
Det-CGD: Compressed Gradient Descent with Matrix
Stepsizes for Non-Convex Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

This paper introduces a new method for minimizing matrix-smooth non-convex ob-1

jectives through the use of novel Compressed Gradient Descent (CGD) algorithms2

enhanced with a matrix-valued stepsize. The proposed algorithms are theoretically3

analyzed first in the single-node and subsequently in the distributed settings. Our4

theoretical results reveal that the matrix stepsize in CGD can capture the objec-5

tive’s structure and lead to faster convergence compared to a scalar stepsize. As6

a byproduct of our general results, we emphasize the importance of selecting the7

compression mechanism and the matrix stepsize in a layer-wise manner, taking8

advantage of model structure. Moreover, we provide theoretical guarantees for9

free compression, by designing specific layer-wise compressors for the non-convex10

matrix smooth objectives. Our findings are supported with empirical evidence.11

1 Introduction12

The minimization of smooth and non-convex functions is a fundamental problem in various domains13

of applied mathematics. Most machine learning algorithms rely on solving optimization problems for14

training and inference, often with structural constraints or non-convex objectives to accurately capture15

the learning and prediction problems in high-dimensional or non-linear spaces. However, non-convex16

problems are typically NP-hard to solve, leading to the popular approach of relaxing them to convex17

problems and using traditional methods. Direct approaches to non-convex optimization have shown18

success but their convergence and properties are not well understood, making them challenging for19

large scale optimization. While its convex alternative has been extensively studied and is generally an20

easier problem, the non-convex setting is of greater practical interest often being the computational21

bottleneck in many applications.22

In this paper, we consider the general minimization problem:23

min
x∈Rd

f(x), (1)

where f : Rd → R is a differentiable function. In order for this problem to have a finite solution we24

will assume throughout the paper that f is bounded from below.25

Assumption 1. There exists f inf ∈ R such that f(x) ≥ f inf for all x ∈ Rd.26

The stochastic gradient descent (SGD) algorithm [MB11, B+15, GLQ+19] is one of the most27

common algorithms to solve this problem. In its most general form, it can be written as28

xk+1 = xk − γg(xk), (2)

where g(xk) is a stochastic estimator of ∇f(xk) and γ > 0 is a positive scalar stepsize. A particular29

case of interest is the compressed gradient descent (CGD) algorithm [KFJ18], where the estimator g30

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

is taken as a compressed alternative of the initial gradient:31

g(xk) = C(∇f(xk)), (3)
and the compressor C is chosen to be a "sparser" estimator that aims to reduce the communication32

overhead in distributed or federated settings. This is crucial, as highlighted in the seminal paper33

by [KMY+16], which showed that the bottleneck of distributed optimization algorithms is the34

communication complexity. In order to deal with the limited resources of current devices, there are35

various compression objectives that are practical to achieve. These include also compressing the36

model broadcasted from server to clients for local training, and reducing the computational burden37

of local training. These objectives are mostly complementary, but compressing gradients has the38

potential for the greatest practical impact due to slower upload speeds of client connections and the39

benefits of averaging [KMA+21]. In this paper we will focus on this latter problem.40

An important subclass of compressors are the sketches. Sketches are linear operators defined on41

Rd, i.e., C(y) = Sy for every y ∈ Rd, where S is a random matrix. A standard example of such42

a compressor is the Rand-k compressor, which randomly chooses k entries of its argument and43

scales them with a scalar multiplier to make the estimator unbiased. Instead of communicating all d44

coordinates of the gradient, one communicates only a subset of size k, thus reducing the number of45

communicated bits by a factor of d/k. Formally, Rand-k is defined as follows: S =
∑k

j=1
d
ke

⊤
ij
e⊤ij ,46

where ij are the selected coordinates of the input vector. We refer the reader to [SSR22] for an47

overview on compressions.48

Besides the assumption that function f is bounded from below, we also assume that it is L matrix49

smooth, as we are trying to take advantage of the entire information contained in the smoothness50

matrix L and the stepsize matrix D.51

Assumption 2 (Matrix smoothness). There exists L ∈ Sd+ such that52

f(x) ≤ f(y) + ⟨∇f(y), x− y⟩+ 1

2
⟨L(x− y), x− y⟩ (4)

holds for all x, y ∈ Rd.53

The assumption of matrix smoothness, which is a generalization of scalar smoothness, has been54

shown to be a more powerful tool for improving supervised model training. In [SHR21], the authors55

proposed using smoothness matrices and suggested a novel communication sparsification strategy to56

reduce communication complexity in distributed optimization. The technique was adapted to three57

distributed optimization algorithms in the convex setting, resulting in significant communication58

complexity savings and consistently outperforming the baselines. The results of this study demonstrate59

the efficacy of the matrix smoothness assumption in improving distributed optimization algorithms.60

The case of block-diagonal smoothness matrices is particularly relevant in various applications, such61

as neural networks (NN). In this setting, each block corresponds to a layer of the network, and we62

characterize the smoothness with respect to nodes in the i-th layer by a corresponding matrix Li.63

Unlike in the scalar setting, we favor the similarity of certain entries of the argument over the others.64

This is because the information carried by the layers becomes more complex, while the nodes in the65

same layers are similar. This phenomenon has been observed visually in various studies, such as66

those by [YCN+15] and [ZCAW17].67

Another motivation for using a layer-dependent stepsize has its roots in physics. In nature, the68

propagation speed of light in media of different densities varies due to frequency variations. Similarly,69

different layers in neural networks carry different information, metric systems, and scaling. Thus, the70

stepsizes need to be picked accordingly to achieve optimal convergence.71

We study two matrix stepsized CGD-type algorithms and analyze their convergence properties for72

non-convex matrix-smooth functions. As mentioned earlier, we put special emphasis on the block-73

diagonal case. We design our sketches and stepsizes in a way that leverages this structure, and we74

show that in certain cases, we can achieve compression without losing in the overall communication75

complexity.76

1.1 Related work77

Many successful convex optimization techniques have been adapted for use in the non-convex78

setting. Here is a non-exhaustive list: adaptivity [DOG+19, ZKV+20], variance reduction [JRSPS16,79

2

LBZR21], and acceleration [GNDG19]. A paper of particular importance for our work is that of80

[KR20], which proposes a unified scheme for analyzing stochastic gradient descent in the non-convex81

regime. A comprehensive overview of non-convex optimization can be found in [JK+17, DDG+22].82

A classical example of a matrix stepsized method is Newton’s method. This method has been popular83

in the optimization community for a long time [GT74, Mie80, Yam87]. However, computing the84

stepsize as the inverse Hessian of the current iteration results in significant computational complexity.85

Instead, quasi-Newton methods use an easily computable estimator to replace the inverse of the86

Hessian [Bro65, DM77, ABK07, ABSM14]. An example is the Newton-Star algorithm [IQR21],87

which we discuss in Section 2.88

[GR15] analyzed sketched gradient descent by making the compressors unbiased with a sketch-and-89

project trick. They provided an analysis of the resulting algorithm for the linear feasibility problem.90

Later, [HMR18] proposed a variance-reduced version of this method.91

Leveraging the layer-wise structure of neural networks has been widely studied for optimizing the92

training loss function. For example, [ZTJY19] propose SGD with different scalar stepsizes for each93

layer, [YHL+17, GCH+19] propose layer-wise normalization for Stochastic Normalized Gradient94

Descent, and [DBA+20, WSR22] propose layer-wise compression in the distributed setting.95

DCGD, proposed by [KFJ18], has since been improved in various ways, such as in [HHH+19,96

LKQR20]. There is also a large body of literature on other federated learning algorithms with97

unbiased compressors [AGL+17, MGTR19, GBLR21, MMSR22, MSR22, HKM+23].98

1.2 Contributions99

Our paper contributes in the following ways:100

• We propose two novel matrix stepsize sketch CGD algorithms in Section 2, which, to the101

best of our knowledge, are the first attempts to analyze a fixed matrix stepsize for non-102

convex optimization. We present a unified theorem in Section 3 that guarantees stationarity103

for minimizing matrix-smooth non-convex functions. The results shows that taking our104

algorithms improve on their scalar alterantives. The complexities are summarized in Table 1105

for some particular cases.106

• We design our algorithms’ sketches and stepsize to take advantage of the layer-wise structure107

of neural networks, assuming that the smoothness matrix is block-diagonal. In Section 4,108

we prove that our algorithms achieve better convergence than classical methods.109

