ Rd, (8)

where a is acceleration (with maxt|a(t)| denoting the peak absolute acceleration over the trajectory,
i.e. the highest instantaneous acceleration magnitude), v is speed, and
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γ =
Var

(
j(t)

)
E
[
j(t)

]
is the jerk-variance ratio as defined in Murphey et al. (2009).

Learn style clusters: Fit a Gaussian Mixture Model (GMM) with k = 2 on the set of all ground-truth
kinematic embeddings in the evaluation set {ϕ(τ∗n)}Nn=1, yielding a cluster assignment function

C(ϕ) ∈ {"normal", "aggressive"}. (9)

Normal and aggressive are assigned based on the mean speed of each cluster. A cluster with higher
mean speed will be assigned as aggressive.

Assign styles to predictions: For each sample n, let {τ̂n,i}6i=1 be the six predicted trajectories.
Define

s∗n = C
(
ϕ(τ∗n)

)
, sn,i = C

(
ϕ(τ̂n,i)

)
. (10)

Define hit/miss: A hit occurs if at least one predicted style matches the ground-truth style:

Hitn = {∃ i : sn,i = s∗n}, Missn = 1−Hitn. (11)

Style Miss Rate: The overall metric is

SMR =
1

N

N∑
n=1

Missn. (12)

By construction, the SMR goes beyond pure spatial accuracy: it measures whether the model
“covers” the driver’s true style among its multi-modal outputs. A style-agnostic predictor may achieve
low ADE/FDE by clustering its modes around average behavior, but will incur a high miss rate
on aggressive samples. In contrast, a style-aware model—conditioned on inferred driving-style
embeddings—should include at least one candidate trajectory whose kinematics align with the true
style, yielding a lower SMR.
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F STYLE MISS RATE EVALUATION ON ABLATION VARIANTS

To further assess how each component of our mixture-of-experts framework contributes to style
coverage, we compute the Style Miss Rate (SMR) on the same ablation variants presented in Table 4.
That is, for each model variant—removing reconstruction, KL loss, entropy regularization, etc.—we
evaluate how often none of its multi-modal predictions match the true driving style cluster. The
resulting SMR values are reported in Table 6. This analysis shows that the ablations which most
degrade traditional error metrics (e.g. reconstruction and KL removal) also incur the largest increases
in SMR, indicating a direct link between component contributions and the model’s ability to cover
the driver’s style.

Table 6: Style Miss Rate (SMR) for each ablation variant.

Ours SMR↓
+LinearRouter 0.2246
+Full Finetuning 0.2033
-Social Forces 0.2229
-Context Features 0.2236
-KL Loss 0.2267
-Reconstruction 0.2263
-Expert Entropy Loss 0.2260

17
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G HOW DOES THE MODEL REASON? TAKING A LOOK AT THE SALIENCY
MAPS.

To gain insight into which input features the model attends when forecasting agent trajectories, we
compute saliency maps by measuring the sensitivity of the most likely predicted trajectory with
respect to each input feature. Formally, let X = {Ain,Min} denote the concatenation of historical
object trajectories Ain and map polylines Min. If p̂τ is the probability of trajectory τ , then let
τ̂∗ = argmaxτ p̂τ be the most likely predicted trajectory after a forward pass from a model. Then,
we compute the gradient

∇X τ̂∗ =
∂τ̂∗

∂X
via back-propagation, and form the saliency map

S(X) = log(∥∇X τ̂∗∥2 + 1).

We use logarithmic scaling above to better display nuances in smaller gradient magnitudes. For
visualizing this saliency map, we render the map polylines and the agents’ historical trajectories
colored using S(X) on the “jet” color scheme (dark blue to green to dark red). Warmer colors
highlight map segments or agent trajectories that the model deems more important for predicting
future trajectories. Likewise, lighter colors highlight areas of less importance. Each agent vehicle is
also colored on the same scale based on the maximum saliency value of its historical trajectory. We
generate this visualization for MTR+Actions, Ours+CAT, and Ours+MoV:

Figure 7: Visualization of scenario feature saliency (Continued on the next page). Saliency
maps are visualized for 10 randomly selected scenarios from Argoverse on MTR+Actions (Left),
Ours+CAT (Middle), and Ours+MoV (Right).

