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Abstract

Multimodal large language models (MLLMs)
have achieved impressive progress in tasks such as
visual question answering and visual understand-
ing, but they still face significant challenges in
emotional reasoning. Current methods to enhance
emotional understanding typically rely on fine-
tuning or manual annotations, which are resource-
intensive and limit scalability. In this work, we fo-
cus on improving the ability of MLLMs to capture
emotions during the inference phase. Specifically,
MLLMs encounter two main issues in the infer-
ence stage: they struggle to distinguish between
semantically similar emotions, leading to misclas-
sification, and they are overwhelmed by redun-
dant or irrelevant visual information, which dis-
tracts from key emotional cues. To address these,
we propose a training-free method named Sharp-
ening Emotion Perception in MLLMs (SEPM),
which incorporates a Confidence-Guided Coarse-
to-Fine Inference framework to refine emotion
classification by guiding the model through sim-
pler tasks. Additionally, SEPM employs Focus-
on-Emotion Visual Augmentation to reduce vi-
sual redundancy by directing the attention of mod-
els to relevant emotional cues in images. Exper-
imental results demonstrate that SEPM signifi-
cantly improves MLLM performance on emotion-
related tasks, providing a resource-efficient and
scalable solution for emotion recognition. Our
code is available in https://github.com/
fuyyyyy/SEPM.
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1. Introduction

Multimodal large language models (MLLMs) have gained
increasing attention in various fields due to their powerful
understanding and reasoning capabilities (Liu et al., 2023;
Chen et al., 2024; Li et al., 2024b; Wang et al., 2024; Li
et al., 2024a). In recent years, driven by the rapid advance-
ment of deep learning (Huang et al., 2024; 2023), they have
shown exceptional performance in traditional tasks such as
visual question answering (Lee et al., 2024), visual under-
standing and reasoning (Zhang et al., 2025). When it comes
to the emotional domain, advanced MLLMs seem to lack
the ability to accurately interpret and respond to emotional
cues (Yang et al., 2024a). Although current MLLMs can
generate basic emotional responses, they still struggle to
fully understand and capture the complexity of emotions.

Recently, some studies have attempted to address the short-
comings of MLLMs in capturing emotional cues (Xing et al.,
2024; Yang et al., 2024a; Zhao et al., 2024a; Zhang et al.,
2024a). These efforts can mainly be divided into fine-tuning
methods and training-free methods. Regarding the former,
different encoders are often introduced to interpret emo-
tional information across various modalities (Cheng et al.,
2024), or an additional MLLM (Achiam et al., 2023) is em-
ployed to generate corresponding textual descriptions (Xie
et al., 2024). Fine-tuning on emotion-related datasets is then
carried out to enhance the model’s ability to understand emo-
tions. The additional fine-tuning in these methods incurs
significant training costs, which can limit their scalability
and practicality in applications. Therefore, training-free
methods serve as an alternative approach to enhance the
ability of MLLMs to capture emotions. Some studies guide
MLLMs to pay more attention to emotion-related regions
through visual prompting (Zhang et al., 2024b), but such
methods require prior annotation of images, resulting in
additional overhead. Building on this, we aim to enhance
the ability of MLLMs to capture emotions solely during
the inference stage, without relying on additional training
or manual annotation. This not only significantly reduces
resource consumption but also improves the efficiency and
flexibility of the model in real-world applications.