• Assuming the that the server-to-client communication is less expensive [KMY+16,110

KMA+21], we propose distributed versions of our algorithms in Section 5, following111

the standard FL scheme, and prove weighted stationarity guarantees. Our theorem recovers112

the result for DCGD in the scalar case and improves it in general.113

• We validate our theoretical results with experiments. The plots and framework are provided114

in the Appendix.115

1.3 Preliminaries116

The usual Euclidean norm on Rd is defined as ∥·∥. We use bold capital letters to denote matrices.117

By Id we denote the d × d identity matrix, and by Od we denote the d × d zero matrix. Let Sd++118

(resp. Sd+) be the set of d × d symmetric positive definite (resp. semi-definite) matrices. Given119

Q ∈ Sd++ and x ∈ Rd, we write ∥x∥Q :=
√
⟨Qx, x⟩, where ⟨·, ·⟩ is the standard Euclidean inner120

product on Rd. For a matrix A ∈ Sd++, we define by λmax(A) (resp. λmin(A)) the largest (resp.121

smallest) eigenvalue of the matrix A. Let Ai ∈ Rdi×di and d = d1 + . . . + dℓ. Then the matrix122

A = Diag(A1, . . . ,Aℓ) is defined as a block diagonal d× d matrix where the i-th block is equal to123

Ai. We will use diag(A) ∈ Rd×d to denote the diagonal of any matrix A ∈ Rd×d. Given a function124

f : Rd → R, its gradient and its Hessian at point x ∈ Rd are respectively denoted as ∇f(x) and125

∇2f(x).126

3

2 The algorithms127

Below we define our two main algorithms:128

xk+1 = xk −DSk∇f(xk), (det-CGD1)

and129

xk+1 = xk − T kD∇f(xk). (det-CGD2)

Here, D ∈ Sd++ is the fixed stepsize matrix. The sequences of random matrices Sk and T k satisfy130

the next assumption.131

Assumption 3. We will assume that the random sketches that appear in our algorithms are i.i.d.,132

unbiased, symmetric and positive semi-definite for each algorithm. That is133

Sk,T k ∈ Sd+, Sk iid∼ S and T k iid∼ T
E
[
Sk
]
= E

[
T k
]
= Id, for every k ∈ N.

A simple instance of det-CGD1 and det-CGD2 is the vanilla GD. Indeed, if Sk = T k = Id and134

D = γId, then xk+1 = xk − γ∇f(xk). In general, one may view these algorithms as Newton-type135

methods. In particular, our setting includes the Newton Star (NS) algorithm by [IQR21]:136

xk+1 = xk −
(
∇2f(xinf)

)−1 ∇f(xk). (NS)

The authors prove that in the convex case it converges to the unique solution xinf locally quadratically,137

provided certain assumptions are met. However, it is not a practical method as it requires knowledge138

of the Hessian at the optimal point. This method, nevertheless, hints that constant matrix stepsize can139

yield fast convergence guarantees. Our results allow us to choose the D depending on the smoothness140

matrix L. The latter can be seen as a uniform upper bound on the Hessian.141

The difference between det-CGD1 and det-CGD2 is the update rule. In particular, the order of the142

sketch and the stepsize is interchanged. When the sketch S and the stepsize D are commutative w.r.t.143

matrix product, the algorithms become equivalent. In general, a simple calculation shows that if we144

take145

T k = DSkD−1, (5)

then det-CGD1 and det-CGD2 are the same. Defining T k according to (5), we recover the unbiased-146

ness condition:147

E
[
T k
]
= DE

[
Sk
]
D−1 = Id. (6)

However, in general DE
[
Sk
]
D−1 is not necessarily symmetric, which contradicts to Assumption 3.148

Thus, det-CGD1 and det-CGD2 are not equivalent for our purposes.149

3 Main results150

Before we state the main result, we present a stepsize condition for det-CGD1 and det-CGD2,151

respectively:152

E
[
SkDLDSk

]
⪯ D, (7)

and153

E
[
DT kLT kD

]
⪯ D. (8)

In the case of vanilla GD (7) and (8) become γ < L−1, which is the standard condition for conver-154

gence.155

Below is the main convergence theorem for both algorithms in the single-node regime.156

Theorem 1. Suppose that Assumptions 1-3 are satisfied. Then, for each k ≥ 0157

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
≤ 2(f(x0)− f inf)

K
, (9)

if one of the below conditions is true:158

4

i) The vectors xk are the iterates of det-CGD1 and D satisfies (7);159

ii) The vectors xk are the iterates of det-CGD2 and D satisfies (8).160

It is important to note that Theorem 1 yields the same convergence rate for any D ∈ Sd++, despite161

the fact that the matrix norms on the left-hand side cannot be compared for different weight matrices.162

To ensure comparability of the right-hand side of (9), it is necessary to normalize the weight matrix163

D that is used to measure the gradient norm. We propose using determinant normalization, which164

involves dividing both sides of (9) by det(D)1/d, yielding the following:165

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤ 2(f(x0)− f inf)

det(D)1/dK
. (10)

This normalization is meaningful because adjusting the weight matrix to D
det(D)1/d

allows its determi-166

nant to be 1, making the norm on the left-hand side comparable to the standard Euclidean norm. It is167

important to note that the volume of the normalized ellipsoid
{
x ∈ Rd : ∥x∥2D/det(D)1/d ≤ 1

}
does168

not depend on the choice of D ∈ Sd++. Therefore, the results of (9) are comparable across different169

D in the sense that the right-hand side of (9) measures the volume of the ellipsoid containing the170

gradient.171

3.1 Optimal matrix stepsize172

In this section, we describe how to choose the optimal stepsize that minimizes the iteration complexity.173

The problem is easier for det-CGD2. We notice that (8) can be explicitly solved. Specifically, it is174

equivalent to175

D ⪯
(
E
[
T kLT k

])−1
. (11)

We want to emphasize that the RHS matrix is invertible despite the sketches not being so. Indeed.176

The map h : T → TLT is convex on Sd+. Therefore, Jensen’s inequality implies177

E
[
T kLT k

]
⪰ E

[
T k
]
LE

[
T k
]
= L ≻ Od.

This explicit condition on D can assist in determining the optimal stepsize. Since both D and178

(T kLT k)−1 are positive definite, then the right-hand side of (10) is minimized exactly when179

D = (T kLT k)−1. (12)

The situation is different for det-CGD1. According to (10), the optimal D is defined as the solution180

of the following constrained optimization problem:181

minimize log det(D−1)

subject to E
[
SkDLDSk

]
⪯ D (13)

D ∈ Sd++.

182

Proposition 1. The optimization problem (13) with respect to stepsize matrix D ∈ Sd++, is a convex183

optimization problem with convex constraint.184

The proof of this proposition can be found in the Appendix. It is based on the reformulation of the185

constraint to its equivalent quadratic form inequality. Using the trace trick, we can prove that for186

every vector chosen in the quadratic form, it is convex. Since the intersection of convex sets is convex,187

we conclude the proof.188

One could consider using the CVXPY [DB16] package to solve (13), provided that it is first transformed189

into a Disciplined Convex Programming (DCP) form [GBY06]. Nevertheless, (7) is not recognized190

as a DCP constraint in the general case. To make CVXPY applicable, additional steps tailored to the191

problem at hand must be taken.192

5

Table 1: Summary of communication complexities of det-CGD1 and det-CGD2 with different
sketches and stepsize matrices. The Di here for det-CGD1 is Wi with the optimal scaling determined
using Theorem 2, for det-CGD2 it is the optimal stepsize matrix defined in (11). The constant
2(f(x0)− f inf)/ε2 is hidden, ℓ is the number of layers, ki is the mini-batch size for the i-th layer if
we use the rand-k sketch. The notation L̃i,k is defined as d−k

d−1 diag(Li) +
k−1
d−1Li.

