
Supplementary for Turing Completeness of
Bounded-Precision Recurrent Neural Networks

Stephen Chung∗
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

minghaychung@umass.edu

Hava Siegelmann∗

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003
hava@umass.edu

A Proof of Theorem 1

Proof. Without loss of generality, assume Q = {1, 2, ..., |Q|} and Γ = {1, 3, 5, ..., 2|Γ| − 1}. Also,
let x = (q, sL, sR) and PM(x) = (q′, s′L, s

′
R) (not to be confused with neurons’ values which are

function of t). Let ρ : X → Qn be the function described by (5) and v(t) ∈ Qn denotes the neurons’
value of an RNN TW,b at time t. Initialize v(1) = ρ(x). It suffices to prove that there exists TW,b

such that v(4) = ρ(PM(x)).

The RNN TW,b is constructed as follows. The n = 2|Γ| + ⌈log2 |Q|⌉ + |Q||Γ| + 5 neurons are
classified into six groups:

1. Stage neurons c(t) ∈ {0, 1}2, initialized with c(1) = 0;

2. Entry neurons e(t) ∈ {0, 1}|Q||Γ|−1, initialized with e(1) = 0;

3. Temporary tape neurons s′j(t), s
′′
j (t) ∈ Q, initialized with s′j(1) = s′′j (1) = 0, where

j ∈ {L,R};

4. Tape neurons sj(t) ∈ Q, initialized with sj(1) = ρ(s)(sj), where j ∈ {L,R};

5. Readout neurons rj(t) ∈ {0, 1}|Γ|−1, initialized with rj(1) = ρ(r)(sj,(1)), where j ∈
{L,R};

6. State neurons q(t) ∈ {0, 1}⌈log2 |Q|⌉, initialized with q(1) = ρ(q)(q).

Before describing the update rules for these neurons, we define three linear functions readQ, readSO
and readSF that facilitates reading the encoding of neurons:

Define readQ : {0, 1}⌈log2 |Q|⌉ → {0, 1}|Q| by:

readQi(y) = (2ρ(q)(i)− 1) · (2y − 1)− (⌈log2 |Q|⌉ − 1), (20)

where i ∈ Q and · denotes the dot product. This function transforms the value of state neurons into
one-hot encoding of state, since readQn(ρ

(q)(n)) = 1 and readQi(ρ
(q)(n)) ≤ 0 for i ̸= n.

Example. Using the same example when defining ρ(q) in Section 3, we have readQi(ρ
(q)(0)) =

[+1,−1,−1, ,−3,−1,−3], readQi(ρ
(q)(1)) = [−1,+1,−3,−1,−3,−1], readQi(ρ

(q)(2)) =
[−1,−3,+1,−1,−3,−5], etc.

Define readSO : {0, 1}|Γ|−1 → {0, 1}|Γ| by:

readSOj(y) = ([1]⊕ y ⊕ [0])j − ([1]⊕ y ⊕ [0])j+1, (21)

*Both authors contributed equally.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

where j ∈ {1, 2, ..., |Γ|}. This function transforms the value of readout neurons into the one-hot
encoding of symbols.

Example. Assume |Γ| = 4 and rL = [1, 1, 0], then it means that the first symbol of sL is 5 (since
ρ(r)(5) = [1, 1, 0]) and readSO(rL) = [0, 0, 1, 0].

Define readSF : {0, 1}|Γ|−1 → Q by:

readSF (y) =
1 + 2

∑|Γ|−1
k=1 yk

2|Γ|
. (22)

This function transforms the value of readout neurons into the fractal encoding of symbols.

Example. Assume |Γ| = 4 and rL = [1, 1, 0], then it means the first symbol of sL is 5 (since
ρ(r)(5) = [1, 1, 0]) and readSF (rL) =

5
8 .

The update rule for each group of neurons are described next:

1. Stage neurons.

c1(t+ 1) = σ(1− c1(t)− c2(t)), (23)
c2(t+ 1) = σ(c1(t)). (24)

We also denote c′3(t) = 1 − c1(t) − c2(t), which is not a neuron but a linear sum of neuron. Let
c′(t) = [c1(t), c2(t), c

′
3(t)]. It follows that c′(1) = [0, 0, 1]; c′(2) = [1, 0, 0]; c′(3) = [0, 1, 0];

c′(4) = [0, 0, 1]. c′(t) thus signals which one of the three steps that the RNN is in.

2. Entry neurons.

ei,j(t+ 1) = σ(readQi(q(t)) + readSOj(rL(t))− 1− c′1(t)− c′2(t)), (25)

where i, j ∈ Q×Γ−{(|Q|, 2|Γ|−1)}. Let e′|Q|,2|Γ|−1(t) = c′1(t)−
∑

i,j∈Q×Γ−{|Q|,2|Γ|−1} ei,j(t),
which is not a neuron but a linear sum of neuron that represents the last combination (|Q|, 2|Γ| − 1).
Also let e′(t) = e(t)⊕ [e′|Q|,2|Γ|−1(t)].