In the inference stage, MLLMs face unique challenges when
handling emotion classification tasks. On the one hand,
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Figure 1. Illustration of the challenges faced by Multimodal Large
Language models (MLLMs) in emotion tasks. The upper half of
the figure demonstrates that semantically similar emotion cate-
gories are more prone to confused inference than distinctly differ-
ent ones. The lower half points out that different patches of the
image have varying importance when conveying emotion informa-
tion, and some redundant information is present.

since MLLMs perform classification tasks based on category
word meanings, @ semantically similar emotion categories
often lead to confusion during inference, as the model strug-
gles to differentiate between subtle variations in emotional
cues. For example, distinguishing between “amusement”
and “excitement” can be challenging for the model due to
their similar emotional cues, as illustrated in Fig. 1. With-
out an accurate understanding of context, the model might
misclassify one as the other. On the other hand, @ the visual
information conveyed when expressing emotions contains a
certain degree of redundancy, which can prevent the model
from effectively extracting key emotional cues. As Fig. 1
illustrates, emotional information is often concentrated in
specific local regions of an image. It’s crucial to direct the
model’s focus to these regions and reduce irrelevant back-
ground noise. Effectively leveraging more reliable textual
input (Yang et al., 2024b) in combination with these visual
cues can significantly enhance the model’s ability to capture
and interpret emotions accurately.

In this paper, we propose Sharpening Emotion Perception in
Multimodal Large Language Models (SEPM), which con-
sists of two primary components. First, due to @, we design
a two-stage inference framework named Confidence-Guided
Coarse-to-Fine Inference. The first stage performs coarse-
grained emotion classification, generating textual prompts
for the next stage based on the results of positive or nega-
tive emotion classification and their confidence levels. The
second stage then completes fine-grained emotion classifi-
cation based on this enhanced input. This approach allows
the MLLM to focus on a relatively simpler task at each step,
thereby improving the model’s inference accuracy. Second,
we introduce Focus-on-Emotion Visual Augmentation to

address ®. We guide the MLLM to focus on emotional in-
formation through Focus on Emotion (FoE) textual prompts.
The relevance of visual tokens to FoE is calculated based
on the attention map obtained during the first inference. By
dropping visual tokens unrelated to FoE, we reduce visual
redundancy and enable the model to better capture and in-
terpret emotional cues. Experimental results show that our
approach significantly improves MLLM performance on
emotion-related tasks without requiring additional training.
The main contributions are as follows:

* To address inference confusion from semantically sim-
ilar emotions, we propose Confidence-Guided Coarse-
to-Fine Inference. The two-stage inference allows the
model to focus on relatively simpler tasks at each stage,
thereby improving inference accuracy.

* We propose Focus-on-Emotion Visual Augmentation
to address redundant emotional information in images.
We eliminate visual tokens unrelated to the Focus-on-
Emotion prompt, improving the ability of MLLMs to
detect and interpret emotions.

* We conduct experiments on various emotion datasets
to demonstrate that our method improves the perfor-
mance of MLLMs on emotion tasks, without requiring
additional training or manual annotations.

2. Related work
2.1. Multimodal Large Language Models

Multimodal Large Language Models (MLLMs) (Liu et al.,
2023; Chen et al., 2024; Li et al., 2024b; Wang et al., 2024;
Li et al., 2024a) have garnered significant attention for their
strong reasoning capabilities (Liu et al., 2025b; Jin et al.,
2025; 2024) and ability to handle a variety of tasks across
different modalities (Huang et al., 2025a;b; Liang et al.,
2025). Most research in this field focuses on leveraging pre-
trained models for general applications (Liu et al., 2024a;
Zhao et al., 2024b; Han et al., 2024; Bai et al., 2025), in-
cluding vision-language tasks such as multimodal reasoning
(Lu et al., 2022; Masry et al., 2022; Wang et al., 2025), im-
age captioning (Lin et al., 2014; Young et al., 2014), visual
question answering (Hudson & Manning, 2019; Goyal et al.,
2017; Singh et al., 2019; Huang et al., 2025¢). MLLMs
have demonstrated excellent performance in these general
tasks (Bi et al., 2024), showcasing their ability to integrate
and reason across multiple modalities.

