
A Relation to other self-supervised methods504

We compare here VICReg with other methods in terms of methodology, and we discuss the mecha-505

nisms used by these methods to avoid collapse and to learn representations, and how they relate to506

VICReg. We synthesize and illustrate the differences between these methods in Figure 2.507

Relation to Barlow Twins [9]. VICReg uses the same decorrelation mechanism as Barlow Twins,508

which consists in penalizing the off-diagonal terms of a covariance matrix computed on the embed-509

dings. However, Barlow Twins uses the cross-correlation matrix where each entry in the matrix is a510

cross-correlation between two vectors zi and z′j , from the two branches of the siamese architecture.511

Instead of using cross-correlations, we simply use the covariance matrix of each branch individually,512

and the variance term of VICReg allows us to get rid of standardization. Indeed, Barlow Twins513

forces the correlations between pairs of vectors zi and z′i from the same dimension i to be 1. With-514

out normalization, this target value of 1 becomes arbitrary and the vectors take values in a wider515

range. Moreover, there is an undesirable phenomenon happening in Barlow Twins, the embeddings516

before standardization can shrink and become constant to numerical precision, which could cause517

numerical instabilities. In practice, this is solved by adding a constant scalar in the denominator of518

standardization of the embeddings. Without normalization, VICReg naturally avoids this edge case.519

Relation to W-MSE [16]. The whitening operation of W-MSE consists in computing the inverse520

covariance matrix of the embeddings and use its square root as a whitening operator on the embed-521

dings. Using this operator has two downsides. First, matrix inversion is a very costly and potentially522

unstable operation. VICReg does not need to inverse the covariance matrix. Second, as mentioned in523

[16] the whitening operator is constructed over several consecutive iteration batches and therefore524

might have a high variance, which biases the estimation of the mean-squared error. This issue is525

overcome in practice by a batch slicing strategy, where the whitening operator is computed over526

randomly constructed sub-batches. VICReg does not apply any operator on the embeddings, but527

instead regularizes the variance and covariance of the embeddings using an additional constraint.528

Relation to BYOL and SimSiam [6, 7]. The core components that avoid collapse in BYOL and529

SimSiam are the average moving weights and the stop-gradient operation on one side of their530

asymmetric architecture, which play the role of the repulsive term used in other methods. Our531

experiments in Appendix C.5 show that in addition to preventing collapse, these components also532

have a decorrelation effect. In addition, we have conducted the following experiment: We compute533

the correlation matrix of the final representations obtained with SimSiam, BYOL, VICReg and534

VICReg without covariance regularization. We measure the average correlation coefficient and535

observe that this coefficient is much smaller for SimSiam, BYOL and VICReg, compared to VICReg536

without covariance regularization. We observe in Figure 5 that even without covariance regularization,537

SimSiam and BYOL naturally minimize the average correlation coefficient of the representations.538

VICReg replaces the moving average weights and the stop-gradient operation, which are architectural539

trick that require some dependency between the branches, by an explicit constraint on the variance540

and the covariance of both embeddings separately, which achieves the same goal of decorrelating541

the representations and avoiding collapse, while being clearer, more interpretable, and working with542

independent branches.543

Relation to SimCLR, SwAV and OBoW [5, 12, 8]. Contrastive and clustering based self-supervised544

algorithms rely on direct comparisons between elements of negative pairs. In the case of SimCLR, the545

negative pairs involve embeddings mined from the current batch, and large batch sizes are required.546

Despite the fact that SwAV computes clusters using elements in the current batch, it does not seem547

to have the same dependency on batch size. However, it still requires a lot of prototype vectors for548

negative comparisons between embeddings and codes. VICReg eliminates the negative comparisons549

and replace them by an explicit constraint on the variance of the embeddings, which efficiently plays550

the role of a negative term between the vectors. SwAV can also be interpreted as a distillation method,551

where a teacher network produces quantized vectors, used as target for a student network. Ensuring552

an equal partition of the quantized vectors in different bins or clusters effectively prevents collapse.553