It follows that e′i,j(2) = 1 if the state of the Turing Machine is i and the top left-tape symbol is j,
and 0 otherwise. Note that e′(1) = e′(3) = e′(4) = 0. e′(t) thus gives a one-hot encoding of the
combination of the state and the top left-tape symbol at t = 2.

Since the combination of the state and the top left-tape symbol fully determines the next transition of
the Turing Machine, we can use the entry neurons to determine the next transition. Define a linear
sum of entry neurons as follows:

moveL(t) =
∑

k,h∈L

e′k,h(t), (26)

moveR(t) =
∑

k,h∈R

e′k,h(t), (27)

enteri(t) =
∑

k,h∈Wi

e′k,h(t), (28)

writej(t) =
∑

k,h∈Ej

e′k,h(t), (29)

where i ∈ Q, j ∈ Γ, L = {k, h ∈ Q× Γ : δ3(k, h) = L} (i.e. all possible combination of states and
symbols that leads to moving left), R = {k, h ∈ Q×Γ : δ3(k, h) = R} (i.e. all possible combination
of states and symbols that leads to moving right), Wi = {k, h ∈ Q × Γ : δ1(k, h) = i} (i.e. all
possible combination of states and symbols that leads to entering state i) and Ej = {k, h ∈ Q× Γ :
δ2(k, h) = j} (i.e. all possible combination of states and symbols that leads to writing symbol j).

It follows that: i. moveL(2) = 1 if the Turing Machine is moving left, and 0 otherwise; ii.
moveR(2) = 1 if the Turing Machine is moving right, and 0 otherwise; iii. enteri(2) = 1 if
the Turing Machine is entering state i, and 0 otherwise; iv. writej(2) = 1 if the Turing Machine
is writing symbol j, and 0 otherwise; v. For t ∈ {1, 3, 4}, moveL(t) = moveR(t) = enteri(t) =
writej(t) = 0 for all i ∈ Q, j ∈ Γ.

2

3. Temporary tape neurons.

s′L(t+ 1) =σ(2|Γ|(sL(t)− readSF (rL(t))−moveR(t)− c′2(t)− c′3(t))), (30)

s′′L(t+ 1) =σ(readSF (rR(t)) + (2|Γ|)−1(sL(t)− readSF (rL(t)) + writeSF (t))−
moveL(t)− c′2(t)− c′3(t)), (31)

s′R(t+ 1) =σ((2|Γ|)−1sR(t) + writeSF (t)−moveR(t)− c′2(t)− c′3(t)), (32)

s′′R(t+ 1) =σ(2Γ(sR(t)− readSF (rR(t))−moveL(t)− c′2(t)− c′3(t))), (33)

where writeSF (t) =
∑

j∈Γ j(2|Γ|)−1writej(t), which is the fractal encoding for the symbol to
be written. The temporary tape neurons compute the new value of the left tape and the right tape
depending on the moving direction of the Turing Machine. The common term −c′2(t)−c′3(t) ensures
that temporary tape neurons equal 0 at t ∈ {2, 4}. Detailed explanation of these neurons are as
follows:

s′L(3) = ρ(s)(s′L) if the Turing Machine is moving left, and 0 otherwise: If the Turing Machine is
moving left, the top left-tape symbol has to be removed from the left tape, which can be done by
subtracting the top left-tape symbol readSF (rL(t)). Then, the left tape has to be shifted right, which
can be done by multiplying the left tape by 2|Γ|. The term −moveR(t) ensures that s′L(3) = 0 if the
Turing Machine is moving right.

s′′L(3) = ρ(s)(s′L) if the Turing Machine is moving right, and 0 otherwise: If the Turing Machine is
moving right, the top left-tape symbol has to be replaced by the symbol to be written, which can be
done by subtracting readSF (rL(t)) and adding writeSF (t). Then the left tape has to be shifted
left, which can be done by multiplying the left tape by (2|Γ|)−1 and adding the top right-tape symbol,
readSF (rR(t)), to it. The term −moveL(t) ensures that s′′L(3) = 0 if the Turing Machine is moving
left.

s′R(3) = ρ(s)(s′R) if the Turing Machine is moving left, and 0 otherwise: If the Turing Machine is
moving left, the right tape has to be shifted right, which can be done by multiplying the right tape by
(2|Γ|)−1. Then, a new symbol also has to be written to the top of the right tape, which can be done
by adding writeSF (t) to the right tape. The term −moveR(t) ensures that s′R(3) = 0 if the Turing
Machine is moving right.

s′′R(3) = ρ(s)(s′R) if the Turing Machine is moving right, and 0 otherwise: If the Turing Machine is
moving right, the top right-tape symbol has to be removed from the right tape, which can be done
by subtracting the top right-tape symbol readSF (rR(t)). Then, the right tape has to be shifted
left, which can be done by multiplying the right tape by 2|Γ|. The term −moveL(t) ensures that
s′′R(3) = 0 if the Turing Machine is moving left.