However, MLLMs often struggle with emotion-related tasks
(Lian et al., 2025; Fang et al., 2025; Yang et al., 2025). To
address this, several studies have focused on fine-tuning
MLLMs using emotional datasets (Xing et al., 2024; Yang
et al., 2024a; Zhao et al., 2024a; Zhang et al., 2024a).
EmoVIT (Xie et al., 2024) leverages GPT-4 to generate
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relevant textual descriptions, aiding models in better under-
standing emotions and improving their ability to interpret
emotional cues. Meanwhile, Emotion-LLaMA (Cheng et al.,
2024) integrates specialized encoders that are specifically
designed to capture and interpret emotional information
across different modalities, thereby enhancing its capacity
to understand and reason about emotions from diverse in-
puts, including text, audio, and visual cues. These methods
require fine-tuning, leading to high training costs. We aim to
enhance the emotional recognition capabilities of MLLMs
during inference, without relying on extra training, making
emotional understanding more efficient and scalable.

2.2. Training-Free in MLLMs

Due to the high training costs associated with MLLMs,
training-free methods have gained considerable attention as
a fresh perspective (Zhu et al., 2024; Ding et al., 2024; Bi
et al., 2025), particularly in tasks such as inference acceler-
ation (Chen et al., 2025; Zhang et al., 2024c; Bolya et al.,
2022; Choudhury et al., 2024) and mitigating MLLM hallu-
cinations (Kim et al., 2024b; Liu et al., 2025a; Kim et al.,
2024a). Typical training-free methods involve techniques
such as text prompt engineering to guide model behavior
and improve outcomes without additional training, token
merging to enhance processing efficiency by simplifying
input data, and visual augmentation alongside multi-step in-
ference to boost performance through visual enhancements
and iterative processing. In emotion-related tasks, Zhang
et al. (Zhang et al., 2024b) propose Set-of-Vision (SoV),
a method for identifying the locations of faces in images,
thereby enhancing facial expression recognition in MLLM:s.
However, this approach brings the additional cost of image
annotation and is limited to tasks that focus solely on facial
features. Thus, we strive to develop a training-free method
to eliminate the need for additional data modifications while
effectively addressing a wider range of emotional cues.

3. The Proposed Method

3.1. Preliminary

The architecture of a multimodal large language model
(MLLM) typically includes three components: a visual
encoder f, such as ViT, an LLM g, such as Vicuna and
LLaMA, and a connector module ¢. For a query instance,
the input consists of a visual image x,, and a textual instruc-
tion x;. The corresponding label is the language response y.
Initially, visual features z¥ are extracted using f(zV). Sub-
sequently, the trainable projection ¢ is applied to transform
2" into language embedding tokens h¥ = - z¥. Meanwhile,
the textual instruction is tokenized as h! = Tokenize(x?).
The visual and textual tokens are then combined and input
into the LLM module g, which generates the language out-
put § = g([h", ht]). In our work, we enhance the emotion-

capturing capability of MLLMs by optimizing the inference
process, eliminating the need for additional training.

3.2. Confidence-Guided Coarse-to-Fine Inference (CCI)

Motivation. Considering the large number of emotion cate-
gories, MLLMs performing emotion classification are prone
to confusion due to the influence of semantically similar
emotion categories. However, requiring MLLMs to dis-
tinguish between positive and negative emotions is signif-
icantly easier. Further enhancing emotion classification
by using positive and negative emotions as prompts can
lead to higher inference accuracy. Therefore, we design a
two-stage inference process following a Coarse-to-Fine ap-
proach, which enables the model to concentrate on simpler
tasks during inference.

Coarse-Grained Stage. We pre-divide all emotion cate-
gories into the positive emotion categories (PEC) and the
negative emotion categories (NEC), and generate the follow-
ing Coarse-grained Query (Q.).

Coarse-grained Query:
Which of the following descriptions best represents the
image?

A. Positive B. Negative

Positive emotions include [PEC]. Negative emotions
include [NEC]. Answer directly with the letter of the
chosen option.

