
DiffWire: Inductive Graph Rewiring via the Lovász Bound

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Graph Neural Networks (GNNs) have been shown to achieve competitive results2

to tackle graph-related tasks, such as node and graph classification, link prediction3

and node and graph clustering in a variety of domains. Most GNNs use a message4

passing framework and hence are called MPNNs. Despite their promising results,5

MPNNs have been reported to suffer from over-smoothing, over-squashing and6

under-reaching. Graph rewiring and graph pooling have been proposed in the7

literature as solutions to address these limitations. However, most state-of-the-art8

graph rewiring methods fail to preserve the global topology of the graph, are neither9

differentiable nor inductive, and require the tuning of hyper-parameters. In this10

paper, we propose DIFFWIRE, a novel framework for graph rewiring in MPNNs11

that is principled, fully differentiable and parameter-free by leveraging the Lovász12

bound. Our approach provides a unified theory for graph rewiring by proposing13

two new, complementary layers in MPNNs: CT-LAYER, a layer that learns the14

commute times and uses them as a relevance function for edge re-weighting; and15

GAP-LAYER, a layer to optimize the spectral gap, depending on the nature of the16

network and the task at hand. We empirically validate the value of each of these17

layers separately with benchmark datasets for graph classification. DIFFWIRE18

brings together the learnability of commute times to related definitions of curvature,19

opening the door to creating more expressive MPNNs.20

1 Introduction21

Graph Neural Networks (GNNs) [1, 2] are a class of deep learning models applied to graph structured22

data. They have been shown to achieve state-of-the-art results in many graph-related tasks, such as23

node and graph classification [3, 4], link prediction [5] and node and graph clustering [6, 7], and in a24

variety of domains, including image or molecular structure classification, recommender systems and25

social influence prediction [8].26

Most GNNs use a message passing framework and thus are referred to as Message Passing Neural27

Networks (MPNNs) [4] . In these networks, every node in each layer receives a message from its28

adjacent neighbors. All the incoming messages at each node are then aggregated and used to update29

the node’s representation via a learnable non-linear function –which is typically implemented by30

means of a neural network. The final node representations (called node embeddings) are used to31

perform the graph-related task at hand (e.g. graph classification). MPNNs are extensible, simple and32

have proven to yield competitive empirical results. Examples of MPNNs include GCN [3], GAT [9],33

GATv2 [10], GIN [11] and GraphSAGE [12]. However, they typically use transductive learning, i.e.34

the model observes both the training and testing data during the training phase, which might limit35

their applicability to graph classification tasks.36

However, MPNNs also have important limitations due to the inherent complexity of graphs. Despite37

such complexity, the literature has reported best results when MPNNs have a small number of layers,38

because networks with many layers tend to suffer from over-smoothing [13] and over-squashing [14].39

However, this models fail to capture information that depends on the entire structure of the graph [15]40

and prevent the information flow to reach distant nodes. This phenomenon is called under-reaching41

[16] and occurs when the MPNN’s depth is smaller than the graph’s diameter.42

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Over-smoothing [8, 17–19] takes place when the embeddings of nodes that belong to different classes43

become indistinguishable. It tends to occur in MPNNs with many layers that are used to tackle short-44

range tasks, i.e. tasks where a node’s correct prediction mostly depends on its local neighborhood.45

Given this local dependency, it makes intuitive sense that adding layers to the network would not46

help the network’s performance.47

Conversely, long-range tasks require as many layers in the network as the range of the interaction48

between the nodes. However, as the number of layers in the network increases, the number of49

nodes feeding into each of the node’s receptive field also increases exponentially, leading to over-50

squashing [14, 20]: the information flowing from the receptive field composed of many nodes is51

compressed in fixed-length node vectors, and hence the graph fails to correctly propagate the messages52

coming from distant nodes. Thus, over-squashing emerges due to the distortion of information flowing53

from distant nodes due to graph bottlenecks that emerge when the number of k-hop neighbors grows54

exponentially with k.55

Graph pooling and graph rewiring have been proposed in the literature as solutions to address these56

limitations [14]. Given that the main infrastructure for message passing in MPNNs are the edges57

in the graph, and given that many of these edges might be noisy or inadequate for the downstream58

task [21], graph rewiring aims to identify such edges and edit them.59

Many graph rewiring methods rely on edge sampling strategies: first, the edges are assigned new60

weights according to a relevance function and then they are re-sampled according to the new weights61

to retain the most relevant edges (i.e. those with larger weights). Edge relevance might be computed62

in different ways, including randomly [22], based on similarity [23] or on the edge’s curvature [20].63

Due to the diversity of possible graphs and tasks to be performed with those graphs, optimal graph64

rewiring should include a variety of strategies that are suited not only to the task at hand but also to65

the nature and structure of the graph.66

Motivation. State-of-the-art edge sampling strategies have three significant limitations. First,67

most of the proposed methods fail to preserve the global topology of the graph. Second, most68

graph rewiring methods are neither differentiable nor inductive [20]. Third, relevance functions that69

depend on a diffusion measure (typically in the spectral domain) are not parameter-free, which adds70

a layer of complexity in the models. In this paper, we address these three limitations.71

Contributions and outline. The main contribution of our work is to propose a theoretical frame-72

work called DIFFWIRE for graph rewiring in MPNNs that is principled, fully differentiable, inductive,73

and parameter-free by leveraging the Lovász bound [15] given by Eq. 1. This bound is a mathematical74

expression of the relationship between the commute times (effective resistance distance) and the75

network’s spectral gap. Inductive means that given an unseen test graph, DIFFWIRE predicts the76

optimal graph structure for the task at hand without any parameter tuning. Given the recently reported77

connection between commute times and curvature [24], and between curvature and the spectral78

gap [20], our framework provides a unified theory linking these concepts. Our aim is to leverage79

diffusion and curvature theories to propose a new approach for graph rewiring that preserves the80

graph’s structure.81

We first propose using the commute times as a relevance function for edge re-weighting. Moreover,82

we develop a differentiable, parameter-free layer in the GNN (CT-LAYER) to learn the commute83

times. Second, we propose an alternative graph rewiring approach by adding a layer in the network84

(GAP-LAYER) that optimizes the spectral gap according to the nature of the network and the task at85

hand. Finally, we empirically validate the proposed layers with state-of-the-art benchmark datasets in86

a graph classification task. We select a graph classification task to emphasize the inductive nature of87

DIFFWIRE: the layers in the GNN (CT-LAYER and GAP-LAYER) are trained to predict the CTs88

embedding and minimize the spectral gap for unseen graphs, respectively. This approach gives a great89

advantage when compared to SoTA methods that require optimizing the parameters of the models for90

each graph. CT-LAYER and GAP-LAYER learn the weights during training to predict the optimal91

changes in the topology of any unseen graph in test time.92

The paper is organized as follows: Section 2 provides a summary of the most relevant related literature.93

Our core technical contribution is described in Section 3, followed by our experimental evaluation94

and discussion in Section 4. Finally, Section 5 is devoted to conclusions and an outline of our future95

lines of research.96

2

DiffWire: Inductive Graph Rewiring via the Lovász Bound

2 Related Work97

In this section we provide an overview of the most relevant works that have been proposed in the98

literature to tackle the challenges of over-smoothing, over-squashing and under-reaching in MPNNs99

by means of graph rewiring and pooling.100

Graph rewiring in MPNNs. Rewiring is a process of changing the graph’s structure to control the101

information flow and hence improve the ability of the network to perform the task at hand (e.g. node102

or graph classification, link prediction...). Several approaches have been proposed in the literature for103

graph rewiring, such as connectivity diffusion [25] or evolution [20], adding new bridge-nodes [26]104

and multi-hop filters [27], and neighborhood [12], node [28] and edge [22] sampling.105

Edge sampling methods sample the graph’s edges based on their weights or relevance, which might106

be computed in different ways. Rong et al. [22] show that randomly dropping edges during training107

improves the performance of GNNs. Klicpera et al. [25], define edge relevance according to the108

coefficients of a parameterized diffusion process over the graph. Then, the k-hop diffusion matrix109

is truncated to discard long-range interactions. For Kazi et al. [23], edge relevance is given by the110

similarity between the nodes’ attributes . In addition, a reinforcement learning process rewards edges111

leading to a correct classification and penalizes the rest.112

Edge sampling-based rewiring has been proposed to tackle over-smoothing and over-squashing in113

MPNNs. Over-smoothing may be relieved by removing inter-class edges [29]. However, this strategy114

is only valid when the graph is homophilic, i.e. connected nodes tend to share similar attributes.115

Otherwise, removing these edges could lead to over-squashing [20] if their removal obstructs the116

message passing between distant nodes belonging to the same class (heterophily). Increasing the117

size of the bottlenecks of the graph via rewiring has been shown to improve node classification118

performance in heterophilic graphs, but not in homophilic graphs [20]. Recently, Topping et al. [20]119

propose an edge relevance function given by the edge curvature to mitigate over-squashing. They120

identify the bottleneck of the graph by computing the Ricci curvature of the edges. Next, they remove121

edges with high curvature and add edges around minimal curvature edges.122

Graph Structure Learning (GSL). GSL methods [30] aim to learn an optimized graph structure and123

its corresponding representations at the same time. DIFFWIRE could be seen from the perspective of124

GSL: CT-LAYER, as a metric-based, neural approach, and GAP-LAYER, as a direct-neural approach125

to optimize the structure of the graph to the task at hand.126

Pooling in MPNNs. In addition to graph rewiring, pooling layers simplify the original graph by127

compressing it into a smaller graph or a vector via pooling operators, which range from simple [31] to128

more sophisticated approaches, such as DiffPool [32] and MinCut pool [33]. Although graph pooling129

methods do not consider the edge representations, there is a clear relationship between pooling130

methods and rewiring since both of them try to reduce the flow of information through the graph’s131

bottleneck.132

Positional Encodings (PEs) A Positional Encoding is a feature that describes the global or local133

position of the nodes in the graph. These features are related to random walk measures, the Laplacian’s134

eigenvectors [34] or commute time embeddings, as recently proposed by Velingker et al. [35].135

Positional Encodings are typically pre-computed and then used to build more expressive graph136

architectures, either by concatenating them to the node features or by building transformer models [36].137

Our work is related to PEs as CT-LAYER learns how to predict the PEs instead of pre-computing138

them. Thus, it may be seen as a method to automatically learn the PEs for graph rewiring.139

3 Proposed Approach: DIFFWIRE for Inductive Graph Rewiring140

DIFFWIRE provides a unified theory for graph rewiring by proposing two new, complementary layers141

in MPNNs: first, CT-LAYER, a layer that learns the commute times and uses them as a relevance142

function for edge re-weighting; and second, GAP-LAYER, a layer to optimize the spectral gap,143

depending on the nature of the network and the task at hand.144

In this section, we present the theoretical foundations for the definitions of CT-LAYER and GAP-145

LAYER. First, we introduce the bound that our approach is based on: The Lovász bound. Table 2 in146

A.1 summarizes the notation used in the paper.147

3

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Figure 1: DIFFWIRE. Left: Original graph from COLLAB (test set). Center: Rewired graph after
CT-LAYER. Right: Rewired graph after GAP-LAYER. Colors indicate the strength of the edges.