Together, we have s′L(3) + s′′L(3) = ρ(s)(s′L) and s′R(3) + s′′R(3) = ρ(s)(s′R), ready to be used to
update sL(4) and sR(4).

4. Tape neurons.

sL(t+ 1) =σ(sL(t) + s′L(t) + s′′L(t)− c′1(t)), (34)

sR(t+ 1) =σ(sR(t) + s′R(t) + s′′R(t)− c′1(t)). (35)

It follows that sL(1) = sL(2) = ρ(s)(sL), sL(3) = 0 and sL(4) = ρ(s)(s′L); sR(1) = sR(2) =

ρ(s)(sR), sR(3) = 0 and sR(4) = ρ(s)(s′R).

5. Readout neurons.

rj,i(t+ 1) = σ((2i+ 1)rj,i(t) + 2|Γ|(s′j(t) + s′′j (t))− 2i− c′1(t)), (36)

where j ∈ {L,R} and i ∈ {1, 2, ..., |Γ| − 1}. Note that 2|Γ|(s′j(3) + s′′j (3)) − 2i ≥ 1 if the top
symbol in s′j is larger than 2i, and ≤ 0 otherwise. It follows that rj(1) = rj(2) = ρ(r)(sj,(1)),
rj(3) = 0 and rj(4) = ρ(r)(s′j,(1)).

6. State neurons.

qi(t+ 1) = σ

qi(t) +

∑
k∈Q

ρ
(q)
i (k)enterk(t)

− c′3(t)

 , (37)

3

where i ∈ {1, 2, ..., ⌈log2 |Q|⌉}. Note that enterk(2) = 1 if q′ = k and 0 otherwise. It follows that
q(1) = ρ(q)(q), q(2) = 0, q(3) = q(4) = ρ(q)(q′).

Together, v(4) = ρ(PM(x)). This completes the proof.

B Proof of Theorem 2

Proof. The proof is similar to that of Theorem 1 but with more neurons. Without loss of generality,
assume Q = {1, 2, ..., |Q|} and Γ = {1, 3, 5, ..., 2|Γ| − 1}. Also, let x = (q, sL, sR) and PM(x) =
(q′, s′L, s

′
R) (not to be confused with neurons’ values which are function of t). Let ρ : X →

(Qn,Q∗,Q∗) be the function described by (10). Consider an RNN with two growing memory
modules TW,b. Let v(t) ∈ Qn denotes the neurons’ value of the RNN at time t, and let ML(t) ∈ Q∗,
MR(t) ∈ Q∗ denote the two stacks’ values at time t. Initialize (v(1),ML(1),MR(1)) = ρ(x). It
suffices to prove that there exists TW,b such that (v(4),ML(4),MR(4)) = ρ(PM(x)).

Define ρ
(s)
0 : Q∗ → Q by ρ

(s)
0 (y) = ρ(s)(y(1:h(|y|))) and ρ

(s)
1 : Q∗ → Q by: ρ

(s)
1 (y) =

ρ(s)(y(h(|y|)+1:h(|y|)+p)). ρ
(s)
0 (sj) represents the symbols residing in the tape neuron of the RNN

while ρ
(s)
1 (sj) represents the following p symbols, which is also the top neuron’s value in the stack

Mj(1).

The RNN TW,b is constructed as follows. The n = 2|Γ| + ⌈log2 |Q|⌉ + |Q||Γ| + 19 neurons are
classified into nine groups:

1. Stage neurons c(t) ∈ {0, 1}2, initialized with c(1) = 0;

2. Entry neurons e(t) ∈ {0, 1}|Q||Γ|−1, initialized with e(1) = 0;

3. Temporary tape neurons s′j(t), s
′′
j (t) ∈ Q, initialized with s′j(1) = s′′j (1) = 0, where

j ∈ {L,R};

4. Tape neurons sj(t) ∈ Q, initialized with sj(1) = ρ
(s)
0 (sj), where j ∈ {L,R};

5. Readout neurons rj(t) ∈ {0, 1}|Γ|−1, initialized with rj(1) = ρ(r)(sj,(1)), where j ∈
{L,R};

6. State neurons q(t) ∈ {0, 1}⌈log2 |Q|⌉, initialized with q(1) = ρ(q)(q);

7. Guard neurons gj(t), g′j(t), g
′′
j (t) ∈ Q, initialized with gj(1) = ρ(h)(h(|sj |)) and g′j(1) =

g′′j (1) = 0, where j ∈ {L,R};

8. Buffer neurons βj(t), β
′
j(t) ∈ Q, initialized with βj(1) = β′

j(1) = 0, where j ∈ {L,R};

9. Push-pop neurons oj(t), uj(t) ∈ Q, initialized with oj(1) = ρ
(s)
1 (sj), uj(1) = 0, where

j ∈ {L,R}.