Then, we input this query along with the sample D into the
MLLM for inference:

£ =M(Q.,D), (1

where & represents the positive or negative emotion, and M
represents the inference function of the MLLM.

Fine-Grained Stage. Based on the positive and negative
emotion label € obtained from the coarse-grained stage, we
modify Fine-grained Queries (Q) for different samples, to
simplify the classification task.

Fine-grained Query:
Which of the following descriptions best represents the
image?
[PEC]/[NEC]
Answer directly with the letter of the chosen option.

For samples with positive emotions, we retain only the
options from the positive emotion categories, while for neg-
ative emotions, we keep the negative ones. Similarly, we
feed sample D and its corresponding query into the MLLM,
which results in the specific emotion category £:

E=M(Qys,D). 2)
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Figure 2. Architecture illustration of SEPM involves two main stages. Stage 1 performs coarse-grained emotion inference. The model
applies the "Focus-on-Emotion” prompt optimization to establish the relationship between the visual token and emotions. Using the
positive/negative emotions inferred by MLLM and the confidence calculated based on the model’s logits output, the model refines and
customizes the prompt optimization for the fine-grained stage. In Stage 2, fine-grained emotion inference is performed. The model
discards redundant information based on the importance of the visual token from the coarse-grained stage and leverages the optimized

prompt to achieve more precise emotion classification.

Confidence Assessment. What if the inference in the coarse-
grained stage is incorrect? Due to the tendency of MLLMs
to prefer textual information, biases in the coarse-grained
stage can directly lead to errors in the final inference re-
sult. Thus, mitigating the impact of mistakes in the coarse-
grained stage on model inference is a problem that needs to
be urgently addressed.

We obtain the logits z before the model output in the coarse-
grained stage and compute its probability distribution.

z = Mlogits(Qa D)a

p = softmax(z),

3

where M4:¢5 represents the logits generator, and p denotes
the output probability distribution. Since what we obtain is
a probability distribution over the vocabulary, we find the
indices corresponding to the letters A and B and calculate
the probability variance between the two options:

o- Pa—p)?’+ (e —p)?

2 b
where C is the confidence score, p is the mean, and p4, pg
are the probabilities corresponding to letter A and B.

“

The confidence score indicates that the smaller the value of
C, the closer the probabilities of the two options are. This
suggests that the model lacks strong certainty during the
reasoning process. Therefore, we set a threshold, denoted
as «, where results with a confidence score lower than «
are considered unreliable samples. For these, we retain
all emotion categories in the fine-grained stage and add
ambiguous-related descriptions reflecting the behavior
from the first stage, enhancing the prompting effect.

3.3. Focus-on-Emotion Visual Augmentation

Motivation. Generally, MLLMs tend to prioritize textual in-
formation over other modalities. To mitigate the redundancy
in visual information that causes the model to overlook key
emotional cues, we employ a text-based prompt to guide
the optimization of visual augmentation (Liu et al., 2024b),
enabling the model to focus more effectively on the most
critical emotional cues.

Focus-on-Emotion Prompts (FP). To improve the focus of
MLLMs on emotional information, We introduce a straight-
forward yet effective prompting technique called the Fo-
cus on Emotion (FoE) prompt, which explicitly directs the
MLLM to prioritize emotional cues:

Please focus on emotion. [Original Query]

This method can seamlessly integrate into the current model
queries, as a criterion for selecting visual tokens in subse-
quent steps. It is highly efficient and convenient.

Estimation of Visual Token Significance. Subsequently,
we need to understand the degree of relevance between vi-
sual tokens and emotions in order to identify which visual
tokens are redundant or interfering. Therefore, it is natural
to leverage the attention map (.A) from the VLM transforma-
tion layers of the first stage as a reference, since they already
encapsulate the query results from language to vision:

A:Mattn(QCaD)v (5)

M ttn 1s the function that computes the attention map in the
final layer of attention in the MLLM. Then we extract the
FoE prompt set as emotion-related text, leveraging the query-



Catch Your Emotion: Sharpening Emotion Perception in Multimodal Large Language Models

Algorithm 1 SEPM

Input: Multimodal Large Language Models M, Coarse-Grained
Query Q., Sample D.
Output: Specific emotion category &£.