No. The
method

(
Sk

i ,Di

)
l ≥ 1, di , ki ,

∑ℓ
i=1 ki = k, layer structure l = 1, ki = k, general structure

1. det-CGD1
(
Id, γL

−1
i

)
d · det(L)1/d d · det(L)1/d

2. det-CGD1
(
Id, γ diag−1(Li)

)
d · det

(
diag(L)

)1/d d · det
(
diag(L)

)1/d
3. det-CGD1

(
Id, γIdi

)
d ·
(∏l

i=1 λ
di
max(Li)

)1/d
d · λmax(L)

4. det-CGD1
(

rand-1, γIdi

)
ℓ ·
(∏l

i=1 d
di
i

(
maxj(Li)jj

)di)1/d d · maxj(Ljj)

5. det-CGD1
(

rand-1, γL−1
i

)
ℓ·


∏l

i=1 d
di
i

λ
di
max

(
L

1
2
i

diag(L
−1
i

)L

1
2
i

)
∏l

i=1
det(L

−1
i

)


1/d

dλmax

(
L

1
2 diag

(
L−1

)
L

1
2

)
det

(
L−1

)1/d

6. det-CGD1
(

rand-1, γL−1/2
i

)
ℓ ·
(∏l

i=1 d
di
i

λ
di
max(L

1/2
i

)∏l
i=1

det(L
−1/2
i

)

)1/d

d · λ1/2
max(L) det(L)1/(2d)

7. det-CGD1
(

rand-1, γ diag−1(Li)
)

ℓ ·
(∏l

i=1 d
di
i∏d

j=1
(L

−1
jj

)

)1/d

d · det
(
diag(L)

)1/d
8. det-CGD1

(
rand-ki, γ diag−1(Li)

)
k ·
(∏l

i=1

(
di
ki

)di det
(
diag(L)

))1/d
d · det

(
diag(L)

)1/d
9. det-CGD2

(
Id,L

−1
i

)
d · det(L)1/d d · det(L)1/d

10. det-CGD2
(

rand-1, diag−1(Li)
di

)
ℓ ·
(∏l

i=1 d
di
i

)1/d
det(diagL)1/d d · det(diag(L))1/d

11. det-CGD2
(

rand-k, ki
di

L̃−1
i,ki

)
k ·
(∏l

i=1

(
di
ki

) di
d

)(∏l
i=1 det(L̃i,ki

)
)1/d

d · det(L̃1,k)

12. det-CGD2
(

Bern-qi, qiL
−1
i

) (∑l
i=1 qidi

)
·
∏l

i=1

(
1
qi

) di
d det(L)1/d d · det(L)1/d

13. GD
(
Id, λ

−1
max(L)Id

)
N/A d · λmax(L)

4 Leveraging the layer-wise structure193

In this section we focus on the block-diagonal case of L for both det-CGD1 and det-CGD2. In194

particular, we propose hyper-parameters of det-CGD1 designed specifically for training NNs. Let195

us assume that L = Diag(L1, . . . ,Lℓ), where Li ∈ Sdi
++. This setting is a generalization of the196

classical smoothness condition, as in the latter case Li = LIdi
for all i = 1, . . . , ℓ. Respectively,197

we choose both the sketches and the stepsize to be block diagonal: D = Diag(D1, . . . ,Dℓ) and198

Sk = Diag(Sk
1 , . . . ,S

k
ℓ), where Di,S

k
i ∈ Sdi

++.199

Let us notice that the left hand side of the inequality constraint in (13) has quadratic dependence on200

D, while the right hand side is linear. Thus, for every matrix W ∈ Sd++, there exists γ > 0 such that201

γ2λmax

(
E
[
SkWLWSk

])
≤ γλmin(W).

Therefore, for γW we deduce202

E
[
Sk(γW)L(γW)Sk

]
⪯ γ2λmax

(
E
[
SkWLWSk

])
Id ⪯ γλmin(W)Id ⪯ γW . (14)

The following theorem is based on this simple fact applied to the corresponding blocks of the matrices203

D,L,Sk for det-CGD1.204

Theorem 2. Let f : Rd → R satisfy Assumptions 1 and 2, with L admitting the layer-separable struc-205

ture L = Diag(L1, . . . ,Lℓ), where L1, . . . ,Lℓ ∈ Sdi
++. Choose random matrices Sk

1 , . . . ,S
k
ℓ ∈ Sd+206

to satisfy Assumption 3 for all i ∈ [ℓ], and let Sk := Diag(Sk
1 , . . . ,S

k
ℓ). Furthermore, choose207

matrices W1, . . . ,Wℓ ∈ Sd++ and scalars γ1, . . . , γℓ > 0 such that208

γi ≤ λ−1
max

(
E
[
W

−1/2
i Sk

i WiLiWiS
k
i W

−1/2
i

])
∀i ∈ [ℓ]. (15)

Letting W := Diag(W1, . . . ,Wℓ), Γ := Diag(γ1Id1
, . . . , γℓIdℓ

) and D := ΓW , we get209

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
ΓW

det(ΓW)1/d

]
≤ 2(f(x0)− f inf)

det (ΓW)
1/d

K
. (16)

6

In particular, if the scalars {γi} are chosen to be equal to their maximum allowed values from (15),210

then the convergence factor of (16) is equal to211

det (ΓW)
− 1

d =

[
ℓ∏

i=1

λdi
max

(
E
[
W

− 1
2

i Sk
i WiLiWiS

k
i W

− 1
2

i

])] 1
d

det(W−1)
1
d .

Table 1 contains the (expected) communication complexities of det-CGD1, det-CGD2 and GD for212

several choices of W ,D and Sk. Here are a few comments about the table. We deduce that taking a213

matrix stepsize without compression (row 1) we improve GD (row 13). A careful analysis reveals214

that the result in row 5 is always worse than row 7 in terms of both communication and iteration215

complexity. However, the results in row 6 and row 7 are not comparable in general, meaning that216

neither of them is universally better. More discussion on this table can be found in the Appendix.217

Compression for free. Now, let us focus on row 12, which corresponds to a sampling scheme218

where the i-th layer is independently selected with probability qi. Mathematically, it goes as follows:219

T k
i =

ηi
qi
Idi

, where ηi ∼ Bernoulli(qi). (17)

Jensen’s inequality implies that220 (
l∑

i=1

qidi

)
·

l∏
i=1

(
1

qi

) di
d

≥ d. (18)

The equality is attained when qi = q for all i ∈ [ℓ]. The expected bits transferred per iteration of221

this algorithm is then equal to kexp = qd and the communication complexity equals ddet(L)1/d.222

Comparing with the results for det-CGD2 with rand-kexp on row 11 and using the fact that det(L) ≤223

det (diag(L)), we deduce that the Bernoulli scheme is better than the uniform sampling scheme.224

Notice also, the communication complexity matches the one for the uncompressed det-CGD2225

displayed on row 9. This, in particular means that using the Bern-q sketches we can compress the226

gradients for free. The latter means that we reduce the number of bits broadcasted at each iteration227

without losing in the total communication complexity. In particular, when all the layers have the same228

width di, the number of broadcasted bits for each iteration is reduced by a factor of q.229

5 Distributed setting230

In this section we describe the distributed versions of our algorithms and present convergence231

guarantees for them. Let us consider an objective function that is sum decomposable:232

f(x) :=
1

n

n∑
i=1

fi(x),

where each fi : Rd → R is a differentiable function. We assume that f satisfies Assumption 1 and233

the component functions satisfy the below condition.234

Assumption 4. Each component function fi is Li-smooth and is bounded from below: fi(x) ≥ f inf
i235

for all x ∈ Rd.236

This assumption also implies that f is of matrix smoothness with L̄ ∈ Sd++, where L̄ = 1
n

∑n
i=1 Li.237

Following the standard FL framework [KMY+16, MMR+17, KFJ18], we assume that the i-th238

component function fi is stored on the i-th client. At each iteration, the clients in parallel compute239

and compress the local gradient ∇fi and communicate it to the central server. The server, then240

aggregates the compressed gradients, computes the next iterate, and in parallel broadcasts it to the241

clients. See the algorithms below for the pseudo-codes.242

7

Algorithm 1 Distributed det-CGD1
1: Input: Starting point x0, stepsize matrix D,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample Sk

i ∼ S;
5: compute Sk

i ∇fi(xk);
6: broadcast Sk

i ∇fi(xk).
7: The server:
8: combines gk = D

n

∑n
i S

k
i ∇fi(xk);