The general idea of the proof is that the required update can be constructed as a two-step process. In
the first step, we apply the equations used in the proof of Theorem 1 for neurons from 1. to 6. There
are three cases for the second step:

i. If the updated left-tape neuron holds 1 ≤ y ≤ p symbols: no pushing or popping is required, and
both the left-tape neuron and the left-tape stack do not require further update;

ii. if the updated left-tape neuron holds 0 symbols: it is required to pop the top p symbols from the
left-tape stack, and the popped symbols have to be added to the left-tape neuron. The left-tape readout
neuron also has to be updated to the encoding for the top symbol in the new left-tape neuron’s value;

iii. if the updated left-tape neuron holds p + 1 symbols, then it is required to push the bottom p
symbols of it to the left-tape stack, and the pushed symbols have to be removed from the left-tape
neuron.

4

A similar process holds for the right tape. Therefore, the equations for neurons from 1. to 6. are
almost the same as the one used in the proof of Theorem 1. In the following proof, we use the same
notation as in the proof of Theorem 1.

First, to determine whether pushing or popping is required, the number of symbols in the left-tape
(h(|sL|)) and right-tape neurons (h(|sR|)) have to be kept track of. This is done by the guard neurons:

7. Guard neurons.

gj(t+ 1) = σ(gL(t) + (move¬j(t)−movej(t)− pg′j(t) + pg′′j (t))/(p+ 1)), (38)

g′j(t+ 1) = σ((p+ 1)gj(t) +move¬j(t)− p− 2c2(t)− 2c′3(t)), (39)

g′′j (t+ 1) = σ(2− (p+ 1)gj(t)−move¬j(t)− 2c2(t)− 2c′3(t)), (40)

where j ∈ {L,R} and ¬j denotes the opposite direction of j. The explanation is in the main paper and
is not repeated here (the equations are slightly different from the one shown in the main paper because
we use the notation defined in the proof of Theorem 1 here). It follows that gj(1) = h(|sj |)/(p+ 1),
g′j(1) = g′′j (1) = 0, gj(4) = h(|sj |)/(p+ 1) and g′j(4) = g′′j (4) = 0.

8. Buffer neurons.

βL(t+ 1) =σ(oL(t)−moveR(t)− (p+ 1)gL(t) + 1− 2c′2(t)− 2c′3(t)), (41)

β′
L(t+ 1) =σ(sL(t)− readSF (rL(t)) + writeSF (t)−moveL(t)− p+ (p+ 1)gL(t)−

2c′2(t)− 2c′3(t)), (42)

βR(t+ 1) =σ(oR(t)−moveL(t)− (p+ 1)gR(t) + 1− 2c′2(t)− 2c′3(t)), (43)

β′
R(t+ 1) =σ(sR(t)−moveR(t)− p+ (p+ 1)gR(t)− 2c′2(t)− 2c′3(t)), (44)

where readSF and writeSF are defined the same as in the proof of Theorem 1. The buffer neurons
βj(t) compute the new value to be popped while β′

j(t) compute the values to be pushed. The common
terms −2c′2(t)− 2c′3(t) ensure that the buffer neurons equal 0 at t ∈ {2, 4}. Detailed explanation of
these neurons are as follows:

βL(3) = ρ
(s)
1 (sL) if popping is required for the left stack, and 0 otherwise: If moveR(2) = 0

and gL(2) = 1/(p + 1), it means that the left-tape neuron is currently holding 1 symbols and the
Turing Machine is moving left, implying that the left-tape neuron will hold 0 symbols and popping
is required. In this case, −moveR(2) − (p + 1)gL(2) + 1 = 0, so βL(3) = oL(2) = ρ

(s)
1 (sL),

which is the value to be popped (the neuron’s value on the top of the left-tape stack). In other cases,
−moveR(2)− (p+ 1)gL(2) + 1 ≤ −1 so βL(3) = 0.

β′
L(3) = ρ

(s)
1 (s′L) if pushing is required for the left stack, and 0 otherwise: If moveL(2) = 0 and

gL(2) = p/(p+ 1), it means that the left-tape neuron is currently holding p symbols and the Turing
Machine is moving right, implying that the left-tape neuron will hold p+ 1 symbols and pushing is
required. In this case, −moveL(2)− p+ (p+1)gL(2) = 0, so β′

L(3) = sL(2)− readSF (rL(2))+
writeSF (2), which is top p symbols of the left tape but with the top symbol updated. This is also the
value to be pushed, ρ(s)1 (s′L). In other cases, −moveL(2)− p+ (p+ 1)gL(2) ≤ −1 so β′

L(3) = 0.