/* Stage 1: Coarse-Grained Inference =/
£ +— M(Q., D) > Eq.(1)
A Mattn(Qc; D) > Eq(5)
pa,pB + softmax(Miis(Qe, D)) > Eq.(3)
/* Confidence Assessment x/
C < [(pa —w)? + (p5 — 1)?)/2 > Eq.(4)
if C > o then
Fine-Grained Query Oy =

Qs < QOpec, & = Positive,

Qf < Onec, & = Negative.
else

| Qf ¢ Qambi

end
/* Stage 2: Fine-Grained Inference */

forj=1,2,...,L, do

/+ Emotion-Related Sig. Estimation =/

Pli, j] + A(i, j) > Eq.(6)
Pljl « £ X1, Pli, ] > Eq.(8)
end
k + |BNy], R < argmin, (P) > Eq.(9)
Ve {v; |[j¢R, je{1,2,...,N,}} > Eq.(10)
€ M(Qy, D) > Eq.(2)

return Fine-Grained Emotion Class £.

dimension of textual logits and the key-dimension of the
visual modality to construct the drop matrix P € RZ¢*Lv,
where L; and L, are the lengths of the text tokens (FoE) and
visual tokens, respectively. The drop matrix P is defined as:

Pli, j] = A(i, j),
i € {x|I[z] € T}, (6)
j€{y |yl € Vi,

where I denotes the set of all input tokens, including both

textual and visual modalities, T denotes FOE prompt token
set and V is visual tokens set, i.e.

(TUV) C L ™

To estimate the significance of the vision token, we compute
the average score of all instruction tokens as:

_ 1 &
P[j]zftZP[i,j], je{l,2,...,N,}, ®
=1

where we use P as the importance indicator for visual to-
kens, with more significant tokens assigned higher values.

Visual Token Augmentation (VTA). For the importance
indicator P obtained in Eq. (8), we intend for the model
to focus more on the parts of the visual tokens with higher

importance. Thus, we considered that dropping redundant
tokens would be an effective approach. We select the lower-
ranked tokens in P to generate the dropping map R:

k= [BN,], (€))

R = argmin, (P),
where argmin, (P) represents the indices of the k smallest
values in P. Here, 3 is the dropping ratio, and V,, denotes
the total number of visual tokens.

For the visual input in the second stage, we discard redun-
dant visual tokens based on the dropping map. The refined
visual token set )’ is defined as:

Vi={v;|j¢R,je{1,2,...,N,}}, (10)
where V = {v1,vs,...,vn, } represents the original set of
visual tokens, with N, being the total number of tokens. The
dropping map R contains the indices of redundant tokens
determined in the first stage.

The refined visual token set V' and the textual prompts
are combined into a new sample D’, which is fed into the
MLLM for fine-grained inference, as in Eq. (2). This ap-
proach enhances the focus of the model on critical emotional
cues, resulting in more accurate and reliable outcomes.

4. Experiments

In this section, we observe the performance of SEPM from
multiple perspectives, and also notice several notable issues:

RQ1: Is there more redundant visual information in
emotion-related tasks compared to general tasks? (Sec. 4.2)

RQ2: How should we choose which visual tokens to drop
to improve inference accuracy? (Sec. 4.2, Sec. 4.3)

RQ3: Is it reliable to use the variance of the logits distribu-
tion output by MLLM:s as a basis for confidence? (Sec. 4.3)

RQ4: Do MLLMs exhibit biases when performing emotion
classification by different prompts? (Sec. 4.3)

4.1. Experimental Setup

Architecture. Following the multimodal large language
model paradigm, we use two popular models as the foun-
dation for our experiments to evaluate the effectiveness of
our method: LLaVA (Liu et al., 2023) and VILA (Lin et al.,
2024). Specifically, LLaVA uses a model with 7 billion
parameters, while VILA employs a model with 8 billion
parameters as the test model.

