
A Algorithm table

We provide an algorithm table that represents HIGL in Algorithm 1.

Algorithm 1 Hierarchical reinforcement learning guided by landmarks (HIGL)

Input: Goal transition function h, state-goal mapping function ϕ, high-level action frequency m,
the number of training episode N , adjacency learning frequency C, replay buffer B, training batch
size B and the number of landmarks Mcov, Mnov
Initialize the parameters of high-level policy θhigh, low-level policy θlow, adjacency network φ,
RND networks θ, θ̄
Initialize empty adjacency matrixM
Initialize priority queue Q
for n = 1, . . . , N do

Reset the environment and sample the initial state s0.
t = 0.
repeat

if t ≡ 0 (mod m) then
Sample subgoal gt ∼ π(g|st; θhigh).

else
Perform subgoal transition gt = h(gt−1, st−1, st)

end if
Collect a transition (st, at, st+1, rt) using low-level policy θlow.
Calculate novelty of the state st using RND networks θ, θ̄ and update the priority queue Q.
Sample episode end signal done.
t = t+ 1

until done is true
Store the sampled trajectory in B.
for j = 1, . . . , B do

Sample a state and a corresponding goal from B.
Sample Mcov landmarks from B and Mnov landmarks from Q, and merge them.
Build a graph with the sampled landmarks, a state and a goal.
Select a landmark in the graph. (i.e., the very first landmark in the shortest path to a goal.)
Train high-level policy θhigh according to equation 9.
Train low-level policy θlow.
Train RND network θ.

end for
if n ≡ 0 (mod C) then

Update the adjacency matrixM using trajectories in B.
Train φ usingM by minimizing equation 5.

end if
end for

1



B Environment details

B.1 Point Maze

A simulated ball (point mass) starts at the bottom left corner in a “⊃”-shaped maze and aims to
reach the top left corner. In detail, the environment has a size of 12 × 12, with a continuous state
space including the current position and velocity, the current timestep t, and the target location. The
dimension of actions is two; one action determines a rotation on the pivot of the point mass, and the
other action determines a push or pull on the point mass in the direction of the pivot. At training time,
a target position is sampled uniformly at random from gx ∼ [−2, 10], gy ∼ [−2, 10]. At evaluation
time, we evaluate the agent only its ability to reach (0, 8). We define a ‘success’ as being within an
L2 distance of 2.5 from the target. Each episode terminates at 500 steps.

B.2 Ant Maze (U-shape)

This environment is equivalent to the Point Maze except for the substitution of the point mass with a
simulated ant. Its actions correspond to torques applied to joints. All the other detail, such as the goal
generation scheme and definition of “success”, are the same as the Point Maze.

B.3 Ant Maze (W-shape)

This environment has a “∃”-shaped maze whose size is 20× 20, with the same state and action spaces
as the Ant Maze (U-shape) task. The target position (gx, gy) is set at the position (2, 9) in the center
corridor at both training and evaluation time. At the beginning of each episode, the agent is randomly
placed in the maze except at the goal position. We define a “success” as being within an L2 distance
of 1.0 from the target. Each episode is terminated if the agent reaches the goal or after 500 steps.

B.4 Reacher & Pusher

Each episode terminates at 100 steps. We define a “success” as being within an L2 distance of
0.25 from the target. Reacher has a continuous state space of which dimension is 17, including the
positions, angles, velocities of the robot arm, and the goal position. Pusher additionally includes
the 3D position of a puck-shaped object, so it has 20-dimensional state space. The environments
have 7-dimensional action space, of which range is [−20, 20] in Reacher and [−2, 2] in Pusher. In
addition, there exists an action penalty in Reacher and Pusher; the penalty is the squared L2 distance
of the action and is multiplied by a coefficient of 0.0001 in Reacher and 0.001 in Pusher. Then, the
penalty is deducted from the reward.

2



C Implementation details

C.1 Network structure

For the hierarchical policy network, we employ the same architecture as HRAC [1], where both the
high-level and the low-level use TD3 [2] algorithm for training. Each actor and critic network for
both high-level and low-level consists of 3 fully connected layers with ReLU nonlinearities. The size
of each hidden layer is (300, 300). The output of the high-level and low-level actor is activated using
the tanh function and is scaled to the range of corresponding action space.

For the adjacency network, we employ the sample architecture as HRAC [1], where the network
consists of 4 fully connected layers with ReLU nonlinearities. The size of each hidden layer is
(128, 128). The dimension of the output embedding is 32.

For RND, the network consists of 3 fully connected layers with ReLU nonlinearities. The size of the
hidden layers of the RND network is (300, 300). The dimension of the output embedding is 128.

We use Adam optimizer [3] for all networks.

C.2 Training parameters

We list hyperparameters for hierarchical policy, adjacency network, and RND network used across all
environments in Table 1 and 2. Hyperparameters that differ across the environments are in Table 3.