3.1 The Lovász Bound148

The Lovász bound, given by Eq. 1, was derived by Lovász in [15] as a means of linking the spectrum149

governing a random walk in an undirected graph G = (V,E) with the hitting time Huv between any150

two nodes u and v of the graph. Huv is the expected number of steps needed to reach (or hit) v from151

u; Hvu is defined analogously. The sum of both hitting times between the two nodes, v and u, is the152

commute time CTuv = Huv +Hvu. Thus, CTuv is the expected number of steps needed to hit v153

from u and go back to u. According to the Lovász bound:154 ∣∣∣∣ 1

vol(G)
CTuv −

(
1

du
+

1

dv

)∣∣∣∣ ≤ 1

λ′
2

2

dmin
(1)

where λ′
2 ≥ 0 is the spectral gap, i.e. the first non-zero eigenvalue of L = I − D−1/2AD−1/2155

(normalized Laplacian [37], where D is the degree matrix and A, the adjacency matrix); vol(G) is156

the volume of the graph (sum of degrees); du and dv are the degrees of nodes u and v, respectively;157

and dmin is the minimum degree of the graph.158

The term CTuv/vol(G) in Eq. 1 is referred to as the effective resistance, Ruv , between nodes u and159

v. The bound states that the effective resistance between two nodes in the graph converges to or160

diverges from (1/du + 1/dv), depending on whether the graph’s spectral gap diverges from or tends161

to zero. The larger the spectral gap, the closer CTuv/vol(G) will be to 1
du

+ 1
dv

and hence the less162

informative the commute times will be.163

We propose two novel MPNNs layers based on each side of the inequality in Eq. 1: CT-LAYER,164

focuses on the left-hand side, and GAP-LAYER, on the right-hand side. The use of each layer165

depends on the nature of the network and the task at hand. In a graph classification task (our focus),166

CT-LAYER is expected to yield good results when the graph’s spectral gap is small; conversely,167

GAP-LAYER would be the layer of choice in graphs with large spectral gap.168

The Lovász bound was later refined by von Luxburg et al. [38]. App. A.2.2 presents this bound along169

with its relationship with Ruv as a global measure of node similarity. Once we have defined both170

sides of the Lovász bound, we proceed to describe their implications for graph rewiring.171

3.2 CT-LAYER: Commute Times for Graph Rewiring172

We focus first on the left-hand side of the Lovász bound which concerns the effective resistances173

CTuv/vol(G) = Ruv (or commute times)1 between any two nodes in the graph.174

Spectral Sparsification leads to Commute Times. Graph sparsification in undirected graphs175

may be formulated as finding a graph H = (V,E′) that is spectrally similar to the original graph176

G = (V,E) with E′ ⊂ E. Thus, the spectra of their Laplacians, LG and LH should be similar.177

Theorem 1 (Spielman and Srivastava [39]). Let Sparsify(G, q) –> G’ be a sampling algorithm of178

graph G = (V,E), where edges e ∈ E are sampled with probability q ∝ Re (proportional to the179

effective resistance). For n = |V | sufficiently large and 1/
√
n < ϵ ≤ 1, O(n log n/ϵ2) samples are180

needed to satisfy ∀x ∈ Rn : (1− ϵ)xTLGx ≤ xTLG′x ≤ (1 + ϵ)xTLGx , with probability ≥ 1/2.181

1We use commute times and effective resistances interchangeably as per their use in the literature

4

DiffWire: Inductive Graph Rewiring via the Lovász Bound

The above theorem has a simple explanation in terms of Dirichlet energies. The Laplacian L =182

D−A ≽ 0, i.e. it is positive semi-definite (all its eigenvalues are non-negative). Then, if we consider183

x : V → R as a real-valued function of the n nodes of G = (V,E), we have that E(x) := xTLGx =184 ∑
e=(u,v)∈E(xu − xv)

2 ≥ 0 for any x. In particular, the eigenvectors f := {fi : Lfi = λifi} are185

the set of special functions (mutually orthogonal and normalized) that minimize the energies E(fi),186

i.e. they are the orthogonal functions with the minimal variabilities achievable by the topology of G.187

Therefore, Theorem 1 states that any minimal variability of G′ is bounded by (1± ϵ) times that of G188

if we sample enough edges with probability q ∝ Re.189

Therefore, the effective resistance is a principled relevance function, since the resulting graph G′190

retains the main properties of G. In particular, we have that the spectra of LG and LG′ are related by191

(1− ϵ)λG
i ≤ λG′

i ≤ (1 + ϵ)λG
i : in short (1− ϵ)LG ≼ LG′ ≼ (1 + ϵ)LG. This is a direct result of192

the theorem since λi =
E(fi)
fTi fi

are the normalized minimal variabilities.193

This first result implies that edge sampling based on effective resistances (or commute times) is a194

principled way to rewire a graph while preserving its original structure. Next, we present what is a195

commute times embedding and how it can be spectrally computed.196

Commute Times Embedding. The choice of effective resistances in Theorem 1 is explained by197

the fact that Ruv can be computed from Ruv = (eu − ev)
TL+(eu − ev), where eu is the unit vector198

with a unit value at u and zero elsewhere. L+ =
∑

i≥2 λ
−1
i fif

T
i , where fi, λi are the eigenvectors199

and eigenvalues of L, is the pseudo-inverse or Green’s function of G = (V,E) if it is connected, and200

from the theorem we also have (1 + ϵ)−1L+
G ≼ L+

G′ ≼ (1− ϵ)−1L+
G.201

The Green’s function leads to envision Ruv (and therefore CTuv) as metrics relating pairs of nodes of202

G. For instance Ruv = L+
uu + L+

vv − 2L+
uv , is the resistance distance [40] i.e., as noted by Qiu and203

Hancock [41] the elements L+
uv encode dot products between the embeddings zu and zv of u and v.204

As a result, the latent space can not only be described spectrally but also in a parameter free-manner,205

which is not the case for other spectral embeddings, such as heat kernel or diffusion maps as they rely206

on a time parameter t. More precisely, the embedding matrix Z whose columns contain the nodes’207

embeddings is given by:208

Z :=
√
vol(G)Λ−1/2FT =

√
vol(G)Λ′−1/2GTD−1/2 (2)

where Λ is the diagonal matrix of the unnormalized Laplacian L eigenvalues and F is the matrix of209

their associated eigenvectors. Similarly, Λ′ contains the eigenvalues of the normalized Laplacian L210

and G the eigenvectors. We have F = GD−1/2 or fi = giD
−1/2, where D is the degree matrix.211

Finally, the commute times are given by the Euclidean distances between the embeddings CTuv =212

∥zu − zv∥2. Their spectral form is213

Ruv =
CTuv

vol(G)
=

n∑
i=2

1

λi
(fi(u)− fi(v))

2
=

n∑
i=2

1

λ′
i

(
gi(u)√

du
− gi(v)√

dv

)2

(3)

Note how in Eq. 3 the commute times rely on the Fiedler vector f2 (or g2) downscaled by the spectral214

gap λ2 (or more formally λ′
2). The downscaled Fiedler vector dominates the expansion because the215

Fiedler vector is the solution to the relaxed ratio-cut problem. This is consistent with the fact that216

p−resistances become the inverse of mincut when p→∞.217

Commute Times as an Optimization Problem. In this section, we demonstrate how the CTs may218

be computed as an optimization problem by means of a differentiable layer in a GNN. Constraining219

neighboring nodes to have a similar embedding leads to220

Z = arg min
ZTZ=I

∑
u,v ∥zu − zv∥2Auv∑

u,v Z
2
uvdu

=

∑
(u,v)∈E ∥zu − zv∥2∑

u,v Z
2
uvdu

=
Tr[ZTLZ]

Tr[ZTDZ]
, (4)

which reveals that CTs embeddings result from a Laplacian regularization down-weighted by the221

degree. As a result, frontier nodes or hubs –i.e. nodes with inter-community edges– which tend to222

have larger degrees than those lying inside their respective communities will be embedded far away223

from their neighbors, increasing the distance between communities. Note that the above quotient of224

traces formulation is easily differentiable and different from Tr[Z
TLZ

ZTDZ
] proposed in [41].225

5

DiffWire: Inductive Graph Rewiring via the Lovász Bound

With the above elements we define CT-LAYER, the first rewiring layer proposed in this paper. See226

Figure 2 for a graphical representation of the layer.227

228

Definition 1 (CT-Layer). Given the matrix Xn×F encoding the features of the nodes after any229

message passing (MP) layer, Zn×O(n) = tanh(MLP(X)) learns the association X→ Z while Z is230

optimized according to the loss LCT = Tr[ZTLZ]
Tr[ZTDZ]

+
∥∥∥ ZTZ
∥ZTZ∥F

− In

∥∥∥
F

. This results in the following231

resistance diffusion TCT = R(Z)⊙A, i.e. the Hadamard product between the resistance distance232

and the adjacency matrix, providing as input to the subsequent MP layer a learnt convolution matrix.233

We set R(Z) to the pairwise Euclidean distances of the node embeddings in Z divided by vol(G).234

Thus, CT-LAYER learns the CTs and rewires an input graph according to them: the edges with235

maximal resistance will tend to be the most important edges so as to preserve the topology of the236

graph.237 CT-Layer

∀𝐱 ∈ ℝn: 1 − 𝜖 𝐱T𝐋𝐺𝐱 ≤ 𝐱T𝐋𝐺′𝐱 ≤ (1 + 𝜖)𝐱T𝐋𝐺𝐱

Structure preservation: Dirichlet energies in new graph G′ are bounded
in (1±ϵ) of the Dirichlet energies of the original graph G.

𝐿𝐶𝑇 =
𝑇𝑟[𝐙𝐓𝐋𝐙]

𝑇𝑟[𝐙𝐓𝐃𝐙]
+

𝐙𝐓𝐙

𝐙𝐓𝐙 𝐹
− 𝐈𝑁

𝐹

P
o

o
l -

ta
n

h

𝐗

A

𝐙 ∈ ℝ𝑛×𝑂(𝑛) 𝐓𝐂𝐓 ∈ ℝ𝑛×𝑛=
cdist(𝐙)

𝑣𝑜𝑙(𝐺)
⊙A 𝐓𝐂𝐓

Figure 2: Detailed depiction of CT-LAYER, where cdist refers to the matrix of pairwise Euclidean
distances between the node embeddings in Z.

Below, we present the relationship between the CTs and the graph’s bottleneck and curvature.238

TCT and Graph Bottlenecks. Beyond the principled sparsification of TCT (enabled by Theo-239

rem 1), this layer rewires the graph G = (E, V) in such a way that edges with maximal resistance240

will tend to be the most critical to preserve the topology of the graph. More precisely, although241 ∑
e∈E Re = n− 1, the bulk of the resistance distribution will be located at graph bottlenecks, if they242

exist. Otherwise, their magnitude is upper-bounded and the distribution becomes more uniform.243

Graph bottlenecks are controlled by the graph’s conductance or Cheeger constant, hG = minS⊆V hS ,244

where: hS = |∂S|
min(vol(S),vol(S̄))

, ∂S = {e = (u, v) : u ∈ S, v ∈ S̄} and vol(S) =
∑

u∈S du.245

The interplay between the graph’s conductance and effective resistances is given by:246

Theorem 2 (Alev et al. [42]). Given a graph G = (V,E), a subset S ⊆ V with vol(S) ≤ vol(G)/2,247

248

hS ≥
c

vol(S)1/2−ϵ
⇐⇒ |∂S| ≥ c · vol(S)1/2−ϵ, (5)

for some constant c and ϵ ∈ [0, 1/2]. Then, Ruv ≤
(

1
d2ϵ
u

+ 1
d2ϵ
v

)
· 1
ϵ·c2 for any pair u, v.249

According to this theorem, the larger the graph’s bottleneck, the tighter the bound on Ruv are.250

Moreover, max(Ruv) ≤ 1/h2
S , i.e., the resistance is bounded by the square of the bottleneck.251

This bound partially explains the rewiring of the graph in Figure 1-center. As seen in the Figure,252

rewiring using CT-LAYER sparsifies the graph and assigns larger weights to the edges located in253

the graph’s bottleneck. The interplay between the above theorem and Theorem 1 is described in254

App. A.1.255

Recent work has proposed using curvature for graph rewiring. We outline below the relationship256

between CTs and curvature.257

Effective Resistances and Curvature. Topping et al. [20] propose an approach for graph rewiring,258

where the relevance function is given by the Ricci curvature. However, this measure is non-259

differentiable. More recent definitions of curvature [24] have been formulated based on resistance260

distances that would be differentiable using our approach. The resistance curvature of an edge261

e = (u, v) is κuv := 2(pu + pv)/Ruv where pu := 1 − 1
2

∑
u∼w Ruv is the node’s curvature.262

6

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Relevant properties of the edge resistance curvature are discussed in App. A.1.3, along with a related263

Theorem proposed in Devriendt and Lambiotte [24].264

3.3 GAP-LAYER: Spectral Gap Optimization for Graph Rewiring265

The right-hand side of the Lovász bound in Eq. 1 relies on the graph’s spectral gap λ′
2, such that the266

larger the spectral gap, the closer the commute times would be to their non-informative regime. Note267

that the spectral gap is typically large in commonly observed graphs –such as communities in social268

networks which may be bridged by many edges [43]– and, hence, in these cases it would be desirable269

to rewire the adjacency matrix A so that λ′
2 is minimized.270

In this section, we explain how to rewire the graph’s adjacency matrix A to minimize the spectral gap.271