Datasets. We evaluate our framework on four emotion
datasets, which are annotated across different scenarios
and numbers of categories: Emotion6 (Peng et al., 2015),
EmoSet (Yang et al., 2023), WebEmo (Panda et al., 2018),
and Abstract (Machajdik & Hanbury, 2010). The WebEmo
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Table 1. Comparison with state-of-the-art on various emotion datasets. 3 is drop rate. The optimal results are denoted by boldface.

indicates an increase in accuracy for zero-shot inference with the same architecture, while | indicates a decrease. Refer to Sec. 4.2.

Dataset Emotion6 EmoSet WebEmoy WebEmoss Abstract v
Class 6 8 7 25 8
Zero-shot 48.32 52.77 25.56 15.71 27.86 34.04
Zero-shot-CoT 48.65 51.67 2293 15.52 26.43 33.04
SparseVLM 49.83 54.00 26.64 15.68 26.79 34.59
SEPM (8=0.1) 54.21+5 89 56.04+3 97 42.39416.83 18.2615.55 29.29+1 43 40.04 0o
SEPM (,6=02) 5404T 5.72 56.24“_47 42'75T 17.19 18-34] 2.63 28.21*(]_;},3 39.92&“,;%
Zero-shot 47.47 44.45 41.90 15.35 20.00 33.83
Zero-shot-CoT 44.28 43.20 41.08 13.57 21.07 32.64
SEPM (3=0.1) 51.35+3.88 5311566 44.3045 40 17.3642.01 25.7145.71 38.374.54
SEPM (3=0.2) 52.0244 55 53.1145.66 39.10y5 50 19.394 4 26.43:5 43 38.01+4 15
. ACC ACC
Table 2. Comparison of different dropping strategies in LLaVA. 60 60
3 is drop rate. Bold is the best. Refer to Sec. 4.2. 53 . i::f:m . e E::Zjnb
Dataset Emotion6 EmoSet 56
Drop rate 3=0.1 B#=0.2 3=0.1 B3=0.2 . b_‘:“\\' 56 |- OO g o
Random 5320 5185 5599 5591 LS T e
Query-related 53.54 53.54 55.99 56.10 2 Rt PR
FoE-related 54.21 54.04 56.04 56.24 se L
48 50
0.05 0.1 0.2 0.4 0.1 0.2 0.3 0.4
a B

Table 3. Ablation study of the key components in SEPM. Bold is
the best. 1 is an increase over the baseline. Refer to Sec. 4.3.

CCI FP VTA H Emotion6 EmoSet
48.32 52.77
v 51.6843.36 53.98+1.21
v 51.52+3.90 54.2841 51
v v 53.03+4 71 56.10+3 33
v v v 54.045 7> 56.24:5 .7

dataset includes emotion annotations at two levels of granu-
larity, with 7 categories and 25 categories.

Implement Details. We utilize checkpoints from model
pre-training and follow the template provided by the LLaVA
model to design basic question prompts for inference with-
out further training. To evaluate the performance of
MLLMs in solving emotion-related tasks, we use answer ac-
curacy (ACC) as the evaluation metric for our experiments.
The confidence threshold « and drop rate 3 are set to 0.1 and
0.2 by default, respectively. All experiments are conducted
on 8 NVIDIA 4090 GPUs, each with 24GB of memory.

4.2. Comparison Experiments

We conduct comparisons on multiple emotion datasets with
MLLM:s Zero-shot, Zero-shot-CoT (Kojima et al., 2022) and
sparse VLM (Zhang et al., 2024c). We adjust the Zero-shot-
CoT prompt to better suit our task: “Let’s think step by step,
then answer with the option’s letter from the given choices
directly.” We also evaluate different dropping strategies.