βR(3) = ρ
(s)
1 (sR) if popping is required for the right stack, and 0 otherwise: the explanation is

similar to βL(t) and is omitted here.

β′
R(3) = ρ

(s)
1 (s′R) if pushing is required for the right stack, and 0 otherwise: the explanation is

similar to β′
L(t). However, the value to be pushed is just sR(t) instead of sL(t)− readSF (rL(t)) +

writeSF (t), since the top right-tape symbol does not require updating.

9. Push-pop neurons.

oj(t+ 1) =σ(oj(t)− βj(t)), (45)

uj(t+ 1) =σ(uj(t) + β′
j(t)), (46)

where j ∈ {L,R}. oj(t) is the pop neuron for the stack Mj(t) and uj(t) is the push neuron for the
stack Mj(t).

For the pop neuron, it can be seen that oj(1) = oj(2) = oj(3) = ρ
(s)
1 (sj). At t = 4, if popping is

required, βj(3) = ρ
(s)
1 (sj) hence oj(4) will be set to 0 by the RNN. Then, due to the mechanism

5

of the growing memory module, the top neuron in Mj(t) will be popped from the stack and oj(4)

will be set to the next top neuron, which is ρ
(s)
1 (s′j). Otherwise, if popping is not required, then

oj(4) = ρ
(s)
1 (sj) = ρ

(s)
1 (s′j) and the stack remain unchanged. Note that the default popping value

c in Definition 3 is set to the fractal encoding for p blank symbols, so the update is still valid if no
neurons remain in the stack.

For the pushing neuron, it can be seen that uj(1) = uj(2) = uj(3) = 0. At t = 4, if pushing
is required, β′

j(3) = ρ
(s)
1 (s′j) hence uj(4) will be set to ρ

(s)
1 (s′j) by the RNN. Then, due to the

mechanism of the growing memory module, a new neuron with value ρ
(s)
1 (s′j) will be pushed to the

stack and uj(4) will be set to 0. Otherwise, if pushing is not required, then uj(4) = 0 and the stack
remain unchanged.

Through the above operations, the stacks are updated to the desired value at time t = 4. That is,
Mj(1) = Mj(2) = Mj(3) = ρ(M)(sj) and Mj(4) = ρ(M)(s′j) for j ∈ {L,R}.

The update equations for 1. to 6. are the same as that in the proof of Theorem 1, except:

4. Tape neurons.

sL(t+ 1) =σ(sL(t) + s′L(t) + s′′L(t) + βL(t)− (2|Γ|)−1β′
L(t)− c′1(t)), (47)

sR(t+ 1) =σ(sR(t) + s′R(t) + s′′R(t) + βR(t)− (2|Γ|)−1β′
R(t)− c′1(t)). (48)

Different from the update equations in Theorem 1, we add the term βj(t)− (2|Γ|)−1β′
j(t). Adding

βj(t) ensures that when popping is required, the value popped from the stack (that is, the top p
symbols in the stack) is added to the tape neuron. Similarly, subtracting (2|Γ|)−1β′

j(t) ensures that
when pushing is required, the bottom p symbols in the tape neurons are removed. It follows that
sj(1) = sj(2) = ρ

(s)
0 (sj), sj(3) = 0, and sj(4) = ρ

(s)
0 (s′j).

6. Readout neurons.

rj,i(t+ 1) = σ((2i+ 1)rj,i(t) + 2|Γ|(s′j(t) + s′′j (t) + βj(t))− 2i− c′1(t)), (49)

where j ∈ {L,R} and i ∈ {1, 2, ..., |Γ| − 1}. Different from the update equations in Theorem 1, we
add the term βj(t). This is because if popping is required, s′j(t) + s′′j (t) equals 0 and the top symbol
of the updated tape resides in βj(t) instead, so we need to read from βj(t) instead of s′j(t) + s′′j (t).
It follows that rj(1) = rj(2) = ρ(r)(sj,(1)), rj(3) = 0 and rj(4) = ρ(r)(s′j,(1)).

Together, (v(4),ML(4),MR(4)) = ρ(PM(x)). This completes the proof.

C Proof of Theorem 3

Proof. The proof is similar to that of Theorem 2 but with more neurons. Without loss of generality,
assume Q = {1, 2, ..., |Q|} and Γ = {1, 3, 5, ..., 2|Γ| − 1}. Also, let x = (q, sL, sR) and PM(x) =
(q′, s′L, s

′
R) (not to be confused with neurons’ values which are function of t). Assume that the blank

symbols are not truncated in sL or sR and that the tape’s size is F , i.e. |sL|+ |sR| = F . Also, let
f = ⌈F/p⌉.