.
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Figure 7: Visualization of scenario feature saliency. Saliency maps are visualized for 10 randomly
selected scenarios from Argoverse on MTR+Actions (Left), Ours+CAT (Middle), and Ours+MoV
(Right). The top 2 scenarios feature mostly stationary agents. In each scenario and model, the ego
vehicle has the most saliency (colored red), followed by nearby agents and map polylines.
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H ADDITIONAL VISUALIZATIONS FOR RELATIVE KINEMATICS BY EXPERT
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(b) HyperFormer
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(c) Polytropon
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(d) MoV
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Figure 8: Kinematic magnitude comparisons for all variants of our approach. Experiments run
with seed 0 are plotted.
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I ADDITIONAL T-SNE PLOTS FOR ROUTER EMBEDDINGS BY EXPERT
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(b) HyperFormer
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(c) Polytropon
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(d) MoV
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Figure 9: t-SNE visualization of router embeddings for all variants of our approach. Experiments
run with seed 0 are plotted.
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J BASELINE MTR MODEL HYPERPARAMETERS

Table 7: Hyperparameters used for training the MTR baseline model.

Hyperparameter Value

Context Encoder

NAME MTREncoder
NUM_OF_ATTN_NEIGHBORS 7
NUM_INPUT_ATTR_AGENT 39
NUM_INPUT_ATTR_MAP 29
NUM_CHANNEL_IN_MLP_AGENT 256
NUM_CHANNEL_IN_MLP_MAP 64
NUM_LAYER_IN_MLP_AGENT 3
NUM_LAYER_IN_MLP_MAP 5
NUM_LAYER_IN_PRE_MLP_MAP 3
D_MODEL 256
NUM_ATTN_LAYERS 6
NUM_ATTN_HEAD 8
DROPOUT_OF_ATTN 0.1
USE_LOCAL_ATTN True

Motion Decoder

NAME MTRDecoder
NUM_MOTION_MODES 6
D_MODEL 512
NUM_DECODER_LAYERS 6
NUM_ATTN_HEAD 8
MAP_D_MODEL 256
DROPOUT_OF_ATTN 0.1
NUM_BASE_MAP_POLYLINES 256
NUM_WAYPOINT_MAP_POLYLINES 128
LOSS_WEIGHTS.cls 1.0
LOSS_WEIGHTS.reg 1.0
LOSS_WEIGHTS.vel 0.5
NMS_DIST_THRESH 2.5

Training

max_epochs 40
learning_rate 0.0001
learning_rate_sched [22, 24, 26, 28]
optimizer AdamW
scheduler lambdaLR
grad_clip_norm 1000.0
weight_decay 0.01
lr_decay 0.5
lr_clip 0.000001
WEIGHT_DECAY 0.01
train_batch_size 64
eval_batch_size 64

Data

max_num_agents 64
map_range 100
max_num_roads 768
max_points_per_lane 20
manually_split_lane True
point_sampled_interval 1
num_points_each_polyline 20
vector_break_dist_thresh 1.0
predict_actions True
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K POLYSONA MODEL HYPERPARAMETERS

Table 8: Hyperparameters used for training the PolySona models. Rows highlighted in yellow
indicate differences from the baseline MTR configuration.

Hyperparameter Value

Context Encoder

NAME MTREncoder
NUM_OF_ATTN_NEIGHBORS 7
NUM_INPUT_ATTR_AGENT 39
NUM_INPUT_ATTR_MAP 29
NUM_CHANNEL_IN_MLP_AGENT 256
NUM_CHANNEL_IN_MLP_MAP 64
NUM_LAYER_IN_MLP_AGENT 3
NUM_LAYER_IN_MLP_MAP 5
NUM_LAYER_IN_PRE_MLP_MAP 3
D_MODEL 256
NUM_ATTN_LAYERS 6
NUM_ATTN_HEAD 8
DROPOUT_OF_ATTN 0.1
USE_LOCAL_ATTN True

Motion Decoder

NAME PolySonaDecoder
NUM_MOTION_MODES 6
INTENTION_POINTS_FILE cluster_64_center_dict_6s.pkl
D_MODEL 512
NUM_DECODER_LAYERS 6
NUM_ATTN_HEAD 8
MAP_D_MODEL 256
DROPOUT_OF_ATTN 0.1
NUM_BASE_MAP_POLYLINES 256
NUM_WAYPOINT_MAP_POLYLINES 128
LOSS_WEIGHTS.cls 1.0
LOSS_WEIGHTS.reg 1.0
LOSS_WEIGHTS.vel 0.5
NMS_DIST_THRESH 1.0