We propose using the gradient of λ2 wrt each component of Ã. Then, we can compute these gradient272

either using Laplacians (L, with Fiedler λ2) or normalized Laplacians (L, with Fiedler λ′
2). We also273

present an approximation of the Fiedler vectors needed to compute those gradients, and propose274

computing them as a GNN Layer called the GAP-LAYER. A detailed schematic of GAP-LAYER is275

shown in Figure 3.276

Ratio-cut (Rcut) Approximation. We propose to rewire the adjacency matrix, A, so that λ2 is277

minimized. We consider a matrix Ã close to A that satisfies L̃f2 = λ2f2, where f2 is the solution to278

the ratio-cut relaxation [44]. Following [45], the gradient of λ2 wrt each component of Ã is given by279

∇Ãλ2 := Tr
[
(∇L̃λ2)

T · ∇ÃL̃
]
= diag(f2fT2)11T − f2f

T
2 (6)

where 1 is the vector of n ones; and [∇Ãλ2]ij is the gradient of λ2 wrt Ãuv. The driving force of280

this gradient relies on the correlation f2f
T
2 . Using this gradient to minimize λ2 results in breaking281

the graph’s bottleneck while preserving simultaneously the inter-cluster structure. We delve into this282

matter in App. A.2.283

Normalized-cut (Ncut) Approximation. Similarly, considering now λ′
2 for rewiring leads to284

∇Ãλ′
2 := Tr

[
(∇L̃λ2)

T · ∇ÃL̃
]

=

d′
{
gT
2 Ã

T D̃−1/2g2

}
1T + d′

{
gT
2 ÃD̃−1/2g2

}
1T + D̃−1/2g2g

T
2 D̃

−1/2 (7)

where d′ is a n × 1 vector including derivatives of degree wrt adjacency and related terms. This285

gradient relies on the Fiedler vector g2 (the solution to the normalized-cut relaxation), and on the286

incoming and outgoing one-hop random walks. This approximation breaks the bottleneck while287

preserving the global topology of the graph (Figure 1-left). More details and proof are included in288

App. A.2.289

We present next an approximation of the Fiedler vector, followed by a proposed new layer in the290

GNN called the GAP-LAYER to learn how to minimize the spectral gap of the graph.291

Approximating the Fiedler vector. Given that g2 = D̃1/2f2, we can obtain the normalized-cut292

gradient in terms of f2. From [17] we have that293

f2(u) =

{
+1/
√
n if u belongs to the first cluster

−1/
√
n if u belongs to the second cluster +O

(
log n

n

)
(8)

M
LP

 -
σ

𝐗

A

𝐒 ∈ ℝ𝑛×2 ෩A⊙A

𝐿𝑐𝑢𝑡 =
𝑇𝑟[𝐒𝐓𝐋𝐒]

𝑇𝑟[𝐒𝐓𝐃𝐒]
+

𝐒𝐓𝐒

𝐒𝐓𝐒 𝐹
−
𝐈𝑁

2 𝐹

𝐓𝐆𝐀𝐏𝐟2(𝐒)
λ𝟐 = ℰ 𝐟2

∇෩𝐀𝐿𝐹𝑖𝑒𝑑𝑙𝑒𝑟
෩𝐀 = 𝐀 − 𝜇 × ∇෩𝐀λ2

𝐿𝑓𝑖𝑒𝑑𝑙𝑒𝑟 = ෩𝐀 − A
𝐹
+ α(λ2)

2

∇෩𝐀λ2 = 2 ෩𝐀 − 𝐀 + (diag 𝐟2𝐟2
𝑇 𝟏𝟏𝑇 − 𝐟2𝐟2

𝑇) × 𝜆2

Figure 3: GAP-LAYER (Rcut). For GAP-LAYER (Ncut), substitute∇Ãλ2 by Eq. 7

7

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Definition 2 (GAP-Layer). Given the matrix Xn×F encoding the features of the nodes after any294

message passing (MP) layer, Sn×2 = Softmax(MLP(X)) learns the association X→ S while S is295

optimized according to the loss LCut = −Tr[STAS]
Tr[STDS]

+
∥∥∥ STS
∥STS∥F

− In√
2

∥∥∥
F

. Then the Fiedler vector296

f2 is approximated by appyling a softmaxed version of Eq. 8 and considering the loss LFiedler =297

∥Ã − A∥F + α(λ∗
2)

2, where λ∗
2 = λ2 if we use the ratio-cut approximation (and gradient) and298

λ∗
2 = λ′

2 if we use the normalized-cut approximation and gradient. This returns Ã and the GAP299

diffusion TGAP = Ã(S)⊙A results from minimizing LGAP := LCut + LFiedler.300

4 Experiments and Discussion301

In this section, we study the properties and performance of CT-LAYER and GAP-LAYER in a graph302

classification task with several benchmark datasets. To illustrate the merits of our approach, we303

compare CT-LAYER and GAP-LAYER with 3 state-of-the-art diffusion and curvature-based graph304

rewiring methods. Note that the aim of the evaluation is to shed light on the properties of both layers305

and illustrate their inductive performance, not to perform a benchmark comparison with all previously306

proposed graph rewiring methods.307

LI
N
EA

R

C
O
N
V

M
IN
C
U
T

C
O
N
V

R
EA

D
O
U
T

M
LPX X X

A

X
෡A

X X ෡Y

(a) MINCUT baseline

X

LI
N
EA

R

C
O
N
V

M
IN
C
U
T

C
O
N
V

R
EA

D
O
U
T

M
LPX X

A

X
෡A

X X ෡Y

R
EW

IR
IN
G

T

(b) CT-LAYER or GAP-LAYER

Figure 4: GNN models used in the experiments. Left: MinCut Baseline model. Right: CT-LAYER
or GAP-LAYER models, depending on what method is used for rewiring.

Baselines:. The first baseline architecture is based on MINCUT Pool [33] and it is shown in Figure 4a.308

It is the base GNN that we use for graph classification without rewiring. MINCUT Pool layer learns309

(An×n,Xn×F)→ (A′
k×k,Xk×F), being k < n the new number of node clusters. The first baseline310

strategy using graph rewiring is k-NN graphs [46], where weights of the edges are computed based311

on feature similarity. The next two baselines are graph rewiring methods that belong to the same312

family of methods as DIFFWIRE, i.e. methods based on diffusion and curvature, namely DIGL313

(PPR) [25] and SDRF [20]. DIGL is a diffusion-based preprocessing method within the family of314

metric-based GSL approaches. We set the teleporting probability α = 0.001 and ϵ is set to keep the315

same average degree for each graph. Once preprocessed with DIGL, the graphs are provided as input316

to the MinCut Pool (Baseline1) arquitecture. The third baseline model is SDRF, which performs317

curvature-based rewiring. SDRF is also a preprocessing method which has 3 parameters that are318

highly graph-dependent. We set these parameters to τ = 20 and C+ = 0 for all experiments as per319

[20]. The number of iterations is estimated dynamically according to 0.7 ∗ |V | for each graph.320

Both DIGL and SDRF aim to preserve the global topology of the graph but require optimizing their321

parameters for each input graph via hyper-parameter search. In a graph classification task, this search322

is O(n3) per graph. Details about the parameter tuning in these methods can be found in App. A.3.3.323

To shed light on the performance and properties of CT-LAYER and GAP-LAYER, we add the324

corresponding layer in between Linear(X)
∗−→ Conv1(A,X). We build 3 different models: CT-325

LAYER, GAP-LAYER (Rcut), GAP-LAYER (Ncut), depending on the layer used. For CT-LAYER,326

we learn TCT which is used as a convolution matrix afterwards. For GAP-LAYER, we learn TGAP327

either using the Rcut or the Ncut approximations. A schematic of the architectures is shown in328

Figure 4b and in App. A.3.2.329

As shown in Table 1, we use in our experiments common benchmark datasets for graph classification.330

We select datasets both with features and featureless, in which case we use the degree as the node331

features. These datasets are diverse regarding the topology of their networks: REDDIT-B, IMDB-B332

and COLLAB contain truncate scale-free graphs (social networks), whereas MUTAG and PROTEINS333

contain graphs from biology or chemistry. In addition, we use two synthetic datasets with 2 classes:334

Erdös-Rényi with p1 ∈ [0.3, 0.5] and p2 ∈ [0.4, 0.8] and Stochastic block model (SBM) with335

parameters p1 = 0.8, p2 = 0.5, q1 ∈ [0.1, 0.15] and q2 ∈ [0.01, 0.1]. More details in App. A.3.1.336

8

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Table 1: Experimental results on common graph classification benchmarks. Red denotes the best
model row-wise and Blue marks the runner-up. ‘*’ means degree as node feature.

MinCutPool k-NN DIGL SDRF CT-LAYER GAP-LAYER (R) GAP-LAYER (N)

REDDIT-B* 66.53±4.4 64.40±3.8 76.02±4.3 65.3±7.7 78.45±4.5 77.63±4.9 76.00±5.3
IMDB-B* 60.75±7.0 55.20±4.3 59.35±7.7 59.2±6.9 69.84±4.6 69.93±3.3 68.80±3.1
COLLAB* 58.00±6.2 58.33±11 57.51±5.9 56.60±10 69.87±2.4 64.47±4.0 65.89±4.9
MUTAG 84.21±6.3 87.58±4.1 85.00±5.6 82.4±6.8 87.58±4.4 86.90±4.0 86.90±4.0
PROTEINS 74.84±2.3 76.76±2.5 74.49±2.8 74.4±2.7 75.38±2.9 75.03±3.0 75.34±2.1
SBM* 53.00±9.9 50.00±0.0 56.93±12 54.1±7.1 81.40±11 90.80±7.0 92.26±2.9
Erdös-Rényi* 81.86±6.2 63.40±3.9 81.93±6.3 73.6±9.1 79.06±9.8 79.26±10 82.26±3.2

Table 1 reports average accuracies and standard deviation on 10 random data splits, using 85/15337

stratified train-test split, training during 60 epochs and reporting the results of the last epoch for each338

random run. We use Pytorch Geometric framework and our code is publicly available2.339

The experiments support our hypothesis that rewiring based on CT-LAYER and GAP-LAYER340

improves the performance of the baselines on graph classification. Since both layers are differentiable,341

they learn how to rewire unseen graphs. The improvements are significant in graphs where social342

components arise (REDDITB, IMDBB, COLLAB), i.e. graphs with small world properties and343

power-law degree distributions with a topology based on hubs and authorities. These are graphs344

where bottlenecks arise easily and our approach is able to properly rewire the graphs. However, the345

improvements observed in planar or grid networks (MUTAG and PROTEINS) are more limited: the346

bottleneck does not seem to be critical for the graph classification task.347

Moreover, CT-LAYER and GAP-LAYER perform better in graphs with featureless nodes than graphs348

with node features because it is able to leverage the information encoded in the topology of the349

graphs. Note that in attribute-based graphs, the weights of the attributes typically overwrite the350

graph’s structure in the classification task, whereas in graphs without node features, the information351

is encoded in the graph’s structure. Thus, k-NN rewiring outperforms every other rewiring method in352

graph classification where graphs has node features. App. A.3.4 contains an in-depth analysis of the353

graphs latent space of the readout layer produced by each model. In addition, the compare the node354

CT embeddings, Z, predicted by CT-LAYER with the spectral embeddings given by equation 2.355

In addition, as an ablation study, we performed preliminary experiments in node classification to356

show the promising potential of CT-LAYER in this task, both for improving diffusion in heterophilic357

graphs, and for using the learned CTE from CT-LAYER (Z) as a novel method for learning node358

positional encodings (PE) [35, 36]. These results are further discussed in Appendix A.3.5.359

CT-LAYER vs GAP-LAYER. The real-world datasets explored in this paper are characterized by360

mild bottlenecks from the perspective of the Lovász bound. For completion, we have included two361

synthetic datasets (SBM and Erdös-Rényi) where the Lovász bound is very restrictive. As a result,362

CT-LAYER is outperformed by GAP-LAYER in SBM. Note that the results on the synthetic datasets363

suffer from large variability. As a general rule of thumb, the smaller the graph’s bottleneck (defined364

as the ratio between the number of inter-community edges and the number of intra-community edges),365

the more useful the CT-LAYER is because the rewired graph will be sparsified in the communities366

but will preserve the edges in the gap. Conversely, the larger the bottleneck, the more useful the367