OBOW can also be interpreted under the same framework. The embeddings are bag-of-words over a554

vocabulary of visual features, and collapse is avoided by the underlying quantization operation.555
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Figure 2: Conceptual comparison between different self-supervised methods. The inputs X and
X ′ are fed to an encoder f with weights θ. The representations Y and Y ′ are further processed by a
network h with weights ψ. h can be a projector (narrowing trapeze) that reduces the dimensionality
of the representations, or an expander (widening trapeze) that increases their dimensionality. A
criterion is finally applied on the embeddings Z and Z ′. VICReg (a) works when both branches have
encoders f and f ′ with different architectures and sets of weights θ and θ′. Each branch’s variance
and covariance are regularized by regularizers v and c, and the distance between both branches is
minimized with a mean-squared error loss s. Barlow Twins (b) uses a loss c to decorrelate pairs of
different dimensions in the batch-wise normalized (B-Norm) embeddings, and learns invariance with
a loss i that makes similar dimensions highly correlated. W-MSE (c) uses a batch slicing operation
that shuffles batches into small sub-batches, and apply PCA as a whitening operation on the feature-
wise normalized (F-Norm) embeddings of each sub-batch. BYOL (d) has an asymmetric architecture
where the weights θm of one encoder are an exponential moving average (ema) of the other encoder’s
weights θ. A predictor g with weights ψ is used in the branch with learnable weights. SimSiam
(e) uses a predictor on one branch and a stop-gradient operation (sg) on the other one. SimCLR (f)
uses the InfoNCE contrastive loss where all the feature-wise normalized embeddings are compared
between them inside a batch. Samples from distorted versions of the same input are brought close to
each other, while other samples are pushed away. SwAV (g) quantizes the feature-wise normalized
embeddings of a branch and use it as target for the other one. OBoW (h) uses bag-of-words (BoW)
representations and a cross-entropy loss to compare the BoW generated by a teacher network from
the feature maps Y F of the encoder, to the BoW predicted by a student network. Green blocks:
parametric functions; yellow boxes: non-parametric functions; blue boxes: objective functions.
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B Additional implementation details556

B.1 Data augmentation557

We follow the image augmentation protocol first introduced in SimCLR [12] and now commonly558

used by similar approaches based on siamese networks [5, 6, 7, 9]. Two random crops from the input559

image are sampled and resized to 224× 224, followed by random horizontal flip, color jittering of560

brightness, contrast, saturation and hue, Gaussian blur and random grayscale. Each crop is normalized561

in each color channel using the ImageNet mean and standard deviation pixel values. In more details,562

the exact set of augmentations is based on BYOL [6] data augmentation pipeline but is symmetrised.563

The following operations are performed sequentially to produce each view:564

• Random cropping with an area uniformly sampled with size ratio between 0.08 to 1.0,565

followed by resizing to size 224× 224. RandomResizedCrop(224, scale=(0.08,566

0.1)) in PyTorch.567

• Random horizontal flip with probability 0.5.568

• Color jittering of brightness, contrast, saturation and hue, with probability 0.8.569

ColorJitter(0.4, 0.4, 0.2, 0.1) in PyTorch.570

• Grayscale with probability 0.2.571

• Gaussian blur with probability 0.5 and kernel size 23.572

• Solarization with probability 0.1.573

• color normalization with mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224,574

0.225).575

B.2 ImageNet evaluation576

Linear evaluation. We follow standard procedure and train a linear classifier on top of the frozen577

representations of a ResNet-50 pretrained with VICReg. We use the SGD optimizer with a learning578

rate of 0.02, a weight decay of 10−6, a batch size of 256, and train for 100 epochs. The learning rate579

follows a cosine decay. The training data augmentation pipeline is composed of random cropping580

and resize of ratio 0.2 to 1.0 with size 224 × 224, and random horizontal flips. During evaluation the581

validation images are simply center cropped and resized to 224 × 224.582

Semi-supervised evaluation. We train a linear classifier and fine-tune the representations using 1583

and 10% of the labels. We use the SGD optimizer with no weight decay and a batch size of 256,584

and train for 20 epochs. We perform a grid search on the values of the encoder and linear head585

learning rates. In the 10% of labels case, we use a learning rate of 0.01 for the encoder and 0.1 for586

the linear head. In the 1% of labels case we use 0.03 for the encoder and 0.08 for the linear head. The587

two learning rates follow a cosine decay schedule. The training data and validation augmentation588

pipelines are identical to the linear evaluation data augmentation pipelines.589

B.3 Transfer learning590

We use the VISSL library [48] for linear classification tasks and the detectron2 library [49] for object591

detection and segmentation tasks.592

Linear classification. We follow standard protocols [2, 5, 9] and train linear models on top of the593

frozen representations. For VOC07 [43], we train a linear SVM with LIBLINEAR [50]. The images594

are center cropped and resized to 224 × 224, and the C values are computed with cross-validation.595

For Places205 [42] we use SGD with a learning rate of 0.003, a weight decay of 0.0001, a momentum596

of 0.9 and a batch size of 256, for 28 epochs. The learning rate is divided by 10 at epochs 4, 8 and597

12. For Inaturalist2018 [44], we use SGD with a learning rate of 0.005, a weight decay of 0.0001, a598

momentum of 0.9 and a batch size of 256, for 84 epochs. The learning rate is divided by 10 at epochs599