Comparison with State-of-the-art. We compare SEPM
with the zero-shot method of MLLMs with the same archi-
tecture, as well as other training-free methods on MLLMs on
various emotion datasets, as shown in Tab. 1. Firstly, Zero-

Figure 3. Sensitivity analysis. The results are obtained by varying
the value of the corresponding hyperparameter, while fixing the
others to the values adopted in the experiments. Refer to Sec. 4.3.

shot-CoT designs “let’s think step by step” as a prompt
enhancement. However, compared to MLLM zero-shot,
the overall performance in emotion classification decreases.
This suggests that simple prompt engineering does not effec-
tively enhance the ability of MLLMs to capture emotions.
Next, Sparse VLM primarily improves inference efficiency
by discarding task-irrelevant visual tokens. Since it is simi-
lar to our approach, we also include it for comparison here.
We are pleasantly surprised to find that SparseVLM shows
a slight improvement in overall performance on emotion
tasks compared to zero-shot, which is in stark contrast to
the general decrease in reasoning accuracy it typically expe-
riences on more general tasks. This suggests that, compared
to general tasks, MLLMs contain more redundant tokens
in visual information when capturing emotions (RQ1). It
also supports the rationale of our approach, where dropping
redundant tokens helps highlight key information.

Finally, we compare SEPM under two different drop rates
with previous methods and find that our approach outper-
forms all others on each dataset. Specifically, under the
LLaVA architecture, SEPM with a 20% drop rate improve
by 17.19 compared to zero-shot, and it also shows significant
improvements in other comparison groups. This indicates
that SEPM greatly improves the emotion-capturing ability
of MLLMs without requiring any training.

Comparison of Different Dropping Strategies. We eval-
uate three different dropping strategies under the LLaVA



Catch Your Emotion: Sharpening Emotion Perception in Multimodal Large Language Models

Drop 40%

Figure 4. Visualization of dropped visual tokens for different emotions. The occluded part represents dropped tokens. Refer to Sec. 4.3.
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Figure 5. Visualization of confidence estimation. VAR is vari-
ance, representing the confidence level of coarse-grained inference.
Threshold is our default confidence threshold cv. Refer to Sec. 4.3.

framework on the Emotion6 and EmoSet datasets. The first
strategy is Random Drop, where the model randomly drops
a certain number of tokens. The second, Query-related
Drop, drops tokens with the lowest scores based on their
relevance to the overall query. The final strategy is our
method, FoE-related Drop, which drops redundant tokens
based on their relevance to the Focus-on-Emotion prompt.
As shown in Tab. 2, FoE-related Drop outperforms the other
two dropping strategies across different datasets, as this strat-
egy focuses more on the relevance to emotion. In contrast,
Query-related Drop may include more irrelevant informa-
tion due to its broader textual reference. Notably, in the case
of Random Drop, increasing the drop rate leads to more

inference inaccuracies, indicating that not all visual tokens
are meaningless. Discarding useful information reduces
inference accuracy, emphasizing the need for a well-chosen
dropping strategy. In conclusion, choosing which visual
tokens to drop based on their relevance to emotion is the
most reasonable and effective approach (RQ2).

4.3. Diagnostic Analysis

We conduct ablation and visualization experiments on the
Emotion6 and EmoSet datasets for in-depth analysis.

Key Component Analysis. We evaluate the effects of
key components in SEPM, including Confidence-Guided
Coarse-to-Fine Inference (CCI), Focus-on-Emotion Prompts
(FP), and Visual Token Augmentation (VTA). As VTA de-
pends on other components, it was not studied alone in
ablation. The results are shown in Tab. 3, highlighting accu-
racy changes across components. Using a single component
modestly improves inference accuracy. Moreover, combin-
ing CCI, FP, and VTA yields the best results. These findings
show the key role of components in boosting performance.