GAP-Layer is.368

5 Conclusion and Future Work369

In this paper, we have proposed DIFFWIRE, a unified framework for graph rewiring that links the370

two components of the Lovász bound: CTs and the spectral gap. We have presented two novel, fully371

differentiable and inductive rewiring layers: CT-LAYER and GAP-LAYER. We have empirically372

evaluated these layers on benchmark datasets for graph classification with competitive results when373

compared to SoTA baselines, specially in graphs where the the nodes have no attributes and have374

small-world properties.375

In future work, we plan to test our approach in other graph-related tasks and intend to apply DIFFWIRE376

to real-world applications, particularly in social networks, which have unique topology, statistics and377

direct implications in society.378

2https://anonymous.4open.science/r/DiffWireLoG22/readme.md

9

https://anonymous.4open.science/r/DiffWireLoG22/readme.md

DiffWire: Inductive Graph Rewiring via the Lovász Bound

References379

[1] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains. In380

Proceedings. 2005 IEEE international joint conference on neural networks, volume 2, pages 729–734,381

2005. URL https://ieeexplore.ieee.org/document/1555942. 1382

[2] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The383

graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008. URL https:384

//ieeexplore.ieee.org/document/4700287. 1385

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In386

International Conference on Learning Representations (ICLR), 2017. URL https://openreview.net/forum?387

id=SJU4ayYgl. 1388

[4] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message389

passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning,390

ICML, page 1263–1272, 2017. 1391

[5] Thomas N Kipf and Max Welling. Variational graph auto-encoders. In NeurIPS Workshop on Bayesian392

Deep Learning, 2016. URL http://bayesiandeeplearning.org/2016/papers/BDL_16.pdf. 1393

[6] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learning graph representations. In394

Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016. URL https://ojs.aaai.395

org/index.php/AAAI/article/view/10179. 1396

[7] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for graph397

clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, 2014. URL https://ojs.aaai.398

org/index.php/AAAI/article/view/8916. 1399

[8] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A comprehen-400

sive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 32401

(1):4–24, 2021. URL https://ieeexplore.ieee.org/document/9046288. 1, 2402

[9] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.403

Graph Attention Networks. International Conference on Learning Representations, 2018. URL https:404

//openreview.net/forum?id=rJXMpikCZ. 1405

[10] Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In International406

Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=F72ximsx7C1. 1407

[11] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?408

In International Conference on Learning Representations, 2019. URL https://openreview.net/forum?id=409

ryGs6iA5Km. 1410

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In411

Advances in Neural Information Processing Systems, 2017. URL https://proceedings.neurips.cc/paper/412

2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf. 1, 3413

[13] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for414

semi-supervised learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,415

2018. URL https://ojs.aaai.org/index.php/AAAI/article/view/11604. 1416

[14] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.417

In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=418

i80OPhOCVH2. 1, 2419

[15] László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 2(1-46):4, 1993. URL420

https://web.cs.elte.hu/~lovasz/erdos.pdf. 1, 2, 4421

[16] Pablo Barceló, Egor V. Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan Pablo Silva. The422

logical expressiveness of graph neural networks. In International Conference on Learning Representations,423

2020. URL https://openreview.net/forum?id=r1lZ7AEKvB. 1424

[17] NT Hoang, Takanori Maehara, and Tsuyoshi Murata. Revisiting graph neural networks: Graph filtering425

perspective. In 25th International Conference on Pattern Recognition (ICPR), pages 8376–8383, 2021.426

URL https://ieeexplore.ieee.org/document/9412278. 2, 7, 18427

[18] Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node428

classification. In International Conference on Learning Representations, 2020. URL https://openreview.429

net/forum?id=S1ldO2EFPr.430

[19] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural431

networks: A review of methods and applications. CoRR, abs/1812.08434, 2018. URL http://arxiv.org/432

abs/1812.08434. 2433

10

https://ieeexplore.ieee.org/document/1555942
https://ieeexplore.ieee.org/document/4700287
https://ieeexplore.ieee.org/document/4700287
https://ieeexplore.ieee.org/document/4700287
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://bayesiandeeplearning.org/2016/papers/BDL_16.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/10179
https://ojs.aaai.org/index.php/AAAI/article/view/10179
https://ojs.aaai.org/index.php/AAAI/article/view/10179
https://ojs.aaai.org/index.php/AAAI/article/view/8916
https://ojs.aaai.org/index.php/AAAI/article/view/8916
https://ojs.aaai.org/index.php/AAAI/article/view/8916
https://ieeexplore.ieee.org/document/9046288
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/11604
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://web.cs.elte.hu/~lovasz/erdos.pdf
https://openreview.net/forum?id=r1lZ7AEKvB
https://ieeexplore.ieee.org/document/9412278
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434
http://arxiv.org/abs/1812.08434

DiffWire: Inductive Graph Rewiring via the Lovász Bound

[20] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.434

Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In International435

Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=7UmjRGzp-A. 2, 3, 6,436

8, 17, 22437

[21] Petar Veličković. Message passing all the way up. In ICLR 2022 Workshop on Geometrical and Topological438

Representation Learning, 2022. URL https://openreview.net/forum?id=Bc8GiEZkTe5. 2439

[22] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph convolu-440

tional networks on node classification. In International Conference on Learning Representations, 2020.441

URL https://openreview.net/forum?id=Hkx1qkrKPr. 2, 3442

[23] Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael Bronstein. Differentiable443

graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and444

Machine Intelligence, pages 1–1, 2022. URL https://ieeexplore.ieee.org/document/9763421. 2, 3445

[24] Karel Devriendt and Renaud Lambiotte. Discrete curvature on graphs from the effective resistance. arXiv446

preprint arXiv:2201.06385, 2022. doi: 10.48550/ARXIV.2201.06385. URL https://arxiv.org/abs/2201.447

06385. 2, 6, 7, 17448

[25] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In449

Advances in Neural Information Processing Systems, 2019. URL https://proceedings.neurips.cc/paper/450

2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf. 3, 8, 22451

[26] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,452

Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational453

inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018. URL454

https://arxiv.org/abs/1806.01261. 3455

[27] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Benjamin Chamberlain, Michael Bronstein, and Federico456

Monti. Sign: Scalable inception graph neural networks. In ICML 2020 Workshop on Graph Representation457

Learning and Beyond, 2020. URL https://grlplus.github.io/papers/77.pdf. 3458

[28] Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. DropGNN: Random dropouts459

increase the expressiveness of graph neural networks. In Advances in Neural Information Processing460

Systems, 2021. URL https://openreview.net/forum?id=fpQojkIV5q8. 3461

[29] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-462

smoothing problem for graph neural networks from the topological view. Proceedings of the AAAI463

Conference on Artificial Intelligence, 34(04):3438–3445, Apr. 2020. doi: 10.1609/aaai.v34i04.5747. URL464

https://ojs.aaai.org/index.php/AAAI/article/view/5747. 3465

[30] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl Yang, and Shu466

Wu. A survey on graph structure learning: Progress and opportunities. arXiv PrePrint, 2021. URL467

https://arxiv.org/abs/2103.03036. 3468

[31] Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural networks. In469

Advances in Neural Information Processing Systems, 2020. URL https://proceedings.neurips.cc/paper/470

2020/file/1764183ef03fc7324eb58c3842bd9a57-Paper.pdf. 3471

[32] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.472

Hierarchical graph representation learning with differentiable pooling. In Advances in Neu-473

ral Information Processing Systems, 2018. URL https://proceedings.neurips.cc/paper/2018/file/474

e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf. 3475

[33] Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural476

networks for graph pooling. In Proceedings of the 37th International Conference on Machine Learning,477

2020. URL https://proceedings.mlr.press/v119/bianchi20a.html. 3, 8478

[34] Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique479

Beaini. Recipe for a General, Powerful, Scalable Graph Transformer. arXiv:2205.12454, 2022. URL480

https://arxiv.org/pdf/2205.12454.pdf. 3, 24481

[35] Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Veličković, and Sreenivas Gollapudi. Affinity-aware482

graph networks. arXiv preprint arXiv:2206.11941, 2022. URL https://arxiv.org/pdf/2206.11941.pdf. 3, 9,483

22, 24, 25484

[36] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. AAAI485

Workshop on Deep Learning on Graphs: Methods and Applications, 2021. URL https://arxiv.org/pdf/486

2012.09699.pdf. 3, 9, 22, 24487

[37] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997. URL https://www.488

bibsonomy.org/bibtex/295ef10b5a69a03d8507240b6cf410f8a/folke. 4489

[38] Ulrike von Luxburg, Agnes Radl, and Matthias Hein. Hitting and commute times in large random490

neighborhood graphs. Journal of Machine Learning Research, 15(52):1751–1798, 2014. URL http:491

//jmlr.org/papers/v15/vonluxburg14a.html. 4, 19492

11

https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=Bc8GiEZkTe5
https://openreview.net/forum?id=Hkx1qkrKPr
https://ieeexplore.ieee.org/document/9763421
https://arxiv.org/abs/2201.06385
https://arxiv.org/abs/2201.06385
https://arxiv.org/abs/2201.06385
https://proceedings.neurips.cc/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://arxiv.org/abs/1806.01261
https://grlplus.github.io/papers/77.pdf
https://openreview.net/forum?id=fpQojkIV5q8
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://arxiv.org/abs/2103.03036
https://proceedings.neurips.cc/paper/2020/file/1764183ef03fc7324eb58c3842bd9a57-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1764183ef03fc7324eb58c3842bd9a57-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1764183ef03fc7324eb58c3842bd9a57-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
https://proceedings.mlr.press/v119/bianchi20a.html
https://arxiv.org/pdf/2205.12454.pdf
https://arxiv.org/pdf/2206.11941.pdf
https://arxiv.org/pdf/2012.09699.pdf
https://arxiv.org/pdf/2012.09699.pdf
https://arxiv.org/pdf/2012.09699.pdf
https://www.bibsonomy.org/bibtex/295ef10b5a69a03d8507240b6cf410f8a/folke
https://www.bibsonomy.org/bibtex/295ef10b5a69a03d8507240b6cf410f8a/folke
https://www.bibsonomy.org/bibtex/295ef10b5a69a03d8507240b6cf410f8a/folke
http://jmlr.org/papers/v15/vonluxburg14a.html
http://jmlr.org/papers/v15/vonluxburg14a.html
http://jmlr.org/papers/v15/vonluxburg14a.html

DiffWire: Inductive Graph Rewiring via the Lovász Bound

[39] Daniel A. Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal on493

Computing, 40(6):1913–1926, 2011. doi: 10.1137/080734029. URL https://doi.org/10.1137/080734029. 4494

[40] D. J. Klein and M. Randić. Resistance distance. Journal of Mathematical Chemistry, 12(1):81–95, 1993.495

doi: 10.1007/BF01164627. URL https://doi.org/10.1007/BF01164627. 5, 23496

[41] Huaijun Qiu and Edwin R. Hancock. Clustering and embedding using commute times. IEEE Transactions497

on Pattern Analysis and Machine Intelligence, 29(11):1873–1890, 2007. doi: 10.1109/TPAMI.2007.1103.498

URL https://ieeexplore.ieee.org/document/4302755. 5499

[42] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph Clustering using Effective500

Resistance. In 9th Innovations in Theoretical Computer Science Conference (ITCS 2018), volume 94, pages501

1–16, 2018. doi: 10.4230/LIPIcs.ITCS.2018.41. URL http://drops.dagstuhl.de/opus/volltexte/2018/8369.502

6, 16, 23503

[43] Emmanuel Abbe. Community detection and stochastic block models: Recent developments. Journal of504

Machine Learning Research, 18(177):1–86, 2018. URL http://jmlr.org/papers/v18/16-480.html. 7, 19505

[44] Thomas Bühler and Matthias Hein. Spectral clustering based on the graph p-laplacian. In Proceedings of the506

26th Annual International Conference on Machine Learning, ICML ’09, page 81–88, New York, NY, USA,507

2009. Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553385.508

URL https://doi.org/10.1145/1553374.1553385. 7, 19509

[45] Jian Kang and Hanghang Tong. N2n: Network derivative mining. In Proceedings of the 28th ACM510

International Conference on Information and Knowledge Management, CIKM ’19, page 861–870, New511

York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450369763. doi: 10.1145/512

3357384.3357910. URL https://doi.org/10.1145/3357384.3357910. 7, 18513

[46] Franco P Preparata and Michael I Shamos. Computational geometry: an introduction. Springer Science &514