24, 48 and 72.600

Object detection and instance segmentation. Following the setup of [3, 9], we use the trainval601

split of VOC07+12 with 16K images for training and a Faster R-CNN C-4 backbone for 24K iterations602

with a batch size of 16. The backbone is initialized with our pretrained ResNet-50 backbone. We603

use a learning rate of 0.1, divided by 10 at iteration 18K and 22K, a linear warmup with slope of604

0.333 for 1000 iterations, and a region proposal network loss weight of 0.2. For COCO we use Mask605

R-CNN FPN backbone for 90K iterations with a batch size of 16, a learning rate of 0.04, divided by606

10 at iteration 60K and 80K and with 50 warmup iterations.607
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B.4 Ablation studies608

We give here implementation details on the results of Table 3 with BYOL and SimSiam, as well as the609

default setup for VICReg with 100 epochs of pretraining, used in all our ablations. For both BYOL610

and SimSiam experiments, the variance criterion has coefficient µ = 1 and the covariance criterion611

has coefficient ν = 0.01, the data augmentation pipeline and the architectures of the expander and612

predictor exactly follow the pipeline and architectures described in their paper. The linear evaluation613

setup of each methods follows closely the setup described in the original papers.614

BYOL setup. We use our own BYOL implementation in PyTorch, which outperforms the original615

implementation for 100 epochs of pretraining (69.3% accuracy on the linear evaluation protocol616

against 66.5% for the original implementation) and matches its performance for 1000 epochs of617

pretraining. We use the LARS optimizer [37], with a learning rate of base_lr ∗ batch_size/256618

where base_lr = 0.45, and batch_size = 4096, a weight decay of 10−6, an eta value of 0.001 and619

a momentum of 0.9, for 100 epoch of pretraining with 10 epochs of warmup. The learning rate620

follows a cosine decay schedule. The initial value of the exponential moving average factor is 0.99621

and follows a cosine decay schedule.622

SimSiam setup. We use our own implementation of SimSiam, which reproduces exactly the per-623

formance reported in the paper [7]. We use SGD with a learning rate of base_lr ∗ batch_size/256624

where base_lr = 0.05, batch_size = 2048, with a weight decay of 0.0001 and a momentum of 0.9625

for 100 epochs of pretraining and 10 epochs of warmup. The learning rate of the encoder and the626

expander follow a cosine decay schedule while the learning rate of the predictor is kept fixed.627

VICReg setup. The setting of VICReg’s experiments is identical to the setting described in sec-628

tion 4.2, except that the number of pretraining epochs is 100 and the base learning rate is 0.3. The629

base learning rates used for the batch size study are 0.8, 0.5 and 0.4 for batch size 128, 256 and 512630

respectively, and 0.3 for all other batch sizes. When a predictor is used, it has a similar architecture631

as the expander described in section 4.2, but with 2 layers instead of 3, which gives better results in632

practice.633

C Additional results634

C.1 Other ResNet architectures635

Table 7 reports the performance of VICReg on linear classification with large ResNet architectures.636

We focus on the wider family of ResNet [51] and aggregated ResNet [52], and we consider two ways637

of widening a standard ResNet. First, we follow standard practice in recent self-supervised learning638

work [5, 6, 12] and multiple by 2 or 4 the number of filters in every convolutional layer, which also639

has the effect of multiplying the dimensionality of the representations. Second, as originally proposed640

in [51], we only multiply the number of filters in the bottleneck layers, which does not increases the641

dimensionality of the representations. We call this architecture Narrow ResNet (with prefix N- in642

Table 7). The main observation we make is the dependency of VICReg on the dimensionality of the643

representation. Using the narrow architecture, the performance of VICReg, jumps from 73.2% top-1644

accuracy on linear classification with a ResNet-50, to 74.7% with Narrow ResNet-50 (x2), which is645

a 1.5% improvement and 76.0% with Narrow ResNet-50 (x4), which is a 2.8% improvement. We646

observe a similar trend going from ResNet-50 to ResNet-50 (x2), which is a 2.3% improvement647

but the performance completely saturates with ResNet-50 (x4), which is a 0.1% improvement over648

ResNet-50 (x2). Table 8 reports the performance of VICReg on semi-supervised classification with649

large ResNet architectures. VICReg combined with a ResNet-50 (x2) outperforms the current650

state-of-the-art methods BYOL and SimCLR, using this encoder architecture. Our largest model651