9: computes xk+1 = xk − gk;
10: broadcasts xk+1.
11: end for
12: Return: xK

Algorithm 2 Distributed det-CGD2
1: Input: Starting point x0, stepsize matrix D,

number of iterations K
2: for k = 0, 1, 2, . . . ,K − 1 do
3: The devices in parallel:
4: sample T k

i ∼ T ;
5: compute T k

i D∇fi(xk);
6: broadcast T k

i D∇fi(xk).
7: The server:
8: combines gk = 1

n

∑n
i T

k
i D∇fi(xk);

9: computes xk+1 = xk − gk;
10: broadcasts xk+1.
11: end for
12: Return: xK

243

Theorem 3. Let fi : Rd → R satisfy Assumption 4 and let f satisfy Assumption 1 and Assumption 2244

with smoothness matrix L. If the stepsize satisfies245

DLD ⪯ D, (19)

then the following convergence bound is true for the iteration of Algorithm 1:246

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤

2(1 + λD

n)K
(
f(x0)− f inf

)
det(D)1/d K

+
2λD∆inf

det(D)1/d n
, (20)

where ∆inf := f inf − 1
n

∑n
i=1 f

inf
i and247

λD := max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
.

The same result is true for Algorithm 2 with a different constant λD . The proof of Theorem 3 and its248

analogue for Algorithm 2 are presented in the Appendix. The analysis is largely inspired by [KR20,249

Theorem 1]. Now, let us examine the right-hand side of (20). We start by observing that the first term250

has exponential dependence in K. However, the term inside the brackets, 1 + λD/n, depends on the251

stepsize D. Furthermore, it has a second-order dependence on D, implying that λαD = α2λD, as252

opposed to det(αD)1/d, which is linear in α. Therefore, we can choose a small enough coefficient α253

to ensure that λD is of order n/K. This means that for a fixed number of iterations K, we choose the254

matrix stepsize to be "small enough" to guarantee that the denominator of the first term is bounded.255

The following corollary summarizes these arguments, and its proof can be found in the Appendix.256

Corollary 1. We reach an error level of ε2 in (20) if the following conditions are satisfied:257

DLD ⪯ D, λD ≤ min

{
n

K
,
nε2

4∆inf
det(D)1/d

}
, K ≥ 12(f(x0)− f inf)

det(D)1/d ε2
. (21)

Proposition 2 in the Appendix proves that these conditions with respect to D are convex. In order to258

minimize the iteration complexity for getting ε2 error, one needs to solve the following optimization259

problem260

minimize log det(D−1)

subject to D satisfies (21).

Choosing the optimal stepsize for Algorithm 1 is analogous to solving (13). One can formulate the261

distributed counterpart of Theorem 2 and attempt to solve it for different sketches. Furthermore,262

this leads to a convex matrix minimization problem involving D. We provide a formal proof of this263

property in the Appendix. Similar to the single-node case, computational methods can be employed264

using the CVXPY package. However, some additional effort is required to transform (21) into the265

disciplined convex programming (DCP) format.266

The second term in (20) corresponds to the convergence neighborhood of the algorithm. It does267

not depend on the number of iteration, thus it remains unchanged, after we choose the stepsize.268

8

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 100

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 500

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 500

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

Figure 1: Comparison of standard DCGD, DCGD with matrix smoothness, D-det-CGD1 and D-
det-CGD2 with optimal diagonal stepsizes under rand-1 sketch. The stepsize for standard DCGD
is determined using [KR20, Proposition 4], the stepsize for DCGD with matrix smoothness along
with D1, D2 is determined using Corollary 1, the error level is set to be ε2 = 0.0001. Here
GK,D := 1

K

(∑K−1
k=0

∥∥∇f(xk)
∥∥2
D/det(D)1/d

)
.

Nevertheless, it depends on the number of clients n. In general, the term ∆inf/n can be unbounded,269

when n → +∞. However, per Corollary 1, we require λD to be upper-bounded by n/K. Thus,270

the neighborhood term will indeed converge to zero when K → +∞, if we choose the stepsize271

accordingly.272

We compare our results with the existing results for DCGD. In particular we use the technique273

from [KR20] for the scalar smooth DCGD with scalar stepsizes. This means that the parameters of274

algorithms are Li = LiId,L = LId,D = γId, ω = λmax

(
E
[(
Sk
i

)⊤
Sk
i

])
− 1. One may check275

that (21) reduces to276

γ ≤ min

{
1

L
,

√
n

KLmaxLω
,

nε2

4∆infLmaxLω

}
and Kγ ≥ 12(f(x0)− f inf)

ε2
(22)

As expected, this coincides with the results from [KR20, Corollary 1]. See the Appendix for the277

details on the analysis of [KR20]. Finally, we back up our theoretical findings with experiments.278

See Figure 1 for a simple experiment confirming that Algorithms 1 and 2 have better iteration and279

communication complexity compared to scalar stepsized DCGD. For more details on the experiments280

we refer the reader to the corresponding section in the Appendix.281

6 Conclusion282

6.1 Limitations283

It is worth noting that every point in Rd can be enclosed within some volume 1 ellipsoid. To see284

this, let 0 ̸= v ∈ Rd and define Q := α
∥v∥2 vv⊤ + β

∑d
i=1 viv

⊤
i , where v1 = v

∥v∥ , v2, . . . , vd form an285

orthonormal basis. The eigenvalues of Q are β (with multiplicity d− 1) and α (with multiplicity 1),286

so we have det(Q) = βd−1α ≤ 1. Furthermore, we have ∥v∥2Q = v⊤Qv = α ∥v∥2. By choosing287

α = 1
∥v∥2 and β = ∥v∥2/(d−1), we can obtain det(Q) = 1 while ∥v∥2Q ≤ 1. Therefore, having the288

average D-norm of the gradient bounded by a small number does not guarantee that the average289

Euclidean norm is small. This implies that the theory does not guarantee stationarity in the Euclidean290

sense.291

6.2 Future work292

Matrix stepsize gradient methods are still not well studied and require further analysis. Although293

many important algorithms have been proposed using scalar stepsizes and are known to have good294

performance, their matrix analogs have yet to be thoroughly examined. The distributed algorithms295

proposed in Section 5 follow the structure of DCGD by [KFJ18]. However, other federated learning296

mechanisms such as MARINA, which has variance reduction [GBLR21], or EF21 by [RSF21], which297

has powerful practical performance, should also be explored.298

9

References299

[ABK07] Mehiddin Al-Baali and H Khalfan. An overview of some practical quasi-newton300

methods for unconstrained optimization. Sultan Qaboos University Journal for Science301

[SQUJS], 12(2):199–209, 2007.302

[ABSM14] Mehiddin Al-Baali, Emilio Spedicato, and Francesca Maggioni. Broyden’s quasi-303

Newton methods for a nonlinear system of equations and unconstrained optimization: a304

review and open problems. Optimization Methods and Software, 29(5):937–954, 2014.305

[AGL+17] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD:306

Communication-efficient SGD via gradient quantization and encoding. Advances in307

neural information processing systems, 30, 2017.308

[B+15] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations309

and Trends® in Machine Learning, 8(3-4):231–357, 2015.310

[Bro65] Charles G Broyden. A class of methods for solving nonlinear simultaneous equations.311

Mathematics of computation, 19(92):577–593, 1965.312

[CL11] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines.313

ACM transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.314

[DB16] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language315

for convex optimization. The Journal of Machine Learning Research, 17(1):2909–2913,316

2016.317

[DBA+20] Aritra Dutta, El Houcine Bergou, Ahmed M Abdelmoniem, Chen-Yu Ho, Atal Narayan318

Sahu, Marco Canini, and Panos Kalnis. On the discrepancy between the theoretical anal-319

ysis and practical implementations of compressed communication for distributed deep320