Business Media, 2012. URL http://www.cs.kent.edu/~dragan/CG/CG-Book.pdf. 8515

[47] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification516

of graphs: Theory and algorithms. Commun. ACM, 56(8):87–94, aug 2013. ISSN 0001-0782. doi:517

10.1145/2492007.2492029. URL https://doi.org/10.1145/2492007.2492029. 15518

[48] Morteza Alamgir and Ulrike Luxburg. Phase transition in the family of p-resistances. In Advances519

in Neural Information Processing Systems, 2011. URL https://proceedings.neurips.cc/paper/2011/file/520

07cdfd23373b17c6b337251c22b7ea57-Paper.pdf. 19521

[49] Morteza Alamgir and Ulrike Luxburg. Phase transition in the family of p-resistances. In Advances in522

Neural Information Processing Systems, volume 24, 2011. URL https://proceedings.neurips.cc/paper/523

2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf. 19524

[50] Gregory Berkolaiko, James B Kennedy, Pavel Kurasov, and Delio Mugnolo. Edge connectivity and the525

spectral gap of combinatorial and quantum graphs. Journal of Physics A: Mathematical and Theoretical,526

50(36):365201, 2017. URL https://doi.org/10.1088/1751-8121/aa8125. 19527

[51] Zoran Stanić. Graphs with small spectral gap. Electronic Journal of Linear Algebra, 26:28, 2013. URL528

https://journals.uwyo.edu/index.php/ela/article/view/1259. 19529

12

https://doi.org/10.1137/080734029
https://doi.org/10.1007/BF01164627
https://ieeexplore.ieee.org/document/4302755
http://drops.dagstuhl.de/opus/volltexte/2018/8369
http://jmlr.org/papers/v18/16-480.html
https://doi.org/10.1145/1553374.1553385
https://doi.org/10.1145/3357384.3357910
http://www.cs.kent.edu/~dragan/CG/CG-Book.pdf
https://doi.org/10.1145/2492007.2492029
https://proceedings.neurips.cc/paper/2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/07cdfd23373b17c6b337251c22b7ea57-Paper.pdf
https://doi.org/10.1088/1751-8121/aa8125
https://journals.uwyo.edu/index.php/ela/article/view/1259

DiffWire: Inductive Graph Rewiring via the Lovász Bound

A Appendix530

In Appendix A we include a Table with the notation used in the paper and we provide an analysis of531

the diffusion and its relationship with curvature. In Appendix B, we study in detail GAP-LAYER and532

the implications of the proposed spectral gradients. Appendix C reports statistics and characteristics of533

the datasets used in the experimental section, provides more information about the experiments results,534

describes additional experimental results, and includes a summary of the computing infrastructure535

used in our experiments.

Table 2: Notation.

Symbol Description

G = (V,E) Graph = (Nodes, Edges)
A Adjacency matrix: A ∈ Rn×n

X Feature matrix: X ∈ Rn×F

v Node v ∈ V or u ∈ V
e Edge e ∈ E
x Features of node v: x ∈ X
n Number of nodes: n = |V |
F Number of features
D Degree diagonal matrix where dv in Dvv

dv Degree of node v
vol(G) Sum of the degrees of the graph vol(G) = Tr[D]

L Laplacian: L = D−A
B Signed edge-vertex incidence matrix
be Incidence vector: Row vector of B, with be=(u,v) = (eu − ev)

ve Projected incidence vector: ve = L+/2be

Γ Ratio Γ = 1+ϵ
1−ϵ

E Dirichlet Energy wrt L: E(x) := xTLx

L Normalized Laplacian: L = I−D−1/2AD−1/2

Λ Eigenvalue matrix of L
Λ′ Eigenvalue matrix of L
λi i-th eigenvalue of L
λ2 Second eigenvalue of L: Spectral gap
λ′
i i-th eigenvalue of L

λ′
2 Second eigenvalue of L: Spectral gap

F Matrix of eigenvectors of L
G Matrix of eigenvectors of L
fi i eigenvector of L
f2 Second eigenvector of L: Fiedler vector
gi i eigenvector of L
g2 Second eigenvector of L: Fiedler vector

Ã New Adjacency matrix
E′ New edges
Huv Hitting time between u and v
CTuv Commute time: CTuv = Huv +Hvu

Ruv Effective resistance: Ruv = CTuv/vol(G)
Z Matrix of commute times embeddings for all nodes in G
zu Commute time embedding of node u
TCT Resistance diffusion or commute times diffusion
R(Z) Pairwise Euclidean distance of embedding Z divided by vol(G)
S Cluster assignment matrix: S ∈ Rn×2

TGAP GAP diffusion
eu Unit vector with unit value at u and 0 elsewhere
∇Ãλ2 Gradient of λ2 wrt Ã
[∇Ãλ2]ij Gradient of λ2 wrt Ãuv

pu Node curvature: pu := 1− 1
2

∑
u∼w Ruv

κuv Edge curvature: κuv := 2(pu + pv)/Ruv

⊕ Concatenation

536

13

DiffWire: Inductive Graph Rewiring via the Lovász Bound

A.1 Appendix A: CT-LAYER537

A.1.1 Notation538

The Table 2 summarizes the notation used in the paper.539

A.1.2 Analysis of Commute Times rewiring540

First, we provide an answer to the following question:541

Is resistance diffusion via TCT a principled way of preserving the Cheeger constant?542

We answer the question above by linking Theorems 1 and 2 in the paper with the Lovász bound.543

The outline of our explanation follows three steps.544

• Proposition 1: Theorem 1 (Sparsification) provides a principled way to bias the adjacency545

matrix so that the edges with the largest weights in the rewired graph correspond to the edges in546

graph’s bottleneck.547

• Proposition 2: Theorem 2 (Cheeger vs Resistance) can be used to demonstrate that increasing548

the effective resistance leads to a mild reduction of the Cheeger constant.549

• Proposition 3: (Conclusion) The effectiveness of the above theorems to contain the Cheeger550

constant is constrained by the Lovász bound.551

Next, we provide a thorough explanation of each of the propositions above.552

Proposition 1 (Biasing). Let G’ = Sparsify(G, q) be a sampling algorithm of graph G = (V,E),553

where edges e ∈ E are sampled with probability q ∝ Re (proportional to the effective resistance).554

This choice is necessary to retain the global structure of G, i.e., to satisfy555

∀x ∈ Rn : (1− ϵ)xTLGx ≤ xTLG′x ≤ (1 + ϵ)xTLGx , (9)

with probability at least 1/2 by sampling O(n log n/ϵ2) edges , with 1/
√
n < ϵ ≤ 1, instead of556

O(m), where m = |E|. In addition, this choice biases the uniform distribution in favor of critical557

edges in the graph.558

Proof. We start by expressing the Laplacian L in terms of the edge-vertex incidence matrix Bm×e:559

Beu =

{
1 if u is the head of e
−1 if u is the tail of e
0 otherwise .

(10)

where edges in undirected graphs are counted once, i.e. e = (u, v) = (v, u). Then, we have560

L = BTB =
∑

e beb
T
e , where be is a row vector (incidence vector) of B, with be=(u,v) = (eu−ev).561

In addition, the Dirichlet energies can be expressed as norms:562

E(x) = xTLx = xTBTBx = ∥Bx∥22 =
∑

e=(u,v)∈E

(xu − xv)
2 . (11)

As a result, the effective resistance Re between the two nodes of an edge e = (u, v) can be defined as563

564

Re = (eu − ev)
TL+(eu − ev) = bT

e L
+be (12)

Next, we reformulate the spectral constraints in Eq. 9, i.e. (1− ϵ)LG ≼ LG′ ≼ (1 + ϵ)LG as565

LG ≼ LG′ ≼ ΓLG ,Γ =
1 + ϵ

1− ϵ
. (13)

This simplifies the analysis, since the above expression can be interpreted as follows: the Dirichlet566

energies of LG′ are lower-bounded by those of LG and upper-bounded by Γ times the energies of567

LG. Considering that the energies define hyper-ellipsoids, the hyper-ellipsoid associated with LG′ is568

between the hyper-ellipsoids of LG and Γ times the LG.569

The hyper-ellipsoid analogy provides a framework to proof that the inclusion relationships are570

preserved under scaling: MLGM ≼ MLG′M ≼ MΓLGM where M can be a matrix. In this case,571

if we set M := (L+
G)

1/2 = L
+/2
G we have:572

L
+/2
G LGL

+/2
G ≼ L

+/2
G LG′L

+/2
G ≼ L

+/2
G ΓL

+/2
G , (14)

14

DiffWire: Inductive Graph Rewiring via the Lovász Bound

which leads to573

In ≼ L
+/2
G LG′L

+/2
G ≼ ΓIn . (15)

We seek a Laplacian LG′ satisfying the similarity constraints in Eq. 13. Since E′ ⊂ E, i.e. we want574

to remove structurally irrelevant edges, we can design LG′ in terms of considering all the edges E:575

LG′ := BT
GBG =

∑
e

sebeb
T
e (16)

and let the similarity constraint define the sampling weights and the choice of e (setting se ≥ 0576

propertly). More precisely:577

In ≼ L
+/2
G

∑
e

beb
T
e L

+/2
G ≼ ΓIn . (17)

Then if we define ve := L
+/2
G be as the projected incidence vector, we have578

In ≼
∑
e

sevev
T
e ≼ ΓIn . (18)

Consequently, a spectral sparsifier must find se ≥ 0 so that the above similarity constraint is satisfied.579

Since there are m edges in E, se must be zero for most of the edges. But, what are the best candidates580

to retain? Interestingly, the similarity constraint provides the answer. From Eq. 12 we have581

vT
e ve = ∥ve∥2 = ∥L+/2

G be∥22 = bT
e L

+
Gbe = Re . (19)

This result explains why sampling the edges with probability q ∝ Re leads to a ranking of m edges582

of G = (V,E) such that edges with large Re = ∥ve∥2 are preferred3.583

Algorithm 1 implements a deterministic greedy version of Sparsify(G, q), where we build incremen-584

tally E′ ⊂ E by creating a budget of decreasing resistances Re1 ≥ Re2 ≥ . . . ≥ ReO(n log n/ϵ2)
.585

Note that this rewiring strategy preserves the spectral similarities of the graphs, i.e. the global586

structure of G = (V,E) is captured by G′ = (V,E′).587

Moreover, the maximum Re in each graph determines an upper bound on the Cheeger constant and588

hence an upper bound on the size of the graph’s bottleneck, as per the following proposition.589

Algorithm 1: GREEDYSparsify
Input :G = (V,E),ϵ ∈ (1/

√
n, 1], n = |V | .

Output :G′ = (V,E′) with E′ ⊂ E such that |E′| = O(n log n/ϵ2).

L← List({ve : e ∈ E})
Q← Sort(L, descending, criterion=∥ve∥2) ▷ Sort candidate edges by descending Resistance
E′ ← ∅
I ← 0n×n

repeat
ve ← pop(Q) ▷ Remove the head of the queue
I ← I + vev

T
e

if I ≼ ΓIn then
E′ ← E′ ∪ {e} ▷ Update the current budget of edges

else
return G′ = (V,E′)

until Q = ∅

Proposition 2 (Resistance Diameter). Let G’ = Sparsify(G, q) be a sampling algorithm of graph590

G = (V,E), where edges e ∈ E are sampled with probability q ∝ Re (proportional to the effective591

resistance). Consider the resistance diameter Rdiam := maxu,v Ruv. Then, for the pair of (u, v)592

3Although some of the elements of this section are derived from [47], we note that the Nikhil Srivastava’s
lectures at The Simons Institute (2014) are by far more clarifying.

