# DEEP GRAPH MAPPER SEEING GRAPHS THROUGH THE NEURAL LENS



#### CONTRIBUTIONS

We adopt a **topological perspective over graphs** and bring the following contributions:

- Deep Graph Mapper (DGM): A (differentiable) Mapper-based algorithm for graph pooling / coarsening.
- Prove that DGM generalises other popular pooling algorithms based on soft-cluster assignments such as DiffPool or min-cut pooling.
- Demonstrate that DGM is competitive with other state-of-the-art pooling algorithms.
- Show how the algorithm can be used for improved graph visualisations.

# **RELATIONSHIP TO SOFT-CLUSTER ASSIGNMENT METHODS**

We offer a visual proof for the **relationship to soft cluster assignments**.







(C)

Cristian Bodnar\*, Cătălina Cangea\*, Pietro Liò {cb2015, ccc53, pl219}@cam.ac.uk



#### DIFFERENTIABLE MAPPER POOLING (DMP)

We first propose a differentiable pooling algorithm based on a 'lens function' parameterised by GNNs. The soft cluster assignment matrix is computed using a kernel density estimation approach.

$$\phi(x, x_i) = \exp\left(-\frac{\|x - x_i\|^2}{\delta}\right)$$
$$S_{ij} = \frac{\phi(\sigma(f_{\theta}(\mathbf{X}_l))_i, x_j)}{\sum_{i=1}^n \phi(\sigma(f_{\theta}(\mathbf{X}_l))_i, x_j)}$$

### PAGERANK-BASED MAPPER POOLING (MPR)

We also design a **non-differentiable** pooling method leveraging a **PageRank-based** 'lens function', which exploits the power-law distributions often present in graph datasets. The soft cluster assignment matrix is computed from the **pull back cover**.

$$f(\mathbf{X})_{i} \stackrel{\Delta}{=} \mathbf{PR}_{i} = \sum_{j \in N(i)} \frac{\mathbf{PR}_{j}}{|N(i)|}$$
$$S_{ij} = \frac{\mathbb{I}_{i \in f^{-1}(U_{j})}}{|\{U_{k} | i \in f^{-1}(U_{k})\}|}$$

# **ANTRRIDGE**



Topological Data Analysis and Beyond 2020 NeurIPS workshop

## **POOLING RESULTS**

| Model      | D&D                     | ) Mi                             | utag                     | NCI1                    | Proteins                         |
|------------|-------------------------|----------------------------------|--------------------------|-------------------------|----------------------------------|
| DMP (Ours) | $77.3 \pm$              | 3.6 84.0                         | $\pm 8.6$ 7              | $70.4 \pm 4.2$          | $\textbf{75.3} \pm \textbf{3.3}$ |
| MPR (Ours) | $78.2\pm$               | <b>3</b> .4 $\overline{80.3}$    | $\pm 6.0$ $\overline{6}$ | $69.8 \pm 1.8$          | $75.2\pm2.2$                     |
| Top-k      | $75.1\pm1$              | 2.2 82.5                         | $\pm 6.8$ (              | $67.9 \pm 2.3$          | $\overline{74.8\pm3.0}$          |
| minCUT     | $77.6 \pm 3$            | 3.1  82.9                        | $\pm 6.0$ (              | $58.8 \pm 2.1$          | $73.5\pm2.9$                     |
| DiffPool   | $77.9 \pm 1$            | 2.4 <b>94</b> .7                 | $\pm$ 7.1 (              | $58.1 \pm 2.1$          | $74.2\pm0.3$                     |
| WL         | $77.4 \pm 2$            | $\overline{2.6}$ 74.5            | $\pm 6.5$ 7              | $\mathbf{76.4 \pm 2.7}$ | $74.7\pm3.2$                     |
| Flat       | $69.9 \pm 3$            | 2.2  71.8                        | $\pm 4.3$ 6              | $65.5\pm1.7$            | $70.2\pm2.6$                     |
| avg-MLP    | $63.7 \pm$              | 1.4 69.1                         | $\pm 5.8$ 5              | $55.7 \pm 2.8$          | $61.8 \pm 1.7$                   |
|            |                         |                                  |                          |                         |                                  |
| Model      | Collab                  | IMDB-B                           | IMDB-M                   | Reddit-B                | Reddit-5k                        |
| DMP (Ours) | $81.4 \pm 1.2$          | $\textbf{73.8} \pm \textbf{4.5}$ | $50.9 \pm 2.4$           | <b>5</b> $86.2 \pm 6.8$ | $51.9 \pm 2.1$                   |
| MPR (Ours) | $\overline{81.5\pm1.0}$ | $73.4\pm2.7$                     | $50.6 \pm 2.0$           | $86.3 \pm 4.8$          | $52.3 \pm 1.6$                   |
| Top-k      | $75.0\pm1.1$            | $69.6\pm3.8$                     | $45.0 \pm 2.8$           | $79.4 \pm 7.4$          | $48.5 \pm 1.1$                   |
| minCUT     | $79.9\pm0.8$            | $70.7\pm3.5$                     | $50.6 \pm 2.1$           | $87.2 \pm 5.0$          | $52.9 \pm 1.3$                   |
| DiffPool   | $81.3\pm0.1$            | $72.4\pm3.1$                     | $50.3 \pm 1.8$           | $8 79.0 \pm 1.1$        | $50.4 \pm 1.7$                   |
| WL         | $78.5 \pm 1.1$          | $72.1 \pm 3.1$                   | $50.7 \pm 2.9$           | $2 66.7 \pm 10.4$       | $4 		49.2 \pm 1.4$               |
| Flat       | $80.9 \pm 1.4$          | $73.6 \pm 4.2$                   | $48.5 \pm 2.4$           | 4 $70.0 \pm 10.8$       | $8 		49.5 \pm 1.7$               |
| avg-MLP    | $74.8 \pm 1.3$          | $\overline{71.5\pm2.9}$          | $49.5\pm2.2$             | $2 53.6 \pm 6.2$        | $45.9 \pm 1.6$                   |

VISUALISATIONS