Sensitivity Analysis. To demonstrate the robustness of
SEPM, we conduct a sensitivity analysis of key hyperparam-
eters. Focusing on overall model performance, we evaluate
different settings for the loss parameters, confidence thresh-
old v, and drop rate 3 on the Emotion6 and EmoSet datasets.
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Figure 6. Visualization of fine-grained emotion classification on EmoSet. The left side is the positive emotion categories, and the right
side is the negative ones. The dashed line represents the overall performance. Please see details in Sec. 4.3.

Specifically, we vary one hyperparameter at a time while
keeping the others fixed. As shown in Fig. 3, model perfor-
mance initially improves with increasing «, then declines.
A low threshold fails to distinguish reliable inferences in
the first stage, while a high threshold misclassifies many
unreliable predictions as reliable, weakening prompt en-
hancement in the second stage. Additionally, performance
steadily declines as § increases. A small drop rate reduces
emotional redundancy and slightly boosts performance, but
a high drop rate removes important visual information, de-
grading final results. Based on these observations, we select
appropriate values for « and 3 as the final settings.

Visualization of Dropped Visual Tokens. To demonstrate
the reliability of visual token dropping, we visualize the
dropping process of visual tokens in images across different
emotions. In Fig. 4, each set of images from left to right
consists of the original image, the image after a 20% drop
rate, and the image after a 40% drop rate. As the drop rate
increases, the amount of emotionally redundant information
in the image decreases, with the remaining content primarily
consisting of more significant emotional cues. This indi-
cates that by selecting effective emotional cues based on
the correlation between visual tokens and the Focus-on-
Emotion textual prompt, we are able to retain and highlight
the most relevant emotional information while discarding
less important, redundant visual elements. It also reinforces
that selecting visual tokens to drop based on their relevance
to emotion is an appropriate approach (RQ2).

Visualization of Confidence Estimation. To validate the
rationale of calculating the coarse-grained inference confi-
dence based on the the logits distribution, we conduct an
evaluation of inference accuracy at different variances the
logits distribution in the first stage. As shown in Fig. 5,
as the variance increases, the inference accuracy gradually
improves, indicating that the closer the logits of different op-

tions are, the greater the likelihood of inference errors. This
also means that the logits distribution effectively character-
izes inference precision (RQ3). The confidence threshold
we choose effectively avoids the variance intervals with poor
accuracy, eliminates the interference from low-confidence
regions, and enhances the overall performance of the model.

Visualization of Fine-grained Emotion Classification. To
explore the preferences of MLLM:s for different emotion cat-
egories, we calculate and visualize the accuracy of zero-shot
and SEPM for each category in the EmoSet dataset under
different architectures, as shown in Fig. 6. Our method
improves overall performance, and we observe a striking
phenomenon: the accuracy for each category fluctuates sig-
nificantly. In semantically similar categories, an accuracy
increase in one can cause a decrease in others. Since our
method enhances prompts, we find that MLLMs exhibit dif-
ferent preferences based on the textual prompts (RQ4). Cur-
rently, we focus on improving overall performance, while
addressing model preferences and selectively enhancing
accuracy for each category is an area for further exploration.

5. Conclusion

In this paper, we address the challenges of emotion recogni-
tion in Multimodal Large Language Models (MLLMs), par-
ticularly the confusion caused by semantically similar emo-
tion categories and visual redundancy. We propose Sharp-
ening Emotion Perception in Multimodal Large Language
Models (SEPM), which introduces a Confidence-Guided
Coarse-to-Fine Inference framework and Focus-on-Emotion
Visual Augmentation. These methods enhance emotion clas-
sification accuracy without additional training or manual
annotation. Our approach, validated through experiments on
various emotion datasets, demonstrates its effectiveness. We
believe this work offers valuable insights for future research
in MLLMs and emotion recognition.
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