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,321

pages 3817–3824, 2020.322

[DDG+22] Marina Danilova, Pavel Dvurechensky, Alexander Gasnikov, Eduard Gorbunov, Sergey323

Guminov, Dmitry Kamzolov, and Innokentiy Shibaev. Recent theoretical advances in324

non-convex optimization. In High-Dimensional Optimization and Probability: With a325

View Towards Data Science, pages 79–163. Springer, 2022.326

[DM77] John E Dennis, Jr and Jorge J Moré. Quasi-Newton methods, motivation and theory.327

SIAM review, 19(1):46–89, 1977.328

[DOG+19] Darina Dvinskikh, Aleksandr Ogaltsov, Alexander Gasnikov, Pavel Dvurechensky,329

Alexander Tyurin, and Vladimir Spokoiny. Adaptive gradient descent for convex and330

non-convex stochastic optimization. arXiv preprint arXiv:1911.08380, 2019.331

[GBLR21] Eduard Gorbunov, Konstantin P Burlachenko, Zhize Li, and Peter Richtárik. MARINA:332

Faster non-convex distributed learning with compression. In International Conference333

on Machine Learning, pages 3788–3798. PMLR, 2021.334

[GBY06] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined convex programming. Global335

optimization: From theory to implementation, pages 155–210, 2006.336

[GCH+19] Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly337

Lavrukhin, Ryan Leary, Jason Li, Huyen Nguyen, Yang Zhang, and Jonathan M Cohen.338

Stochastic gradient methods with layer-wise adaptive moments for training of deep339

networks. arXiv preprint arXiv:1905.11286, 2019.340

[GLQ+19] Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin,341

and Peter Richtárik. SGD: General analysis and improved rates. In International342

Conference on Machine Learning, pages 5200–5209. PMLR, 2019.343

[GNDG19] SV Guminov, Yu E Nesterov, PE Dvurechensky, and AV Gasnikov. Accelerated344

primal-dual gradient descent with linesearch for convex, nonconvex, and nonsmooth345

optimization problems. In Doklady Mathematics, volume 99, pages 125–128. Springer,346

2019.347

10

[GR15] Robert M Gower and Peter Richtárik. Randomized iterative methods for linear systems.348

SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.349

[GT74] William B Gragg and Richard A Tapia. Optimal error bounds for the Newton–350

Kantorovich theorem. SIAM Journal on Numerical Analysis, 11(1):10–13, 1974.351

[HHH+19] Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini,352

and Peter Richtárik. Natural compression for distributed deep learning. CoRR,353

abs/1905.10988, 2019.354

[HKM+23] Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Peter Richtárik, and Sebas-355

tian Stich. Stochastic distributed learning with gradient quantization and double-variance356

reduction. Optimization Methods and Software, 38(1):91–106, 2023.357

[HMR18] Filip Hanzely, Konstantin Mishchenko, and Peter Richtárik. SEGA: Variance reduction358

via gradient sketching. Advances in Neural Information Processing Systems, 31, 2018.359

[IQR21] Rustem Islamov, Xun Qian, and Peter Richtárik. Distributed second order methods360

with fast rates and compressed communication. In International conference on machine361

learning, pages 4617–4628. PMLR, 2021.362

[JK+17] Prateek Jain, Purushottam Kar, et al. Non-convex optimization for machine learning.363

Foundations and Trends® in Machine Learning, 10(3-4):142–363, 2017.364

[JRSPS16] Sashank J Reddi, Suvrit Sra, Barnabas Poczos, and Alexander J Smola. Proximal365

stochastic methods for nonsmooth nonconvex finite-sum optimization. Advances in366

neural information processing systems, 29, 2016.367

[KFJ18] Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning368

with compressed gradients. arXiv preprint arXiv:1806.06573, 2018.369

[KMA+21] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,370

Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel371

Cummings, et al. Advances and open problems in federated learning. Foundations and372

Trends® in Machine Learning, 14(1–2):1–210, 2021.373

[KMY+16] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha374

Suresh, and Dave Bacon. Federated learning: Strategies for improving communication375

efficiency. arXiv preprint arXiv:1610.05492, 2016.376

[KR20] Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world.377

arXiv preprint arXiv:2002.03329, 2020.378

[LBZR21] Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and379

optimal probabilistic gradient estimator for nonconvex optimization. In International380

conference on machine learning, pages 6286–6295. PMLR, 2021.381

[LKQR20] Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for com-382

pressed gradient descent in distributed and federated optimization. arXiv preprint383

arXiv:2002.11364, 2020.384

[MB11] Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation385

algorithms for machine learning. Advances in neural information processing systems,386

24, 2011.387

[MGTR19] Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik.388

Distributed learning with compressed gradient differences. arXiv preprint389

arXiv:1901.09269, 2019.390

[Mie80] George J Miel. Majorizing sequences and error bounds for iterative methods. Mathe-391

matics of Computation, 34(149):185–202, 1980.392

11

[MMR+17] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera393

y Arcas. Communication-efficient learning of deep networks from decentralized data. In394

Proceedings of the 20th International Conference on Artificial Intelligence and Statistics395

(AISTATS), 2017.396

[MMSR22] Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtarik.397

ProxSkip: Yes! Local gradient steps provably lead to communication acceleration!398

Finally! In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang399

Niu, and Sivan Sabato, editors, Proceedings of the 39th International Conference on400

Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages401

15750–15769. PMLR, 17–23 Jul 2022.402

[MSR22] Artavazd Maranjyan, Mher Safaryan, and Peter Richtárik. GradSkip: Communication-403

Accelerated Local Gradient Methods with Better Computational Complexity. arXiv404

preprint arXiv:2210.16402, 2022.405

[RSF21] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically406

better, and practically faster error feedback. Advances in Neural Information Processing407

Systems, 34:4384–4396, 2021.408

[SHR21] Mher Safaryan, Filip Hanzely, and Peter Richtárik. Smoothness matrices beat smooth-409

ness constants: Better communication compression techniques for distributed optimiza-410

tion. Advances in Neural Information Processing Systems, 34:25688–25702, 2021.411

[SSR22] Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communi-412

cation compression in distributed and federated learning and the search for an optimal413

compressor. Information and Inference: A Journal of the IMA, 11(2):557–580, 2022.414

[Sti19] Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv415

preprint arXiv:1907.04232, 2019.416

[WSR22] Bokun Wang, Mher Safaryan, and Peter Richtárik. Theoretically better and numeri-417

cally faster distributed optimization with smoothness-aware quantization techniques.418

Advances in Neural Information Processing Systems, 35:9841–9852, 2022.419

[Yam87] Tetsuro Yamamoto. A convergence theorem for newton-like methods in banach spaces.420

Numerische Mathematik, 51:545–557, 1987.421

[YCN+15] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Under-422

standing neural networks through deep visualization. arXiv preprint arXiv:1506.06579,423

2015.424

[YHL+17] Adams Wei Yu, Lei Huang, Qihang Lin, Ruslan Salakhutdinov, and Jaime Carbonell.425

Block-normalized gradient method: An empirical study for training deep neural network.426

arXiv preprint arXiv:1707.04822, 2017.427

[ZCAW17] Luisa M Zintgraf, Taco S Cohen, Tameem Adel, and Max Welling. Visualizing deep neu-428

ral network decisions: Prediction difference analysis. arXiv preprint arXiv:1702.04595,429

2017.430

[ZKV+20] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank431

Reddi, Sanjiv Kumar, and Suvrit Sra. Why are adaptive methods good for attention432

models? Advances in Neural Information Processing Systems, 33:15383–15393, 2020.433