Training

max_epochs 10
learning_rate 0.001
learning_rate_sched [22, 24, 26, 28]
optimizer AdamW
scheduler polynomialLR (power=2)
grad_clip_norm 1000.0
weight_decay 0.00
lr_decay 0.5
lr_clip 0.000001
train_batch_size 256
eval_batch_size 256
predict_actions True
lora_rank 4
freeze_encoder True
freeze_decoder True
attention_only False
num_personas 3
prior [0.3, 0.6, 0.1]
λrecon 50
λKL 50
λentropy 25
seed 0 / 1 / 2

Data

max_num_agents 64
map_range 100
max_num_roads 768
max_points_per_lane 20
manually_split_lane True
point_sampled_interval 1
num_points_each_polyline 20
vector_break_dist_thresh 1.0

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

L IMPACT OF RANK ON PERFORMANCE

Table 9: Comparison of Ours+CAT Across Different Ranks.

Rank brierFDE↓ minADE↓ minFDE↓ MissRate↓
2 2.1593 0.8573 1.7059 0.3151
4 2.1607 0.8624 1.7041 0.3171
8 2.1578 0.8578 1.7042 0.3120

16 2.1668 0.8610 1.7102 0.3151

Table 10: Comparison of Ours+CAT Across Different Ranks, Grouped by Kalman Difficulty
and TDBM Driving Styles.

Kalman Difficulty TDBM Driving Styles

Rank Easy Medium Hard Timid Careful Reckless Threatening

2 0.8120 1.1675 3.9875 0.8903 0.8865 0.8577 0.8172
4 0.8188 1.1678 2.4978 0.8793 0.8477 0.8655 0.8161
8 0.8130 1.1641 3.9882 0.8913 0.9833 0.8581 0.8183

16 0.8149 1.1758 4.2696 0.8944 0.8858 0.8613 0.8225
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M STANDARD DEVIATION TABLE

Table 11: Standard Deviation of Trajectory Prediction Benchmark Performance Comparisons.

Method brierFDE↓ minADE↓ minFDE↓ MissRate↓
Ours+Polytropon Ponti et al. (2023) 0.0004 0.0004 0.0004 0.0009
Ours+C-Poly Wang et al. (2024a) 0.0026 0.0011 0.0025 0.0003
Ours+HyperFormer Karimi Mahabadi et al. (2021) 0.0017 0.0004 0.0017 0.0010
Ours+CAT Prabhakar et al. (2024) 0.0019 0.0012 0.0018 0.0010
Ours+MoV Zadouri et al. (2024) 0.0010 0.0007 0.0010 0.0004

Table 12: Standard Deviation of minADE Comparison by Kalman Difficulty and TDBM Driving
Style groups.

Kalman Difficulty TDBM Driving Styles

Method Easy Medium Hard Timid Careful Reckless Threatening

Ours+PolyTropon Zadouri et al. (2024) 0.0003 0.0032 0.0040 0.0005 0.0038 0.0004 0.0005
Ours+C-Poly Wang et al. (2024a) 0.0013 0.0003 0.0146 0.0009 0.0286 0.0012 0.0011
Ours+HyperFormer Karimi Mahabadi et al. (2021) 0.0006 0.0013 0.0060 0.0006 0.0330 0.0004 0.0007
Ours+CAT Prabhakar et al. (2024) 0.0012 0.0051 0.0682 0.0014 0.0340 0.0012 0.0012
Ours+MoV Zadouri et al. (2024) 0.0007 0.0006 0.0041 0.0008 0.0026 0.0007 0.0006
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Table 13: Hyperparameter sweep of # of classes used in PolySona training.

# Latent Classes Easy / minADE Medium / minADE Hard / minADE Overall minADE

2 0.8108 1.1951 3.5275 0.8589
3 0.8188 1.1678 2.4978 0.8624
4 0.8119 1.1990 3.5116 0.8603
5 0.8120 1.1996 3.5191 0.8605
6 0.8109 1.1986 3.5729 0.8595
8 0.8123 1.2027 3.4217 0.8610

10 0.8122 1.2007 3.6048 0.8609

N HYPERPARAMETER SWEET: NUMBER OF LATENT CLASSES MODELED
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