ResNet-200 (x2) performs lower than BYOL when 1% of the labels are used but is on par with 10% of652

the labels. These results demonstrate the capabilities of VICReg to scale up when large architectures653

are used.654

C.2 K-nearest-neighbors655

Following recent protocols [5, 21, 28], we evaluate the learnt representations using K-nearest-656

neighbors classifiers built on the training set of ImageNet and evaluated on the validation set of657

ImageNet. We report the results with K=20 and K=200 in Table 9. VICReg performs slightly lower658

than other methods in the 20-NN case but remains competitive in the 200-NN case. These results659

with K-NN classifiers demonstrate the potential applicability of VICReg to downstream tasks based660

on nearest neighbors search, such as content retrieval in images or videos.661
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Table 7: Linear classification with large architectures. Top-1 accuracy comparison between differ-
ent methods using various encoder architectures. For all VICReg results, the output dimensionality
of the expander is 8192. N-R stands for Narrow ResNet, where only the bottleneck convolutional
layers are widen.

Method Arch. Param. Repr. Top-1 Top-5

SimCLR [12] R50 (x2) 93M 4096 74.2 92.0
R50 (x4) 375M 8192 76.5 93.2

SwAV [5] R50 (x2) 93M 4096 77.3 -
R50 (x4) 375M 8192 77.9 -
R50 (x5) 586M 10240 78.5 -

BYOL [6] R50 (x2) 93M 4096 77.4 93.6
R50 (x4) 375M 8192 78.6 94.2
R200 (x2) 250M 4096 79.6 94.8

VICReg (ours) N-R50 (x2) 66M 2048 74.7 91.9
N-R50 (x4) 221M 2048 76.0 92.4
R50 (x2) 93M 4096 75.5 92.1
R50 (x4) 375M 8192 75.6 92.2
RNXT101-32-16 191M 2048 76.1 92.3
R200 (x2) 250M 4096 77.3 93.3

Table 8: Semi-supervised classification with large architectures. Top-1 accuracy comparison
between different methods using various encoder architectures. For all VICReg results, the output
dimensionality of the expander is 8192.

Method Arch. Param. Repr. Top-1 Top-5
1% 10% 1% 10 %

SimCLR [12] R50 (x2) 93M 4096 58.5 71.7 83.0 91.2
R50 (x4) 375M 8192 63.0 74.4 85.8 92.6

BYOL [6] R50 (x2) 93M 4096 62.2 73.5 84.1 91.7
R50 (x4) 375M 8192 69.1 75.7 87.9 92.5
R200 (x2) 250M 4096 71.2 77.7 89.5 93.7

VICReg (ours) R50 (x2) 93M 4096 62.6 73.9 84.5 91.8
R200 (x2) 250M 4096 68.8 77.3 88.2 93.6

Table 9: K-NN classifiers on ImageNet. Top-1 accuracy with 20 and 200 nearest neighbors.

Method 20-NN 200-NN

NPID [21] - 46.5
LA [28] - 49.4
PCL [53] 54.5 -
BYOL [6] 66.7 64.9
SwAV [5] 65.7 62.7
Barlow Twins [9] 64.8 62.9
VICReg 64.5 62.8
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Table 10: Impact of expander dimensionality. Top-1 accuracy on the linear evaluation protocol
with 100 pretraining epochs.

Dimensionality 256 512 1024 2048 4096 8192 16834

Top-1 55.9 59.2 62.4 65.1 67.3 68.6 68.8

Table 11: Impact of batch size. Top-1 accuracy on the linear evaluation protocol with 100 pretraining
epochs.

Batch size 128 256 512 1024 2048 4096

Top-1 67.3 67.9 68.2 68.3 68.6 67.8

C.3 Expander network architecture662

VICReg borrows the decorrelation mechanism of Barlow Twins [9] and we observe that it therefore663

has the same dependency on the dimensionality of the expander network. Table 10 reports the impact664

of the width and depth of the expander network. The dimensionality corresponds the number of665

hidden and output units in the expander network during pretraining. As the dimensionality increases,666

the performance dramatically increases from 55.9% top-1 accuracy on linear evaluation with a667

dimensionality of 256, to 68.8% with dimensionality 16384. The performance tends to saturate as the668

difference between dimensionality 8192 and 16384 is only of 0.2%.669

C.4 Batch size670

Contrastive methods suffer from the need of a lot of negative examples which can translate into the671

need for very large batch sizes [12]. Table 11 reports the performance on linear classification when672

the size of the batch varies between 128 and 4096. For each value of batch size, we perform a grid673

search on the base learning rate described in Appendix B.4. We observe a 0.7% and 1.2% drop in674

accuracy with small batch size of 256 and 128 which is comparable with the robustness to batch675

size of Barlow Twins [9] and SimSiam [7], and a 0.8% drop with a batch size of 4096, which is676

reasonable and allows our method to be very easily parallelized on multiple GPUs.677