The encoding function ρ is constructed as follows. Define ρ(M) : Q∗ → Qf by:

ρ
(M)
i (y) :=

{
ρ(s)(y(−(i−1)p−1:−ip)), if i < |y|/p,
0, else,

(50)

where i ∈ {1, 2, ..., f} and s(−j:−k) denotes s(|s|−k+1)s(|s|−k+2)...s(|s|−j+1) for k > j > 0. This
function encodes the tape into a fixed-size vector with each neuron holding p symbols.

Example. Let p = 4, |Γ| = 4 and sL = (5, 3, 1, 3, 7, 3, 3, 7, 1, 3, 5) (recall that the leftmost symbol is
the closest symbol to the read/write head in the representation of sL). Then it follows ρ(M)(sL) =
[ρ(s)(7, 1, 3, 5), ρ(s)(3, 7, 3, 3), 0, 0, ..., 0]. It is almost the same as the ρ(M)(t) defined in the proof
of Theorem 2 but with zero appended after it, so the size of the output vector is always f . ρ(M) is
used to encode both the left tape and the right tape.

6

Also, define ρ(d) : Q∗ → {0, 1}f by:

ρ
(d)
i (y) :=

{
1, if i = ⌈|y|/p− 1⌉,
0, else,

(51)

where i ∈ {1, 2, ..., f}. This function encodes the position of the last non-zero element in ρ(M)(t).
That is, the position with the last non-zero element in ρ(M)(t) equals 1 and 0 for other positions.

Example. Let p = 4, |Γ| = 4 and sL = (5, 3, 1, 3, 7, 3, 3, 7, 1, 3, 5). Then it follows ρ(d)(sL) =
[0, 1, 0, 0, ..., 0].

Except ρ(M)(t), the definitions of other sub-encoding functions are the same as in the proof of
Theorem 2 and are not repeated here.

Finally, define encoding function ρ(x) : X → Qn, where n = 2|Γ|+ ⌈log2 |Q|⌉+ |Q||Γ|+10f +11
by:

ρ(q, sL, sR) =ρ(q)(q)⊕ ρ
(s)
0 (sL)⊕ ρ

(s)
0 (sR)⊕ ρ(M)(sL)⊕ ρ(M)(sR)⊕ ρ(d)(sL)⊕ ρ(d)(sR)⊕

ρ(r)(sL,(1))⊕ ρ(r)(sR,(1))⊕ ρ(h)(h(|sL|))⊕ ρ(h)(h(|sR|))⊕ 0, (52)

where 0 is a zero vector of size |Q||Γ|+ 6f + 9.

Let v(t) ∈ Qn denote the neurons’ value of an RNN TW,b at time t. Initialize v(1) = ρ(x). It
suffices to prove that there exists TW,b such that v(4) = ρ(PM(x)).

The RNN TW,b is constructed as follows. The n neurons are classified into ten groups:

1. Stage neurons c(t) ∈ {0, 1}2, initialized with c(1) = 0;

2. Entry neurons e(t) ∈ {0, 1}|Q||Γ|−1, initialized with e(1) = 0;

3. Temporary tape neurons s′j(t), s
′′
j (t) ∈ Q, initialized with s′j(1) = s′′j (1) = 0, where

j ∈ {L,R};

4. Tape neurons sj(t) ∈ Q, initialized with sj(1) = ρ
(s)
0 (sj), where j ∈ {L,R};

5. Readout neurons rj(t) ∈ {0, 1}|Γ|−1, initialized with rj(1) = ρ(r)(sj,(1)), where j ∈
{L,R};

6. State neurons q(t) ∈ {0, 1}⌈log2 |Q|⌉, initialized with q(1) = ρ(q)(q);

7. Guard neurons gj(t), g′j(t), g
′′
j (t) ∈ Q, initialized with gj(1) = ρ(h)(h(|sj |)) and g′j(1) =

g′′j (1) = 0, where j ∈ {L,R};

8. Buffer neurons oj(t),βj(t),β
′
j(t) ∈ Qf , initialized with oj(1) = βj(1) = β′

j(1) = 0,
where j ∈ {L,R};

9. Stack neurons mj(t) ∈ Qf , initialized with mj(1) = ρ(M)(sj), where j ∈ {L,R};

10. Pointer neurons πj(t) ∈ Qf , initialized with πj(1) = ρ(d)(sj), where j ∈ {L,R}.

The general idea of the proof is to implement the growing memory module in Section 4 by an RNN as
well and place all neurons inside the RNN. Neurons that are away from the position of the read/write
head are stored in stack neurons mj(t) instead of a separate stack in the growing memory module.
Nonetheless, the storing mechanisms are similar, as each p symbols are stored as a neuron using
fractal encoding, except that we append 0 to the stack neurons to ensure that there are f stack neurons.
Therefore, the stack neurons can also be updated similarly to the growing memory module: if the tape
neuron holds less than 1 symbol after the update, we pop the stack neuron (i.e. set the last non-zero
neuron in mj(t) to 0); If the tape neuron holds more than p symbols after the update, we push the
bottom p symbols of the tape neuron to the stack neurons (i.e. set the first zero neuron in mj(t) to
the value to be pushed).