[ZTJY19] Qinghe Zheng, Xinyu Tian, Nan Jiang, and Mingqiang Yang. Layer-wise learning based434

stochastic gradient descent method for the optimization of deep convolutional neural435

network. Journal of Intelligent & Fuzzy Systems, 37(4):5641–5654, 2019.436

12

Contents437

A Single node case 14438

A.1 Proof of Theorem 1 . 14439

A.2 Proof of Proposition 1 . 15440

B Layer-wise case 16441

B.1 Proof of Theorem 2 . 16442

B.2 Bernoulli sketch for det-CGD2 . 16443

B.3 General cases for det-CGD1 . 18444

B.4 General cases for det-CGD2 . 18445

B.5 Interpretations of Table 1 . 18446

B.5.1 Comparison of row 5 and 7 . 18447

B.5.2 Comparison of row 6 and 7 . 19448

C Distributed case 19449

C.1 Proof of Theorem 3 . 19450

C.2 Convexity of the constraints . 22451

C.2.1 Proof of Corollary 1 . 24452

C.3 Distributed det-CGD2 . 24453

C.3.1 Analysis of distributed det-CGD2 . 24454

C.3.2 Optimal stepsize . 26455

C.4 DCGD with constant stepsize . 26456

D Proofs of technical lemmas 27457

D.1 Proof of Lemma 1 . 27458

D.2 Proof of Lemma 2 . 28459

D.3 Proof of Lemma 3 . 28460

D.4 Proof of Lemma 4 . 28461

D.5 Proof of Lemma 5 . 28462

D.6 Proof of Lemma 6 . 29463

D.7 Proof of Lemma 7 . 29464

E Experiments 29465

E.1 Single node case . 29466

E.1.1 Comparison to CGD with scalar stepsize, scalar smoothness constant . . . 30467

E.1.2 Comparison of the two algorithms under the same stepsize 31468

E.2 Distributed case . 31469

E.2.1 Comparison to standard DCGD in the distributed case 31470

13

A Single node case471

A.1 Proof of Theorem 1472

i) Using Assumption 2 with x = xk+1 = xk −DSk∇f(xk) and y = xk, we get473

E
[
f(xk+1) | xk

]
≤ E

[
f(xk) +

〈
∇f(xk),−DSk∇f(xk)

〉
+

1

2

〈
L(−DSk∇f(xk)),−DSk∇f(xk)

〉
| xk

]
= f(xk)−

〈
∇f(xk),DE

[
Sk
]
∇f(xk)

〉
+

1

2

〈
E
[
SkDLDSk

]
∇f(xk),∇f(xk)

〉
.

From the unbiasedness of the sketch Sk474

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2

〈
E
[
SkDLDSk

]
∇f(xk),∇f(xk)

〉
(7)
≤ f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2

〈
D∇f(xk),∇f(xk)

〉
= f(xk)− 1

2

〈
∇f(xk),D∇f(xk)

〉
= f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D
. (23)

Next, by subtracting f inf from both sides of (23), taking expectation and applying the tower property,475

we get476

E
[
f(xk+1)

]
− f inf = E

[
E
[
f(xk+1) | xk

]]
− f inf

(23)
≤ E

[
f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

]
− f inf

= E
[
f(xk)

]
− f inf − 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
.

Letting ∆k := E
[
f(xk)

]
− f inf , the last inequality can be written as ∆k+1 ≤ ∆k −477

1
2E
[∥∥∇f(xk)

∥∥2
D

]
. Summing these inequalities for k = 0, 1, . . . ,K − 1, we get a telescoping478

effect leading to479

∆K ≤ ∆0 − 1

2

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
D

]
.

It remains to rearrange the terms of this inequality, divide both sides by K det(D)1/d , and use the480

inequality ∆K ≥ 0.481

ii) Similar to the previous case, using matrix smoothness for x = xk+1 = xk − T kD∇f(xk) and482

y = xk, we get483

E
[
f(xk+1) | xk

]
≤ E

[
f(xk) +

〈
∇f(xk),−T kD∇f(xk)

〉
+

1

2

〈
L(−T kD∇f(xk)),−T kD∇f(xk)

〉
| xk

]
= f(xk)−

〈
∇f(xk),E

[
T k
]
D∇f(xk)

〉
+

1

2

〈
E
[
D(T k)⊤LT kD

]
∇f(xk),∇f(xk)

〉
.

From Assumption 3 and condition (8) we deduce484

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2

〈
D∇f(xk),∇f(xk)

〉
= f(xk)− 1

2

〈
∇f(xk),D∇f(xk)

〉
= f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D
. (24)

14

Next, by subtracting f inf from both sides of (24), taking expectation and applying the tower property,485

we get486

E
[
f(xk+1)

]
− f inf = E

[
E
[
f(xk+1) | xk

]]
− f inf

(24)
≤ E

[
f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

]
− f inf

= E
[
f(xk)

]
− f inf − 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
.

Following the steps from the first part, we conclude the proof.487

A.2 Proof of Proposition 1488

We first present the following lemma about the convexity of a specific function.489

Lemma 1. For every matrix R ∈ Sd+, we define490

f(D) = tr(L
1
2DRDL

1
2), (25)

where L,D ∈ Sd++. Then function f : Sd++ → R is a convex function.491

Proof. Let us rewrite (7) using quadratic forms. That is for every non-zero v ∈ Rd, the following492

inequality must be true:493

v⊤E
[
SkDLDSk

]
v ≤ v⊤Dv, ∀v ̸= 0

Notice that both sides of this inequality are real numbers, thus can be written equivalently as494

tr(v⊤E
[
SkDLDSk

]
v) ≤ tr(v⊤Dv), ∀v ̸= 0

The LHS can be modified in the following way495

tr(v⊤E
[
SkDLDSk

]
v)

I
= tr

(
E
[
v⊤SkDLDSkv

])
II
= E

[
tr(v⊤SkDLDSkv)

]
III
= E

[
tr(L

1
2DSkvv⊤SkDL

1
2)
]

IV
= tr

(
E
[
L

1
2DSkvv⊤SkDL

1
2

])
V
= tr

(
L

1
2DE

[
Skvv⊤Sk

]
DL

1
2

)
,

where I, V are due to the linearity of expectation, II, IV are due to the linearity of trace operator, III is496

obtained using cyclic property of trace. Therefore, we can write the condition (7) equivalently as497

tr
(
L

1
2DE

[
Skvv⊤Sk

]
DL

1
2

)
≤ tr(vv⊤D), ∀v ̸= 0.

We then define function gv : Sd++ → R for some fixed v ̸= 0 as498

gv(D) := tr
(
L

1
2DE

[
Skvv⊤Sk

]
DL

1
2

)
− tr(vv⊤D). (26)

We want to show that for every fixed v ̸= 0, g is a convex function w.r.t D, so that in this case, the499

sub-level set {D ∈ Sd++ | gv(D) ≤ 0} is convex.500

• Notice that vv⊤ is a rank-1 matrix whose eigenvalues are all zero except one of them is501

∥v∥2 > 0. We also have (vv⊤)⊤ = (v⊤)⊤v⊤ = vv⊤, so it is also a symmetric matrix.502

Thus we conclude that vv⊤ ∈ Sd+ for every choice of v, we use V = vv⊤ to denote it.503

• If Sk = Od, then the first term is equal to Od and the function gv(D) is linear, thus, also504

convex. Now, let us assume Sk is nonzero. Similarly Skvv⊤Sk = Skv(Skv)T is also a505

symmetric positive semi-definite matrix whose eigenvalues are all 0 except one of them is506

∥Skv∥2, this tells us that its expectation over Sk is still a symmetric positive semi-definite507

matrix, we use R = E
[
Skvv⊤Sk

]
to denote it.508

15

Now we can write function gv as509

gv(D) = tr(L
1
2DRDL

1
2)− tr(V D).