15

DiffWire: Inductive Graph Rewiring via the Lovász Bound

does exist an edge e = (u, v) ∈ E′ in G′ = (V,E′) such that Re = Rdiam. A a result the Cheeger593

constant of G hG is upper-bounded as follows:594

hG ≤
αϵ

√
Rdiam · ϵ

vol(S)ϵ−1/2, (20)

with 0 < ϵ < 1/2 and du ≥ 1/α for all u ∈ V .595

Proof. The fact that the maximum resistance Rdiam is located in an edge is derived from two596

observations: a) Resistance is upper bounded by the shortest-path distance; and b) edges with597

maximal resistance are prioritized in (Proposition 1).598

Theorem 2 states that any attempt to increase the graph’s bottleneck in a multiplicative way (i.e.599

multiplying it by a constant c ≥ 0) results in decreasing the effective resistances as follows:600

Ruv ≤
(

1

d2ϵu
+

1

d2ϵv

)
· 1

ϵ · c2
(21)

with ϵ ∈ [0, 1/2]. This equation is called the resistance bound. Therefore, a multiplicative increase of601

the bottleneck leads to a quadratic decrease of the resistances.602

Following Corollary 2 of [42], we obtain an upper bound of any hS , i.e. the Cheeger constant for603

S ⊆ V with vol(S) ≤ vol(G)/2 – by defining c properly. In particular we are seeking a value of c604

that would lead to a contradiction, which is obtained by setting605

c =

√√√√(
1

d2ϵ
u∗

+ 1
d2ϵ
v∗

)
Rdiam · ϵ

, (22)

where (u∗, v∗) is a pair of nodes with maximal resistance, i.e. Ru∗v∗ = Rdiam.606

Consider now any other pair of nodes (s, t) with Rst < Rdiam. Following Theorem 2, if the607

bottleneck of hS is multiplied by c, we should have608

Rst ≤
(

1

d2ϵs
+

1

d2ϵs

)
· 1

ϵ · c2
=

(
1

d2ϵs
+

1

d2ϵs

)
· Rdiam(

1
d2ϵ
u∗

+ 1
d2ϵ
v∗

) . (23)

However, sinceRdiam ≤
(

1
d2ϵ
u∗

+ 1
d2ϵ
v∗

)
we have that Rst can satisfy609

Rst >

(
1

d2ϵs
+

1

d2ϵs

)
· 1

ϵ · c2
(24)

which is a contradiction and enables610

hS ≤
c

vol(S)1/2−ϵ
⇐⇒ |∂S| ≤ c · vol(S)1/2−ϵ. (25)

Using c as defined in Eq. 22 and du ≥ 1/α we obtain611

c =

√√√√(
1

d2ϵ
u∗

+ 1
d2ϵ
v∗

)
Rdiam · ϵ

≤
√

αϵ

Rdiam · ϵ
≤ αϵ

√
Rdiam · ϵ

. (26)

Therefore,612

hS ≤
c

vol(S)1/2−ϵ
≤

αϵ
√
Rdiam·ϵ

vol(S)1/2−ϵ
=

αϵ

√
Rdiam · ϵ

· vol(S)ϵ−1/2. (27)

As a result, the Cheeger constant of G = (V,E) is mildly reduced (by the square root of the maximal613

resistance).614

Proposition 3 (Conclusion). Let (u∗, v∗) be a pair of nodes (may be not unique) in G = (V,E)615

with maximal resistance, i.e. Ru∗v∗ = Rdiam. Then, the Cheeger constant hG relies on the ratio616

between the maximal resistanceRdiam and its uninformative approximation
(

1
d∗
u
+ 1

d∗
v

)
. The closer617

this ratio is to the unit, the easier it is to contain the Cheeger constant.618

16

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Figure 5: Left: Original graph with nodes colored as Louvain communities. Middle: TCT learnt by
CT-LAYER with edges colors as node importance [0,1]. Right: Node and edge curvature: TCT using

pu := 1− 1
2

∑
u∼w TCT

uv and κuv := 2(pu + pv)/T
CT
uv

with edge an node curvatures as color. Graph from Reddit-B dataset.

Proof. The referred ratio above is the ratio leading to a proper c in Proposition 2. This is consistent619

with a Lovász regime where the spectral gap λ′
2 has a moderate value. However, for regimes with620

very small spectral gaps, i.e. λ′
2 → 0, according to the Lovász bound, Rdiam ≫

(
1
d∗
u
+ 1

d∗
v

)
and621

hence the Cheeger constant provided by Proposition 2 will tend to zero.622

We conclude that we can always find an moderate upper bound for the Cheeger constant of G =623

(V,E), provided that the regime of the Lovász bound is also moderate. Therefore, as the global624

properties of G = (V,E) are captured by G′ = (V,E′), a moderate Cheeger constant, when625

achievable, also controls the bottlenecks in G′ = (V,E′).626

Our methodology has focused on first exploring the properties of the commute times / effective627

resistances in G = (V,E). Next, we have leveraged the spectral similarity to reason about the628

properties –particularly the Cheeger constant– of G = (V,E′). In sum, we conclude that resistance629

diffusion via TCT is a principled way of preserving the Cheeger constant of G = (V,E).630

A.1.3 Resistance-based Curvatures631

We refer to recent work by Devriendt and Lambiotte [24] to complement the contributions of Topping632

et al. [20] regarding the use of curvature to rewire the edges in a graph.633

Theorem 3 (Devriendt and Lambiotte [24]). The edge resistance curvature has the following prop-634

erties: (1) It is bounded by (4 − du − dv) ≤ κuv ≤ 2/Ruv, with equality in the lower bound iff635

all incident edges to u and v are cut links; (2) It is upper-bounded by the Ollivier-Ricci curvature636

κOR
uv ≥ κuv, with equality if (u, v) is a cut link; and (3) Forman-Ricci curvature is bounded as637

follows: κFR
uv /Ruv ≤ κuv with equality in the bound if the edge is a cut link.638

The new definition of curvature given in [20] is related to the resistance distance and thus it is639

learnable with the proposed framework (CT-LAYER). Actually, the Balanced-Forman curvature640

(Definition 1 in [20]) relies on the uniformative approximation of the resistance distance.641

Figure 5 illustrates the relationship between effective resistances / commute times and curvature on642

an exemplary graph from the COLLAB dataset.643

As seen in the Figure, effective resistances prioritize the edges connecting outer nodes with hubs644

or central nodes, while the intra-community connections are de-prioritized. This observation is645

consistent with the aforementioned theoretical explanations about preserving the bottleneck while646

breaking the intra-cluster structure. In addition, we also observe that the original edges between hubs647

have been deleted o have been extremely down-weighted.648

17

DiffWire: Inductive Graph Rewiring via the Lovász Bound

Regarding curvature, hubs or central nodes have the lowest node curvature (this curvature increases649

with the number of nodes in a cluster/community). Edge curvatures, which rely on node curvatures,650

depend on the long-term neighborhoods of the connecting nodes. In general, edge curvatures can be651

seen as a smoothed version –since they integrate node curvatures– of the inverse of the resistance652

distances.653

We observe that edges linking nodes of a given community with hubs tend to have similar edge-654

curvature values. However, edges linking nodes of different communities with hubs have different655

edge curvatures (Figure 5-right). This is due to the different number of nodes belonging to each656

community, and to their different average degree inside their respective communities (property 1 of657

Theorem 3).658

Finally, note that the range of edge curvatures is larger than that of resistance distances. The sparsifier659

transforms a uniform distribution of the edge weights into a less entropic one: in the example of660

Figure 5 we observe a power-law distribution of edge resistances. As a result, κuv := 2(pu+pv)/T
CT
uv661

becomes very large on average (edges with infinite curvature are not shown in the plot) and a log662

scale is needed to appreciate the differences between edge resistances and edge curvatures.663

A.2 Appendix B: GAP-LAYER664

A.2.1 Spectral Gradients665

The proposed GAP-LAYER relies on gradients wrt the Laplacian eigenvalues, and particularly the666

spectral gap (λ2 for L and λ′
2 wrt L). Although the GAP-LAYER inductively rewires the adjacency667

matrix A so that λ2 is minimized, the gradients derived in this section may also be applied for gap668

maximization.669

Note that while our cost function LFiedler = ∥Ã−A∥F + α(λ∗
2)

2, with λ∗
2 ∈ {λ2, λ

′
2}, relies on670

an eigenvalue, we do not compute it explicitly, as its computation has a complexity of O(n3) and671

would need to be computed in every learning iteration. Instead, we learn an approximation of λ2’s672

eigenvector f2 and use its Dirchlet energy E(f2) to approximate the eigenvalue. In addition, since673

g2 = D1/2f2, we first approximate g2 and then approximate λ′
2 from E(g2).674

Gradients of the Ratio-cut Approximation. Let A be the adjacency matrix of G = (V,E); and675

Ã, a matrix similar to the original adjacency but with minimal λ2. Then, the gradient of λ2 wrt each676

component of Ã is given by677

∇Ãλ2 := Tr
[
(∇L̃λ2)

T · ∇ÃL̃
]
= diag(f2fT2)11T − f2f

T
2 , (28)

where 1 is the vector of n ones; and [∇Ãλ2]ij is the gradient of λ2 wrt Ãuv. The above formula is678

an instance of the network derivative mining mining approach [45]. In this framework, λ2 is seen679

as a function of Ã and ∇Ãλ2, the gradient of λ2 wrt Ã, comes from the chain rule of the matrix680

derivative Tr
[
(∇L̃λ2)

T · ∇ÃL̃
]
. More precisely,681

∇L̃λ2 :=
∂λ2

∂L̃
= f2f

T
2 , (29)

is a matrix relying on an outer product (correlation). In the proposed GAP-LAYER, since f2 is682

approximated by:683

f2(u) =

{
+1/
√
n if u belongs to the first cluster

−1/
√
n if u belongs to the second cluster , (30)

i.e. we discard the O
(

logn
n

)
from Eq. 30 (the non-liniarities conjectured in [17]) in order to simplify684

the analysis. After reordering the entries of f2 for the sake of clarity, f2fT2 is the following block685

matrix:686

f2f
T
2 =

[
1/n −1/n
−1/n 1/n

]
whose diagonal matrix is diag(f2fT2) =

[
1/n 0
0 1/n

]
(31)

Then, we have687

∇Ãλ2 =

[
1/n 1/n
1/n 1/n

]
−

[
1/n −1/n
−1/n 1/n

]
=

[
0 2/n

2/n 0

]
(32)

18

DiffWire: Inductive Graph Rewiring via the Lovász Bound

which explains the results in Figure 1-left: edges linking nodes belonging to the same cluster remain688

unchanged whereas inter-cluster edges have a gradient of 2/n. This provides a simple explanation689

for TGAP = Ã(S)⊙A. The additional masking added by the adjacency matrix ensures that we do690

not create new links.691

Gradients Normalized-cut Approximation. Similarly, using λ′
2 for graph rewiring leads to the692

following complex expression:693

∇Ãλ′
2 := Tr

[
(∇L̃λ2)

T · ∇ÃL̃
]

=

d′
{
gT
2 Ã

T D̃−1/2g2

}
1T + d′

{
gT
2 ÃD̃−1/2g2

}
1T + D̃−1/2g2g

T
2 D̃

−1/2 . (33)

However, since g2 = D1/2f2 and f2 = D−1/2g2, the gradient may be simplified as follows:694

∇Ãλ′
2 := Tr

[
(∇L̃λ2)

T · ∇ÃL̃
]

=

d′
{
fT2 D̃1/2ÃT f2

}
1T + d′

{
fT2 D̃1/2Ãf2

}
1T + D̃−1/2f2f

T
2 D̃−1/2 . (34)

In addition, considering symmetry for the undirected graph case, we obtain:695

∇Ãλ′
2 := Tr

[
(∇L̃λ2)

T · ∇ÃL̃
]
=

2d′
{
fT2 D̃1/2Ãf2

}
1T + D̃−1/2f2f

T
2 D̃−1/2 . (35)

where d′ is a n× 1 negative vector including derivatives of degree wrt adjacency and related terms.696

The obtained gradient is composed of two terms.697

The first term contains the matrix D̃1/2Ã which is the adjacency matrix weighted by the square root698

of the degree; fT2 D̃1/2Ãf2 is a quadratic form (similar to a Dirichlet energy for the Laplacian) which699

approximates an eigenvalue of D̃1/2Ã. We plan to further analyze the properties of this term in700

future work.701

The second term, D̃−1/2f2f
T
2 D̃−1/2, downweights the correlation term for the Ratio-cut case f2f

T
2702

by the degrees as in the normalized Laplacian. This results in a normalization of the Fiedler vector:703

−1/n becomes −
√
dudv/n at the uv entry and similarly for 1/n, i.e. each entry contains the average704

degree assortativity.705

A.2.2 Beyond the Lovász Bound: the von Luxburg et al. bound706

The Lovász bound was later refined by von Luxburg et al. [38] via a new, tighter bound which replaces707

dmin by d2min in Eq. 1. Given that λ′
2 ∈ (0, 2], as the number of nodes in the graph (n = |V |) and708

the average degree increase, then Ruv ≈ 1/du + 1/dv. This is likely to happen in certain types of709

graphs, such as Gaussian similarity-graphs –graphs where two nodes are linked if the neg-exponential710

of the distances between the respective features of the nodes is large enough; ϵ-graphs –graphs where711

the Euclidean distances between the features in the nodes are ≤ ϵ; and k−NN graphs with large k wrt712

n. The authors report a linear collapse of Ruv with the density of the graph in scale-free networks,713

such as social network graphs, whereas a faster collapse of Ruv has been reported in community714

graphs –congruent graphs with Stochastic Block Models (SBMs) [43].715

Given the importance of the effective resistance, Ruv, as a global measure of node similarity, the716

von Luxburg et al.’s refinement motivated the development of robust effective resistances, mostly in717

the form of p−resistances given by Rp
uv = argminf{

∑
e∈E re|fe|p}, where f is a unit-flow injected718

in u and recovered in v; and re = 1/we with we being the edge’s weight [48]. For p = 1, Rp
uv719

corresponds to the shortest path; p = 2 results in the effective resistance; and p → ∞ leads to720

the inverse of the unweighted u-v-mincut4. Note that the optimal p value depends on the type of721

graph [48] and p−resistances may be studied from the perspective of p−Laplacians [44, 49].722

While Ruv could be unbounded by minimizing the spectral gap λ′
2, this approach has received little723

attention in the literature of mathematical characterization of graphs with small spectral gaps [50][51],724

i.e., instead of tackling the daunting problem of explicitly minimizing the gap, researchers in this725

field have preferred to find graphs with small spectral gaps.726

4The link between CTs and mincuts is leveraged in the paper as an essential element of our approach.