7

Except as otherwise stated, we use the same notation as in the proof of Theorem 2. Also, we denote
i∗j = ⌈|sj |/p − 1⌉, which is the position of the last non-zero neuron in ρ(M)(sj) (or mj(1)) for
j ∈ {L,R}. Note that πj,i(1) equals 1 if i = i∗j , and 0 otherwise.

First, we have to update the formulas for buffer neurons to allow correct updates for the stack neurons:

8. Buffer neurons.

oj,i(t+ 1) =σ(mj,i(t)− (1− πj,i(t))− c′1(t)− c′2(t)) (53)

βL,i(t+ 1) =σ(ôL(t)−moveR(t)− (p+ 1)gL(t) + 1− (1− πL,i(t))− 2c′2(t)− 2c′3(t)),
(54)

β′
L,i(t+ 1) =σ(sL(t)− readSF (rL(t)) + writeSF (t)−moveL(t)− p+ (p+ 1)gL(t)−

(1− πL,i(t))− 2c′2(t)− 2c′3(t)), (55)

βR,i(t+ 1) =σ(ôR(t)−moveL(t)− (p+ 1)gR(t) + 1− (1− πR,i(t))− 2c′2(t)− 2c′3(t)),
(56)

β′
R,i(t+ 1) =σ(sR(t)−moveR(t)− p+ (p+ 1)gR(t)− (1− πR,i(t))− 2c′2(t)− 2c′3(t)),

(57)

where j ∈ {L,R}, i ∈ {1, 2, .., f}, readSF and writeSF are defined the same as in the proof
of Theorem 1. Also, for j ∈ {L,R}, denote ôj(t) =

∑f
i=1 oj,i(t), β̂j(t) =

∑f
i=1 βj,i(t), and

β̂′
j(t) =

∑f
i=1 β

′
j,i(t).

The buffer neurons oj(t) read the last non-zero neuron’s value in mj(t): oj,i(2) = mj,i(1) if i = i∗j

and 0 otherwise. Also, oj(1) = oj(3) = oj(4) = 0. It follows that ôj(2) = mj,i∗j
(1) = ρ

(s)
1 (sj)

(ρ(s)1 is defined in the proof of Theorem 2), and ôj(1) = ôj(3) = ôj(4) = 0. The purpose of ôj(t) is
similar to the pop neuron oj(t) in the proof of Theorem 2, which reads the top neuron’s value in the
stack.

The equations for the remaining buffer neurons βj(t) and β′
j(t) are almost the same as in the proof

of Theorem 2, but with an additional term −(1−πj,i(t)), which makes the neuron equals 0 if i ̸= i∗j .
It follows that: i. βj,i(3) equals to the value to be popped if popping is required and i = i∗j , and
0 otherwise; ii. β′

j,i(3) equals to the value to be pushed if pushing is required and i = i∗j , and 0

otherwise. Also, βj(t) = β′
j(t) = 0 for t ∈ {1, 2, 4}. The dynamic of β̂j(t) and β̂′

j(t) is similar but
with the position requirement i = i∗j removed.

9. Stack neurons.

mj,i(t+ 1) =σ(mj,i(t) + β′
j,i−1(t)− βj,i(t)), (58)

where j ∈ {L,R} and i ∈ {1, 2, .., f}. If the index is out of bound, then the term is set to 0; e.g.
β′
j,0(t) = 0. Note that mj(1) = mj(2) = mj(3) = ρ(M)(sj). For mj,i(4), there are three possible

scenarios:

i. If no pushing or popping is required: βj(3) = β′
j(3) = 0, hence mj(4) = mj(1) = ρ(M)(sj) =

ρ(M)(s′j).

ii. If popping is required: ρ(M)(s′j) equals to ρ(M)(sj) but with the last non-zero neuron set to
0. Since βj,i∗j

(3) equals mj,i∗j
(3) if popping is required, it follows that mj,i∗j

(4) = 0. Also,
mj,i(4) = mj,i(3) for i ̸= i∗j . This implies that mj(4) = ρ(M)(s′j).

iii. If pushing is required: ρ(M)(s′j) equals to ρ(M)(sj) but with the first zero neuron set to the
value to be pushed. Since β′

j,i∗j
(3) equals to the value to be pushed if pushing is required and

mj,i∗j+1(4) = β′
j,i∗j

(3), it follows that the first zero neuron in mj(3) is set to the value to be pushed

at t = 4. Also, mj,i(4) = mj,i(3) for i ̸= i∗j + 1. This implies that mj(4) = ρ(M)(s′j).