According to Lemma 1, the first term of gv(D) is a convex function, and we know that the second510

term is linear in D. As a result, gv(D) is a convex function w.r.t D for every v ̸= 0, thus the511

sub-level set {D ∈ Sd++ | gv(D) ≤ 0} is a convex set for every v ̸= 0. The intersection of all those512

convex sets corresponding to every v ̸= 0 is still a convex set, which tells us the original condition513

(7) is convex.514

B Layer-wise case515

Here in this section, we provide interpretations about some of the results and conclusions we had in516

Section 4.517

B.1 Proof of Theorem 2518

Note that E
[
SkDLDSk

]
= Diag(γ2

1E
[
Sk
1W1L1W1S

k
1

]
, . . . , γ2

ℓE
[
Sk
ℓWℓLℓDℓS

k
ℓ

]
), i.e.,519

E
[
S

k
DLDS

k
]
=



γ2
1E
[
Sk

1W1L1W1S
k
1

]
0 · · · 0

0 γ2
2E
[
Sk

2W2L2W2S
k
2

]
· · · 0

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · γ2
ℓ E
[
Sk

ℓ WℓLℓDℓS
k
ℓ

]


,

which means that (7) holds if and only if γ2
i E
[
Sk
i WiLiWiS

k
i

]
⪯ γiWi for all i ∈ [ℓ], which holds520

if and only if (15) holds. So, Theorem 1 applies, and we conclude that521

1

K

K−1∑
k=0

E
[∥∥∇f(xk)

∥∥2
ΓW

]
≤ 2(f(x0)− f inf)

K
, (27)

To obtain (16), it remains to multiply both sides of (27) by 1
det(ΓW)1/d

.522

B.2 Bernoulli sketch for det-CGD2523

We formulate the following corollary regarding the communication complexity of det-CGD2 with524

Bernoulli sketches in the block diagonal setting.525

Corollary 2. If we are using Bern-qi sketch T k
i for the i-th layer in det-CGD2 which is defined as526

T k
i =

ηi
qi
Idi

, where ηi ∼ Bernoulli(qi). (28)

Then in this case, the communication complexity of the algorithm is given by, if we leave out the527

constant factor 2(f(x0)− f inf)/ϵ2,528 (
ℓ∑

i=1

qidi

)
ℓ∏

i=1

(
1

qi

) di
d

det(L)
1
d . (29)

In addition, the communication complexity is minimized if the probabilities {qi}ℓi=1 satisfy529

qi = q, ∀i ∈ [ℓ],

The minimized communication complexity is530

d · det(L)
1
d . (30)

Proof. For det-CGD2, its convergence requires (11). We are using Bernoulli sketch here, so we531

deduce that532

E
[
T kLT k

]
= E

[
Diag(T k

1 L1T
k
1 , ...,T

k
ℓ LℓT

k
ℓ)
]

= Diag
(
E
[
T k
1 L1T

k
1

]
, ...,E

[
T k
ℓ LℓT

k
ℓ

])
.

16

Using the fact that for each block, we have533

E
[
T k
i LiT

k
i

]
= (1− qi)OdiLiOdi + qi ·

1

q2i
IdiLiIdi =

Li

qi
,

we obtain534

E
[
T kLT k

]
= Diag

(
L1

q1
, ...,

Lℓ

qℓ

)
.

Recalling (11), the best stepsize possible is therefore given by535

D =
(
E
[
T kLT k

])−1

= Diag−1

(
L1

q1
, ...,

Lℓ

qℓ

)
= Diag

(
q1L

−1
1 , ..., qℓL

−1
ℓ

)
.

From (10), we know that in order for det-CGD2 to converge to ϵ2 error level, we need536

2(f(x0)− f inf)

det(D)
1
d K

≤ ϵ2,

which means that we need537

K ≥ 2(f(x0)− f inf)

det(D)
1
d ϵ2

=
1

det(D)
1
d

· 2(f(x
0)− f inf)

ϵ2
,

iterations. For each iteration, the number of bits sent in expectation is equal to
∑ℓ

i=1 qidi. As a result,538

the communication complexity is given by, if we leave out the constant factor 2(f(x0)− f inf)/ϵ2,539 (
ℓ∑

i=1

qidi

)
· 1

det(D)
1
d

=

(
ℓ∑

i=1

qidi

)
· det(D−1)

1
d

=

(
ℓ∑

i=1

qidi

)
·

(
ℓ∏

i=1

det(
Li

qi
)

) 1
d

=

(
ℓ∑

i=1

qidi

)
·

ℓ∏
i=1

(
1

qi

) di
d

(
l∏

i=1

det(Li)

) 1
d

=

(
ℓ∑

i=1

qidi

)
·

ℓ∏
i=1

(
1

qi

) di
d

· det(L)
1
d .

To obtain the optimal probability qi, we can do the following transformation540 (
ℓ∑

i=1

qidi

)
· 1

det(D)
1
d

=

(
ℓ∑

i=1

qi
di
d

)
·

ℓ∏
i=1

(
1

qi

) di
d

· ddet(L)
1
d ,

therefore, it is equivalent to minimize the coefficient541 (
ℓ∑

i=1

qi
di
d

)
·

ℓ∏
i=1

(
1

qi

) di
d

.

If we denote αi =
di

d , then we know that αi ∈ (0, 1] and
∑ℓ

i=1 αi = 1, the above coefficient turns542

into543 (
ℓ∑

i=1

αiqi

)
ℓ∏

i=1

(
1

qi

)αi

.

17

From the weighted AM-GM inequality (or the strict concavity of log(·)), we have544 (
ℓ∑

i=1

αiqi

)
≥

ℓ∏
i=1

qαi
i ,

where identity is obtained if and only if qi = qj , for all i ̸= j. Thus we get545 (
ℓ∑

i=1

αiqi

)
ℓ∏

i=1

(
1

qi

)αi

≥ 1,

which in its turn implies that the minimum of expected communication complexity is equal to546

d · det(L)
1
d . The equality is achieved when the probabilities are equal. This concludes the proof.547

B.3 General cases for det-CGD1548

The first part (row 1 to row 8) of Table 1 records the communication complexities of det-CGD1 in the549

block diagonal setting and in the general setting. Depending on the types of sketches Sk
i and matrices550

Wi we are using, we can calculate the optimal scaling factor γi using Theorem 2. According to (10),551

in order to reach an error level of ϵ2, we need552

K ≥ 1

det(D)
1
d

· 2(f(x
0)− f inf)

ϵ2
, (31)

where K is the number of iterations in total. We can then obtain the communication complexity553

taking into account the number of bits transferred in each iteration in the block diagonal case, the554

same apply to the general case which can be viewed as a special case of block diagonal setting where555

there is only 1 block.556

B.4 General cases for det-CGD2557

The second part of Table 1 (row 9 to row 12) records the communication complexities of det-CGD2.558

Different from det-CGD1, we can always obtain the best stepsize matrix D here if the sketch Sk is559

given. The communication complexity can then be obtained in the same way as previous case using560

(31) in combination with the number of bits sent per iteration.561

B.5 Interpretations of Table 1562

Compared to GD (row 13), det-CGD1 and det-CGD2 using matrix stepsize without compression (row563

1, row 9) is better in terms of both iteration complexity and communication complexity. By utilizing564

the block diagonal structure, we are able to design special sketches that allow us to compress for free.565

This can be seen from row 12, where the communication complexity of using Bernoulli compressor566

with equal probabilities for det-CGD2 in expectation is the same with GD, but the number of bits567

sent per iteration is reduced. There are some results in the table needs careful analysis, especially for568

det-CGD1.569

B.5.1 Comparison of row 5 and 7570

Here we show that the communication complexity given in row 5 is always worse than that of row 7.571

This can be seen from the following corollary.572

Corollary 3. For any matrix L ∈ Sd++, the following inequality holds573

λmax

(
L

1
2 diag(L−1)L

1
2

)
· det(L)

1
d ≥ det(diag(L))

1
d .

Proof. The inequality given in Corollary 3 can be reformulated equivalently to574

λmax(Ldiag(L−1)) ≥ det(L−1 diag(L))
1
d .

We use the notation575

M1 = Ldiag(L−1), M2 = L−1 diag(L),

18

and notice that for any i ∈ [d], we have576

(M1)ii = (L)ii · (L−1)ii = (M2)ii.

As a result577

λmax(M1) ≥

(
d∏

i=1

(M1)ii

) 1
d

=

(
d∏

i=1

(M2)ii

) 1
d

≥ det(M2)
1
d ,

where the first inequality is due to the fact that each diagonal element is upper-bounded by the578

maximum eigenvalue value, and the last is obtained using the fact that the product of the diagonal579

elements is an upper bound of the determinant.580

From Corollary 3, it immediately follows that the result in row 7 is better than row 5 in terms of both581

communication and iteration complexity.582

B.5.2 Comparison of row 6 and 7583

In this section we want to give a simple example that tells us results in row 6 and 7 are not comparable584

in general. Consider a simple matrix L ∈ S2++, if we pick585

L =

(
16 0
0 1

)
,

then586

det(diag(L))
1
d = 4;

λ
1
2
max(L) det(L)

1
2d = 8.