19

DiffWire: Inductive Graph Rewiring via the Lovász Bound

A.3 Appendix C: Experiments727

In this section, we provide details about the graphs contained in each of the datasets used in our728

experiments, a detailed clarification about architectures and experiments, and, finally, report additional729

experimental results.730

A.3.1 Datasets statistics731

Table 3 depicts the number of nodes, edges, average degree, assortativity, number of triangles,732

transitivity and clustering coefficients (mean and standard deviation) of all the graphs contained in733

each of the benchmark datasets used in our experiments. As seen in the Table, the datasets are very734

diverse in their characteristics. In addition, we use two synthetic datasets with 2 classes: Erdös-Rényi735

with p1 ∈ [0.3, 0.5] and p2 ∈ [0.4, 0.8] and Stochastic block model (SBM) with parameters p1 = 0.8,736

p2 = 0.5, q1 ∈ [0.1, 0.15] and q2 ∈ [0.01, 0.1].737

Table 3: Dataset statistics. Parenthesis in Assortativity column denotes number of complete graphs
(assortativity is undefined).

Nodes Egdes AVG Degree Triangles Transitivity Clustering Assortativity

REDDIT-B 429.6 ±554 497.7 ±622 2.33 ±0.3 24 ±41 0.01 ±0.02 0.04 ±0.06 -0.364 ±0.17 (0)
IMDB-B 19.7 ±10 96.5 ±105 8.88 ±5.0 391 ±868 0.77 ±0.15 0.94 ±0.03 -0.135 ±0.16 (139)
COLLAB 74.5 ±62 2457 ±6438 37.36 ±44 12×104 ±48×104 0.76 ±0.21 0.89 ±0.08 -0.033 ±0.24 (680)
MUTAG 2.2 ±0.1 19.8 ±5.6 2.18 ±0.1 0.00 ±0.0 0.00 ±0.00 0.00 ±0.00 -0.279 ±0.17 (0)
PROTEINS 39.1 ±45.8 72.8 ±84.6 3.73 ±0.4 27.4 ±30 0.48 ±0.20 0.51 ±0.23 -0.065 ±0.2 (13)

In addition, Figure 6 depicts the histograms of the assortativity for all the graphs in each of the738

eight datasets used in our experiments. As shown in Table 3 assortativity is undefined in complete739

graphs (constant degree, all degrees are the same). Assortativity is defined as the normalized degree740

correlation. If the graph is complete, then both correlation and its variance is 0, so assortativity will741

be 0/0.742

(a) REDDIT (b) IMDB-BINARY (c) COLLAB

(d) MUTAG (e) PROTEINS

Figure 6: Histogram of the Assortativity of all the graphs in each of the datasets.

In addition, Figure 7 depicts the histograms of the average node degrees for all the graphs in each of743

the eight datasets used in our experiments. The datasets are also very diverse in terms of topology,744

corresponding to social networks, biochemical networks and meshes.745

20

DiffWire: Inductive Graph Rewiring via the Lovász Bound

(a) REDDIT (b) IMDB-BINARY (c) COLLAB

(d) MUTAG (e) PROTEINS

Figure 7: Degree histogram of the average degree of all the graphs in each of the datasets.

A.3.2 GNN architectures746

Figure 8 shows the specific GNN architectures used in the experiments explained in section 4 in the747

manuscript. Although the specific calculation of TGAP and TCT are given in Theorems 2 and 1, we748

also provide a couple of pictures for a better intuition.749

LI
N
EA

R

C
O
N
V

M
IN
C
U
T

C
O
N
V

R
EA

D
O
U
T

M
LPX X X

A

X
෡A

X X ෡Y

(a) MINCUT baseline

X

LI
N
EA

R

C
O
N
V

M
IN
C
U
T

C
O
N
V

R
EA

D
O
U
T

M
LPX X

A

X
෡A

X X ෡Y

G
A
P-
La
ye
r

Tg

(b) GAP-LAYER

X

LI
N
EA

R

C
O
N
V

M
IN
C
U
T

C
O
N
V

R
EA

D
O
U
T

M
LPX X

A

X
෡A

X X ෡Y

C
T-
La
ye
r

Tct

(c) CT-LAYER

Figure 8: Diagrams of the GNNs used in the experiments.

21

DiffWire: Inductive Graph Rewiring via the Lovász Bound

A.3.3 Training parameters750

The value of the hyperparameters used in the experiments are the ones by default in the anonymous751

repository 5. We report average accuracies and standard deviation on 10 random iterations, using752

different 85/15 train-test stratified split (we do not perform hyperparameter search), training during753

60 epochs and reporting the results of the last epoch for each random run. We have used an Adam754

optimizer, with a learning rate of 5e − 4 and weight decay of 1e − 4. In addition, the batch size755

used for the experiments are shown in Table 4. Regarding the synthetic datasets, the parameters are:756

Erdös-Rényi with p1 ∈ [0.3, 0.5] and p2 ∈ [0.4, 0.8] and Stochastic block model (SBM) p1 = 0.8,757

p2 = 0.5, q1 ∈ [0.1, 0.15] and q2 ∈ [0.01, 0.1].758

Table 4: Dataset Batch size

Batch Dataset size

REDDIT-BINARY 64 1000
IMDB-BINARY 64 2000
COLLAB 64 5000
MUTAG 32 188
PROTEINS 64 1113
SBM 32 1000
Erdös-Rényi 32 1000

For the k-nn graph baseline, we choose k such that the main degree of the original graph is maintained,759

i.e. k equal to average degree. Our experiments also use 2 preprocessing methods DIGL and SDRF.760

Unlike our proposed methods, both SDRF [20] and DIGL [25] use a set of hyperparamerters to761

optimize for each specific graph, because both are also not inductive. This approach could be762

manageable for the task of node classification, where you only have one graph. However, when it763

comes to graph classification, the number of graphs are huge (4) and it is nor computationally feasible764

optimize parameters for each specific graph. For DIGL, we use a fixed α = 0.001 and ϵ based on765

keeping the same average degree for each graph, i.e., we use a different dynamically chosen ϵ for766

each graph in each dataset which maintain the same number of edges as the original graph. In the767

case of SDRF, the parameters define how stochastic the edge addition is (τ), the graph edit distance768

upper bound (number of iterations) and optional Ricci upper-bound above which an edge will be769

removed each iteration (C+). We set the parameters τ = 20 (the edge added is always near the edge770

of lower curvature), C+ = 0 (to force one edge is removed every iteration), and number of iterations771

dynamic according to 0.7 ∗ |V |. Thus, we maintain the same number of edges in the new graph772

(τ = 20 and C+ = 0), i.e., same average degree, and we keep the graph distance to the original773

bounded by 0.7 ∗ |V |.774

A.3.4 Latent Space Analysis775

In this section, we analyze the two latent spaces produced by the models.776

• First, we compare the CT Embedding computed spectrally (Z in equation 2) with the CT777

Embedding predicted by our CT-LAYER (Z in definition 1) for a given graph, where each point778

is a node in the graph.779

• Second, we compare the graph readout output for every model defined in the experiments780

(Figure 4) where each point is a graph in the dataset.781

Spectral CT Embedding vs CT Embeddings Learned by CT-LAYER . The well-known em-782

beddings based on the Laplacian positional encodings (PE) are typically computed beforehand and783

appended to the input vector X as additional features [35, 36]. This task requires an expensive784

computation O(n3) (see equation 2). Conversely, we propose a GNN Layer that learns how to predict785

the CT embeddings (CTEs) for unseen graphs (definition 1 and Figure 2) with a loss function that786

optimizes such CTEs. Note that we do not explicitly use the CTE features (PE) for the nodes, but we787

use the CTs as a new diffusion matrix for message passing (given by TCT in Definition 1). Note that788

we could also use Z as positional encodings in the node features, such that CT-LAYER may be seen789

as a novel approach to learn Positonal Encodings.790

5https://anonymous.4open.science/r/DiffWireLoG22/readme.md

22

https://anonymous.4open.science/r/DiffWireLoG22/readme.md

DiffWire: Inductive Graph Rewiring via the Lovász Bound

In this section, we perform a comparative analysis between the spectral commute times embeddings791

(spectral CTEs, Z in equation 2) and the CTEs that are predicted by our CT-LAYER (Z in definition 1).792

As seen in Figure 9 (top), both embeddings respect the original topology of the graph, but they differ793

due to (1) orthogonality restrictions, and more interestingly to (2) the simplification of the original794

spectral loss function in Alev et al. [42]: the spectral CTEs minimize the trace of a quotient, which795

involves computing an inverse, whereas the CTEs learned in CT-LAYER minimize the quotient of796

two traces which is computationally simpler (see LCT loss in Definition 1). Two important properties797

of the first term in Definition 1 are: (1) the learned embedding Z has minimal Dirichlet energy798

(numerator) and (2) large degree nodes will be separated (denominator). Figure 9 (top) illustrates799

how the CTEs that are learned in CT-LAYER are able to better preserve the original topology of the800

graph (note how the nodes are more compactly embedded when compared to the spectral CTEs).801

Figure 9 (bottom) depicts a histogram of the effective resistances or commute times (CTs) (see802

Section 3.2 in the paper) of the edges according to CT-LAYER or the spectral CTEs. The histogram is803

computed from the upper triangle of the TCT matrix defined in Definition 1. Note that the larger the804

effective resistance of an edge, the more important that edge will be considered (and hence the lower805

the probability of being removed [40]). We observe how in the histogram of CTEs that are learned806

in CT-LAYER there is a ‘small club’ of edges with very large values and a large number of edges807

with low values yielding a power-law-like profile. However, the histogram of the effective resistances808

computed by the spectral CTEs exhibits a profile similar to a Gaussian distribution. From this result,809

we conclude that the use of LCT in the learning process of the CT-LAYER shifts the distribution of810

the effective resistances of the edges towards an asymmetric distribution where few edges have very811

large weights and a majority of edges have low weights.812

CT-Layer CTE Spectral CTE

0.00 0.01 0.02 0.03
0

20

40

60

80

100

120

CT-Layer CT Dist histogram

0.003 0.004 0.005 0.006
0

20

40

60

Spectral CT Dist histogram

5 10 15 20 25 30
Node Degree

Figure 9: Top: CT embeddings predicted by CT-LAYER (left) and spectral CT embeddinggs (right).
Bottom: Histogram of normalized effective resistances (i.e., CT distances or upper triangle in TCT)
computed from the above CT embeddings. Middle: original graph from the COLLAB dataset. Colors
correspond to node degree. CT-LAYER CTEs reduced from 75 to 32 dimensions using Johnson-
Lindenstrauss. Finally, both CTEs reduced from 32 to 2 dimensions using T-SNE.