Table 1: Hyperparameters for hierarchical policy across all environments.

Hyperparameter Value Value
High-level TD3 Low-level TD3

Actor learning rate 0.0001 0.0001
Critic learning rate 0.001 0.001
Replay buffer size 200000 200000
Batch size 128 128
Soft update rate 0.005 0.005
Policy update frequency 1 1
γ 0.99 0.95
Reward scaling 0.1 1.0
Landmark loss coefficient η 20

Table 2: Hyperparameters for adjacency network and RND network across all environments.

Hyperparameter Value
Adjacency network

Learning rate 0.0002
Batch size 64
εk 1.0
Training frequency (steps) 50000
Training epochs 25

RND network

Learning rate 0.001
Batch size 128

3



Table 3: Hyperparameters that differ across the environments.

Hyperparameter Point Maze Ant Maze Ant Maze Reacher &
(U-shape) (W-shape) Pusher

High-level TD3

High-level action frequency m 10 10 10 5
Exploration strategy Gaussian Gaussian Gaussian Gaussian

(σ = 1.0) (σ = 1.0) (σ = 1.0) (σ = 0.2)
Mcov,Mnov 20 20 60 20
Similarity threshold λ 0.2 0.2 0.2 0.02
γdist 38.0 38.0 38.0 15.0
Shift magnitude δpseudo 0.5 2.0 2.0 1.0
Adjacency degree k 7 5 5 5

Low-level TD3

Exploration strategy Gaussian Gaussian Gaussian Gaussian
(σ = 1.0) (σ = 1.0) (σ = 1.0) (σ = 0.1)

Adjacency network

δ 0.2 0.2 0.2 0.02

D Additional experiments

Additionally, we provide ablation studies conducted on Ant Maze (U-shape, sparse) instead of Ant
Maze (U-shape, dense). We investigate the effect of (1) coverage-based sampling, (2) novelty-based
sampling, (3) the number of landmarks M = Mcov + Mnov, (4) shift magnitude δpseudo, and (5)
adjacency degree k in Figure 1. Overall, one can observe that tendency from Ant Maze (U-shape,
sparse) and Ant Maze (U-shape, dense) are similar.

(a) Coverage-based sampling (b) Novelty-based sampling

(c) Number of landmarks (d) Shift magnitude δpseudo (e) Adjacency degree k

Figure 1: Performance of HIGL on Ant Maze (U-shape, sparse) environment with varying number of
(a) coverage-based landmarks Mcov and (b) novelty-based landmarks, Mnov, (c) the total number of
landmarks M = Mcov +Mnov, (d) shift magnitude δpseudo, and (e) adjacency degree k.

4



Figure 2: Discarding design

Discarding design in the priority queue Q. One can choose
another design choice of discarding old states in the novelty pri-
ority queue rather than the original design based on the L2-norm
in goal-space; for example, one can take discarding design based
on the shortest transition distance, i.e., d̂st(s, s′) < λ. To verify
the effectiveness of the discarding design choices, we empirically
compare the original discarding design to the alternative design
based on the shortest transition distance estimated by the adja-
cency network. As shown in Figure 2, even though our original
design choice shows slightly better performance, both of them
outperform the baseline, HRAC.

Figure 3: Automatic δpseudo

Automatic shift magnitude. One can set shift magnitude
δpseudo in a systematic manner instead of a pre-set value. Here,
one important point is to set “balanced” shift magnitude; too large
magnitude would make pseudo-landmarks unreachable, whereas
too small magnitude makes no explorative benefits. To this end,
for example, one can set δpseudo = E‖gselt − gcurt ‖2. Namely, it
is the average of the distance between selected landmarks and
the current state in the goal space. As shown in Figure 3, using
automatic shift magnitude surpasses HRAC. It would be an in-
teresting research direction to improve the automatic manner of
setting shift magnitude in the future.

Figure 4: Larger maze

Larger maze with extended timestep. We evaluate HIGL on
a larger Ant Maze (U-shape) whose size is 24 × 24 rather than
12× 12 with extended timesteps of 50× 105 in Figure 4. One can
observe that HIGL shows highly sample-efficient over the prior
state-of-the-art method, HRAC, while both have similar asymp-
totic performance. We expect that HIGL would be much beneficial
in tasks where interaction for sample collection is dangerous and
expensive because HIGL could achieve near-asymptotic perfor-
mance with a relatively small number of samples. We increase
the number of landmarks to Mcov = 40 and Mnov = 40 since the
maze is larger than before.

5



References
[1] Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. Generating adjacency-

constrained subgoals in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020.

[2] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

6


	Algorithm table
	Environment details
	Point Maze
	Ant Maze (U-shape)
	Ant Maze (W-shape)
	Reacher & Pusher

	Implementation details
	Network structure
	Training parameters

	Additional experiments