C.5 Combination with BYOL and SimSiam678

BYOL [6] and SimSiam [7] rely on a effective but difficult to interpret mechanism for preventing679

collapse, which may lead to instabilities during the training. We incorporate our variance regular-680

ization loss into BYOL and SimSiam and show that it helps stabilize the training and offers a small681

performance improvement. For both methods, the results are obtained using our own implementation682

and the exact same data augmentation and optimization settings as in their original paper. The683

variance and covariance regularization losses are incorporated with a factor of µ = 1 for variance and684

ν = 0.01 for covariance. We report in Figure 3 the improvement obtained over these methods on the685

linear evaluation protocol for different number of pre-training epochs. For BYOL the improvement is686

of 0.9% with 100 epochs and becomes less significant as the number of pre-training epochs increases687

with a 0.2% improvement with 1000 epochs. This indicates that variance regularization makes BYOL688

converge faster. In SimSiam the improvement is not as significant. We plot in Figure 4 the evolution689

of the standard deviation computed along each dimension and averaged across the dimensions of the690

representation and the embeddings, during BYOL and SimSiam pretraining. For both methods, the691

standard deviation computed on the embeddings perfectly matches 1/
√
d where d is the dimension692

of the embeddings, which indicates that the embeddings are perfectly spread-out across the unit693

sphere. This translates in an increased standard deviation at the representation level, which seems694

to be correlated to the performance improvement. We finally study in Figure 5 the evolution of the695

average correlation coefficient, during pretraining of BYOL and SimSiam, with and without variance696

and covariance regularization. The average correlation coefficient is computed by averaging the697

off-diagonal coefficients of the correlation matrix of the representations:698

1

2d(d− 1)

∑
i 6=j

C(Y )2i,j + C(Y ′)2i,j , (9)

where Y and Y ′ are the standardized representations and C is defined in Eq. (3). In BYOL this699

coefficient is much lower using covariance regularization, which translate in a small improvement of700
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Figure 3: Incorporating variance regularization in BYOL and SimSiam. Top-1 accuracy on the
linear evaluation protocol for different number of pretraining epochs. For both methods pre-training
follows the optimization and data augmentation protocol of their original paper but is based on our
implementation. Var indicates variance regularization

the performance, according to Table 3. We do not observe the same improvement in SimSiam, both701

in terms of correlation coefficient, and in terms of performance on linear classification. The average702

correlation coefficient is correlated with the performance, which motivates the fact that decorrelation703

and redundancy reduction are core mechanisms for learning self-supervised representations.704

D Running time705

We report in Table 12, the running time of VICReg in comparison with other methods. All methods706

are run by us on 32 Tesla V100 GPUs. Each method offers a different trade-off between running707

time, memory and performance. SwAV is a very fast algorithm which use less memory and run faster708

than the other methods but with a lower performance, multi-crop helps the performance at the cost of709

additional compute and memory usage. BYOL has the highest memory requirement, which is due to710

the need of storing the target network weights. Finally, Barlow Twins and VICReg offer an interesting711

trade-off, consuming less memory than BYOL and SwAV with multi-crop, and running faster than712

SwAV with multi-crop, but with a slightly worse performance. The difference of 1h running time713

between Barlow Twins and VICReg is probably due to implementation details not related to the714

method.715

Table 12: Running time and peak memory. Comparison between different methods, the training
is distributed on 32 Tesla V100 GPUs, the running time is measured over 100 epochs and the peak
memory is measured on a single GPU. We report top-1 accuracy (%) on linear classification on top of
the frozen representations.

Method time / 100 epochs peak memory / GPU Top-1 accuracy (%)

SwAV 9h 9.5G 71.8
SwAV (w/ multi-crop) 13h 12.9G 75.3
BYOL 10h 14.6G 74.3
Barlow Twins 12h 11.3G 73.2
VICReg 11h 11.3G 73.2
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Figure 4: Standard deviation of the features during BYOL and SimSiam pretraining. Evolution
of the average standard deviation of each dimension of the features with and without variance
regularization (Var). left: the standard deviation is measured on the representations, right: the
standard deviation is measured on the embeddings.
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Figure 5: Average correlation coefficient of the features during BYOL and SimSiam pretrain-
ing. Evolution of the average correlation coefficient measured by averaging the off-diagonal terms of
the correlation matrix of the representations with BYOL, BYOL with variance-covariance regulariza-
tion (BYOL VarCov), SimSiam, and SimSiam with variance-covariance regularization (SimSiam
VarCov).
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