Therefore, we have mj(1) = mj(2) = mj(3) = ρ(M)(sj) and mj(4) = ρ(M)(s′j).

10. Pointer neurons.

πj,i(t+ 1) = σ(πj,i(t) + |2Γ|(−βj,i(t)− β′
j,i(t) + βj,i+1(t) + β′

j,i−1(t))), (59)

8

where j ∈ {L,R} and i ∈ {1, 2, .., f}. If the index is out of bound, then the term is set to 0. Note
that πj(1) = πj(2) = πj(3) = ρ(d)(sj) . For πj(4), there are three possible scenarios:

i. If no pushing or popping is required: βj(3) = β′
j(3) = 0, hence πj(4) = πj(1) = ρ(d)(sj) =

ρ(d)(s′j).

ii. If popping is required: ρ
(d)
i (s′j) equals to 1 if i = i∗j − 1, and 0 otherwise. Since βj,i∗j

(3) is
larger than 1/|2Γ| if popping is required, it follows that πj,i∗j

(4) = 0 and πj,i∗j−1(4) = 1. Also,
πj,i(4) = πj,i(3) = 0 for i /∈ {i∗j − 1, i∗j}. This implies that πj(4) = ρ(d)(s′j).

iii. If pushing is required: ρ
(d)
i (s′j) equals to 1 if i = i∗j + 1, and 0 otherwise. Since β′

j,i∗j
(3) is

larger than 1/|2Γ| if pushing is required, it follows that πj,i∗j
(4) = 0 and πj,i∗j+1(4) = 1. Also,

πj,i(4) = πj,i(3) = 0 for i /∈ {i∗j , i∗j + 1}. This implies that πj(4) = ρ(d)(s′j).

Therefore, we have πj(1) = πj(2) = πj(3) = ρ(d)(sj) and πj(4) = ρ(d)(s′j). Also note that if
πj(4) = 0, it implies that the Turing Machine has reached the end of the tape and has to halt.

The update equations for the remaining neurons from 1. to 7. are the same as in the proof of
Theorem 2, except that βj(t) and β′

j(t) in the update equations of tape neurons and readout neurons
are replaced with β̂j(t) and β̂′

j(t) respectively. Together, v(4) = ρ(PM(x)). This completes the
proof.

9

D Notation Table

Symbol Description Defined in
Turing Machine

M Turing Machine of a Turing Machine Section 2
Q Finite set of state Section 2
F Finite set of final state Section 2
Σ Finite set of input symbols Section 2
Γ Finite set of tape symbols Section 2
δ Transition rule Section 2
q0 The initial starting state Section 2
q The current state Section 2
♯ The blank symbol Section 2
sL The string of symbols under and left to the read/write head Section 2
sR The string of symbols right to the read/write head Section 2
X Sets of all possible instantaneous description Section 2
PM Complete dynamic map of M (or equivalently, one transition of M) Section 2

P∗
M

Partial input-output function of M
(or equivalently, the input-output function defined by M) Section 2

U6,4 A particular Universal Turing Machine with 6 states and 4 symbols Section 3

RNN

σ Saturated-linear function Equation (1)
W,b Parameters of the RNN Section 2
xi(t) The value of neuron i at time t ∈ {1, 2, ...} Section 2
t Time step of RNN Section 2

TW,b
Mapping defined by RNN with parameters W,b
(or equivalently, one step of RNN) Section 2

T 3
W,b Apply TW,b three times Section 2

T ∗
W,b Apply TW,b repeatedly until the decoded state reaching the final state Section 3

u(t) The value of push neuron in growing memory modules Section 3
o(t) The value of pop neuron in growing memory modules Section 3

gL(t), gR(t)
The value of left-guard and right-guard neuron
in growing memory modules Section 3

Encoding Function

ρ(q) Encoding function for the state Section 3
ρ(s) Encoding function for the tape (two versions) Equation (3), (8)
ρ(r) Encoding function for the top symbol in tapes Equation (4)
ρ(h) Encoding function for the number of symbols in tapes Equation (9)
ρ(M) Encoding function for the stack Section 4
ρ Encoding function (two versions) Equation (5), (10)
ρ−1 Decoding function (inverse of the encoding function) Equation (5), (10)

h
Counting function, which counts the number of symbols
residing in the RNN Section 4

Miscellaneous

a(i) ith symbol of string a Section 2
a(i:j) Sub-string a(i)a(i+1)...a(j) of string a Section 2
Q The set of rational number Section 2
x⊕ y Concatenation of two vectors x and y Section 2
A∗ All possible strings formed by elements from set A

Table 1: Notation used in the main paper.

10

	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Notation Table