Graph Readout Latent Space Analysis. To delve into the analysis of the latent spaces produced813

by our layers and model, we also inspect the latent space produced by the models (Figure 4) that use814

MINCUTPOOL (Figure 8a), GAP-LAYER (Figure 8b) and CT-LAYER (Figure 8c). Each point is a815

graph in the dataset, corresponding to the graph embedding of the readout layer. We plot the output816

of the readout layer for each model, and then perform dimensionality reduction with TSNE.817

Observing the latent space of the REDDIT-BINARY dataset (Figure 10), CT-LAYER creates a disperse818

yet structured latent space for the embeddings of the graphs. This topology in latent spaces show that819

this method is able to capture different topological details. The main reason is the expressiveness of820

the commute times as a distance metric when performing rewiring, which has been shown to be a821

23

DiffWire: Inductive Graph Rewiring via the Lovász Bound

optimal metric to measure node structural similarity. In addition, GAP-LAYER creates a latent space822

where, although the 2 classes are also separable, the embeddings are more compressed, due to a more823

aggressive –yet still informative– change in topology. This change in topology is due to the change in824

bottleneck size that GAP-LAYER applies to the graph. Finally, MINCUT creates a more squeezed825

and compressed embedding, where both classes lie in the same spaces and most of the graphs have826

collapsed representations, due to the limited expressiveness of this architecture.827

(a) CT-LAYER (b) MinCut (c) GAP-LAYER

Figure 10: REDDIT embeddings produced by GAP-LAYER (Ncut) CT-LAYER and MINCUT.

A.3.5 Experiments in node classification with CT-LAYER828

Although the contributions of this work are mainly designed for graph classification tasks, the829

applications in node classification are quite promising. We identify two potential areas to apply830

CT-LAYER in node classification.831

First, the new TCT diffusion matrix learned by CT-LAYER gives larger weights (CTs or effective832

resistances) to edges that connect different communities, i.e., edges that connect distant nodes in833

the graph. This behaviour of CT-LAYER is aligned to solve long-range and heterophilic node834

classification tasks using fewer number of layers, avoiding under-reaching, over-smoothing and835

over-squashing. CT-LAYER will prioritize edges connecting distant nodes and thus with different836

labels.837

Second, there is an increasingly interest in the community in using positional encodings (PEs) in the838

nodes for developing more expressive GNN. These PEs are features added to the node describing the839

local and global structural position and role of the node in the graph [34, 36]. PEs mainly help in840

node classification in homophilic graphs, as nearby nodes will be assigned similar PEs. Within the841

variety of measures used as PE (e.g. shortest paths, random walk probabilities, eigenvectors of the842

Laplacian. . .) commute times is one of the most expressive due to its spectral properties e.g. relation843

with the shortest path, spectral gap or Cheeger constant. The recent work by Velingker et al. [35]844

propose to append the commute times embedding (resistive embeddings in his work) to node features845

to improve the structural expressiveness of the GNN. However, the main limitation is that PEs are846

usually pre-computed and appended to X before the GNN training due to its high computational847

cost. In this second area, CT-LAYER gives a solution to this problem. The proposed CT-LAYER also848

learns to predict the commute time embedding of a given graph (Z) as part of the TCT computation849

(see Figure 2 and definition 1), and, hence, it can be seen as the first method that is able to learn and850

predict efficient PEs inside a GNN without need of pre-computing them.851

However, the application of our framework for a node classification task entails several considerations.852

First, our implementation works with dense A and X matrices, whereas node classification typically853

uses sparse representations of the edges. Thus, the implementation of our proposed layers is not854

straightforward for sparse graph representations. Second, we anticipate a different behavior of our855

approach depending on the nature of the graphs: CT-LAYER should perform well in heterophilic856

graphs as the CTs (i.e. effective resistances) are larger in edges that connect different communities.857

However, it is not clear how well it would perform in homophilic graphs.858

To shed light on the properties of each of the proposed methods, we perform a node classification859

task on well known homophilic and heterophilic graphs. The main purposes of this experiment are:860

24

DiffWire: Inductive Graph Rewiring via the Lovász Bound

1) show the performance of CT-LAYER in heterophilic graphs using TCT as a matrix for message861

passing, and 2) show the ability of CT-LAYER to predict the commute times embedding and use it862

as a PE feature [35]. The results depicted in Table 5 summarizes the experimental results of node863

classification using 2 models. The first, CT embeddings (CTEs) as feature (Z concatenated to X)864

and, second, TCT as A. Note that we have chosen benchmark datasets that are manageable with our865

dense implementation. In addition, we have chosen a basic baseline with 1 GCN layer to show the866

ability of the approaches to avoid under-reaching, over-smoothing and over-squashing.867

Table 5: Results in node classification

Dataset GCN CT-LAYER (X⊕ Z) CT-LAYER (A = TCT) Homophily

Cora 82.01±0.8 83.66±0.6 67.96±0.8 81.0%
Pubmed 81.61±0.3 86.07±0.1 68.19±0.7 80.0%
Citeser 70.81±0.5 72.26±0.5 66.71±0.6 73.6%
Cornell 59.19±3.5 58.02±3.7 69.04±2.2 30.5%
Actor 29.59±0.4 29.35±0.4 31.98±0.3 21.9%
Wisconsin 68.05±6.2 69.25±5.1 79.05±2.1 19.6%

The baseline GCN is a 1-layer-GCN, and the 2 compared models are:868

• 1 CT-LAYER for calculating Z followed by 1 GCN Layer using that A for message passing and869

X⊕ Z as features. This approach is a combination of Velingker et al. [35] and our method. See870

Figure 11b.871

• 1 CT-LAYER for calculating TCT followed by 1 GCN Layer using that TCT for message872

passing and X as features. See Figure 11c.873

As expected, CTE as features performs well in heterophilic graphs and TCT as a diffusion matrix874

performs well in heterophilic graphs. Note that in our experiments the CTEs are learned by the875

CT-LAYER instead of being precomputed as in Velingker et al. [35]. A promising direction of future876

work would be to explore how to combine both approaches to leverage the best of each of the methods877

on a wide range of graphs for node classification tasks.878

X

G
C
N

A
෡Y X

G
C
N

A
෡Y

C
T-
La
ye
r

𝐓𝐜𝐭

X

G
C
N

A
෡Y

C
T-
La
ye
r

𝐙

X

A

(a) GCN baseline

X

G
C
N

A
෡Y X

G
C
N

A
෡Y

C
T-
La
ye
r

𝐓𝐜𝐭

X

G
C
N

A
෡Y

C
T-
La
ye
r

𝐙

X

A

(b) X⊕ Z

X

G
C
N

A
෡Y X

G
C
N

A
෡Y

C
T-
La
ye
r

𝐓𝐜𝐭

X

G
C
N

A
෡Y

C
T-
La
ye
r

𝐙

X

A

(c) A = TCT

Figure 11: Diagrams of the GNNs used in the experiments for node classification.

25

DiffWire: Inductive Graph Rewiring via the Lovász Bound

A.3.6 Analysis of correlation between structural properties and CT-LAYER performance879

To analyze the performance of our model in graphs with different structural properties, we analyze the880

correlation between accuracy, the graph’s assortativity, and the graph’s bottleneck (λ2) in COLLAB881

and REDDIT datasets. If the error is consistent along all levels of accuracy and gaps, the layer can882

generalize along different graph topologies.883

As seen in Figure 14, Figure 12 (middle), and Figure 13 (middle), we do not identify any correlation884

or systematic pattern between graph classification accuracy, assortativity, and bottleneck with CT-885

LAYER-based rewiring, since the proportion of wrong and correct predictions are regular for all levels886

of assortativity and bottleneck size.887

In addition, note that while there is a systematic error of the model over-predicting class 0 in the888

COLLAB dataset (see Figure 12), this behavior is not explained by assortativity or bottleneck size,889

but by the unbalanced number of graphs in each class.890

0.5 0.0 0.5 1.0
assortativity

0

20

40

60

80

100

As
so

rta
tiv

ity
 h

ist
og

ra
m

s Label
0
1
2

0.5 0.0 0.5 1.0
assortativity

0

20

40

60

80

100 Correct prediction
False
True

0.5 0.0 0.5 1.0
assortativity

0

20

40

60

80

100 Predicted
0
1
2

0.00 0.25 0.50 0.75 1.00
bottleneck

0

20

40

60

80

100

2 h
ist

og
ra

m
s

Label
0
1
2

0.00 0.25 0.50 0.75 1.00
bottleneck

0

20

40

60

80

100 Correct prediction
False
True

0.00 0.25 0.50 0.75 1.00
bottleneck

0

20

40

60

80

100 Predicted
0
1
2

0 1 2

Predicted

0
1

2
La

be
l

0.74 0.11 0.15

0.23 0.77 0

0.29 0.046 0.67

COLLAB

Figure 12: Analysis of assortativity, bottleneck and accuracy for COLLAB dataset. Top: Histograms
of assortativity. Bottom: Histograms of bottleneck size (λ2). Both are grouped by actual label of the
graph (left), by correct or wrong predictions (middle) and by predicted label (right).

1.00 0.75 0.50 0.25 0.00
assortativity

0

10

20

30

As
so

rta
tiv

ity
 h

ist
og

ra
m

s Label
0
1

1.00 0.75 0.50 0.25 0.00
assortativity

0

10

20

30
Correct prediction

False
True

1.00 0.75 0.50 0.25 0.00
assortativity

0

10

20

30
Predicted

0
1

0.00 0.25 0.50 0.75 1.00
bottleneck

0

50

100

150

200

250

2 h
ist

og
ra

m
s

Label
0
1

0.00 0.25 0.50 0.75 1.00
bottleneck

0

50

100

150

200

250
Correct prediction

False
True

0.00 0.25 0.50 0.75 1.00
bottleneck

0

50

100

150

200

250
Predicted

0
1

0 1

Predicted

0
1

La
be

l

0.91 0.095

0.2 0.81

REDDIT-BINARY

Figure 13: Analysis of assortativity, bottleneck and accuracy for REDDIT-B dataset. Top: Histograms
of assortativity. Bottom: Histograms of bottleneck size (λ2). Both are grouped by actual label of the
graph (left), by correct or wrong predictions (middle) and by predicted label (right).

26

DiffWire: Inductive Graph Rewiring via the Lovász Bound

0.5 0.0 0.5 1.0 1.5
Assortativity

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Bo
ttl

en
ec

k
2

Correct prediction
False
True

(a) COLLAB

1.00 0.75 0.50 0.25 0.00
Assortativity

0.0

0.2

0.4

0.6

0.8

1.0

Bo
ttl

en
ec

k
2

Correct Prediction
False
True

(b) REDDIT-B

Figure 14: Correlation between assortativity, λ2 and accuracy for CT-LAYER. Histograms shows
that the proportion of correct and wrong predictions are regular for all levels of assortativity (x axis)
and bottleneck size (y axis). For the sake of clarity, these visualizations, a and b, are the combination
of the 2 histograms in the middle column of Figure 12 and Figure 13 respectively.

A.3.7 Computing infrastructure891

Table 6 summarizes the computing infrastructure used in our experiments.892

Table 6: Computing infrastructure.

Component Details
GPU 2x A100-SXM4-40GB
RAM 1 TiB
CPU 255x AMD 7742 64-Core @ 2.25 GHz
OS Ubuntu 20.04.4 LTS

27

	1 Introduction
	2 Related Work
	3 Proposed Approach: DiffWire for Inductive Graph Rewiring
	3.1 The Lovász Bound
	3.2 CT-Layer: Commute Times for Graph Rewiring
	3.3 GAP-Layer: Spectral Gap Optimization for Graph Rewiring

	4 Experiments and Discussion
	5 Conclusion and Future Work
	A Appendix
	A.1 Appendix A: CT-Layer
	A.1.1 Notation
	A.1.2 Analysis of Commute Times rewiring
	A.1.3 Resistance-based Curvatures

	A.2 Appendix B: GAP-Layer
	A.2.1 Spectral Gradients
	A.2.2 Beyond the Lovász Bound: the von Luxburg et al. bound

	A.3 Appendix C: Experiments
	A.3.1 Datasets statistics
	A.3.2 GNN architectures
	A.3.3 Training parameters
	A.3.4 Latent Space Analysis
	A.3.5 Experiments in node classification with CT-Layer
	A.3.6 Analysis of correlation between structural properties and CT-Layer performance
	A.3.7 Computing infrastructure