However, if we pick587

L =

(
16 3.9
3.9 1

)
,

then588

det(diag(L))
1
d = 4;

λ
1
2
max(L) det(L)

1
2d ≃ 3.88.

From this example, we can see that the relation between the results in row 6 and 7 may vary depending589

on the value of L.590

C Distributed case591

C.1 Proof of Theorem 3592

We first present following technical lemmas.593

Lemma 2. For any sketch Sk
i of client i drawn randomly from some distribution S over Sd+ which594

satisfies595

E
[
Sk
i

]
= Id

the following bound holds for any x ∈ Rd and each client i,596

E
[∥∥Sk

i x− x
∥∥2
DLD

]
≤ λmax

(
L

1
2
i E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
L

1
2
i

)
· ∥x∥2L−1

i
. (32)

Here D ∈ Sd++ is the stepsize matrix, L,Li ∈ Sd++ are the smoothness matrices for f and fi,597

respectively.598

Lemma 3. (Variance Decomposition) For any random vector x ∈ Rd, and any matrix M ∈ Sd+, the599

following identity holds600

E
[
∥x− E [x]∥2M

]
= E

[
∥x∥2M

]
− ∥E [x]∥2M . (33)

19

Lemma 4. Assume {ai}ni=1 is a set of independent random vectors in Rd, which satisfy601

E [ai] = 0, ∀i ∈ [n].

Then, for any M ∈ Sd++, we have602

E

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

M

 =
1

n2

n∑
i=1

E
[
∥ai∥2M

]
. (34)

Lemma 5. (Property of Sketch) For any vector x ∈ Rd, and sketch matrix S ∈ Sd+ taken from some603

distribution S over Sd
+, which satisfies604

E [S] = Id.

Then for any matrix M ∈ Sd
++, we have the following identity holds,605

E
[
∥Sx− x∥2M

]
= ∥x∥2E[SMS]−M . (35)

Lemma 6. If we have a differentiable function f : Rd → R, that is L matrix smooth and lower606

bounded by f inf , if we assume L ∈ Sd++, then the following inequality holds607 〈
∇f(x),L−1∇f(x)

〉
≤ 2(f(x)− f inf). (36)

We start by defining608

g(x) :=
1

n

n∑
i=1

Sk
i ∇fi(x), (37)

as a result, det-CGD1 in the distributed case can then be written as609

xk+1 = xk −Dg(xk).

Notice that we have610

E
[
g(xk) | xk

]
=

1

n

n∑
i=1

E
[
Sk
i

]
∇fi(x

k) = ∇f(xk). (38)

We start with L matrix smoothness of f .611

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
L(xk+1 − xk), xk+1 − xk

〉
= f(xk) +

〈
∇f(xk),−Dg(xk)

〉
+

1

2

〈
L
(
−Dg(xk)

)
,−Dg(xk)

〉
= f(xk)−

〈
∇f(xk),Dg(xk)

〉
+

1

2

〈
LDg(xk),Dg(xk)

〉
.

Taking expectation conditioned on xk, we get612

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),DE

[
g(xk) | xk

]〉
+

1

2
E
[〈
LDg(xk),Dg(xk)

〉
| xk

]
(38)
= f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2
E
[〈
LDg(xk),Dg(xk)

〉
| xk

]
= f(xk)−

∥∥∇f(xk)
∥∥2
D

+
1

2
E
[〈
LDg(xk),Dg(xk)

〉
| xk

]︸ ︷︷ ︸
:=T

. (39)

The last term T of above can be bounded by613

T = E
[∥∥g(xk)

∥∥2
DLD

| xk
]

(33)
= E

[∥∥g(xk)− E
[
g(xk) | xk

]∥∥2
DLD

| xk
]
+
∥∥E [g(xk) | xk

]∥∥2
DLD

.

20

We have already shown that E
[
g(xk) | xk

]
= ∇f(xk),614

T = E
[∥∥g(xk)−∇f(xk)

∥∥2
DLD

| xk
]
+
∥∥∇f(xk)

∥∥2
DLD

= E

∥∥∥∥∥ 1n
n∑

i=1

(
Sk
i ∇fi(x

k)−∇fi(x
k)
)∥∥∥∥∥

2

DLD

| xk

+
∥∥∇f(xk)

∥∥2
DLD

.

Using Lemma 4, we have615

T =
1

n2

n∑
i=1

E
[∥∥Sk

i ∇fi(x
k)−∇fi(x

k)
∥∥2
DLD

| xk
]
+
∥∥∇f(xk)

∥∥2
DLD

≤ 1

n2

n∑
i=1

E
[∥∥Sk

i ∇fi(x
k)−∇fi(x

k)
∥∥2
DLD

| xk
]
+
∥∥∇f(xk)

∥∥2
D
, (40)

where the last inequality holds because of the inequality DLD ⪯ D. Plug (40) into (39), we get616

E
[
f(xk+1) | xk

]
≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2n2

n∑
i=1

E
[∥∥Sk

i ∇fi(x
k)−∇fi(x

k)
∥∥2
DLD

| xk
]
.

(32)
≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

2n2

n∑
i=1

λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

]) ∥∥∇fi(x
k)
∥∥2
L−1

i

(36)
≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

n2

n∑
i=1

λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

]) (
fi(x

k)− f inf
i

)
.

Let617

λD = max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
, (41)

the above bound on f(xk+1) turns into618

E
[
f(xk+1) | xk

]
≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
1

n2

n∑
i=1

λD

(
fi(x

k)− f inf
i

)
= f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
λD

n

(
1

n

n∑
i=1

fi(x
k)− 1

n

n∑
i=1

f inf
i

)

= f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
λD

n
(f(xk)− f inf) +

λD

n

(
f inf − 1

n

n∑
i=1

f inf
i

)
.

Subtracting f inf from both sides, we get619

E
[
f(xk+1)− f inf | xk

]
≤ f(xk)− f inf − 1

2

∥∥∇f(xk)
∥∥2
D

+
λD

n
(f(xk)− f inf) +

λD

n

(
f inf − 1

n

n∑
i=1

f inf
i

)
.

Taking expectation, applying tower property and rearranging terms, we get620

E
[
f(xk+1)− f inf

]
≤

(
1 +

λD

n

)
E
[
f(xk)− f inf

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

λD

n

(
f inf − 1

n

n∑
i=1

f inf
i

)
. (42)

21

If we denote621

δk = E
[
f(xk)− f inf

]
, rk = E

[∥∥∇f(xk)
∥∥2
D

]
, ∆inf = f inf − 1

n

n∑
i=1

f inf
i .

Then (42) becomes622

1

2
rk ≤

(
1 +

λD

n

)
δk − δk+1 +

λD∆inf

n
(43)

In order to approach the final result, we now follow [Sti19], [KR20] and define an exponentially623

decaying weighting sequence {wk}Kk=−1, where K is the total number of iterations. We fix w−1 > 0624

and define625

wk =
wk−1

1 + λD/n
, for all k ≥ 0.

By multiplying both sides of the recursion (43) by wk, we get626

1

2
wkr

k ≤ wk−1δ
k − wkδ

k+1 +
λD∆inf

n
wk

Summing up the inequalities from k = 0, ...,K − 1, we get627

1

2

K−1∑
k=0

wkr
k ≤ w−1δ

0 − wK−1δ
K +

λD∆inf

n

K−1∑
k=0

wk.

Define WK =
∑K−1

k=0 wk, and divide both sides by WK , we get628

1

2
min

0≤k≤K−1
rk ≤ 1

2

∑K−1
k=0 wkr

k

WK
rk ≤ w−1

WK
δ0 +

λD∆inf

n
,

Notice that from the definition of wk, we know that the following inequality holds,629

w−1

WK
≤ w−1

KwK−1
=

(1 + λD

n)K

K
.

As a result, we have630

min
0≤k≤K−1

rk ≤
2
(
1 + λD

n

)K
K

δ0 +
2λD∆inf

n
.

Recalling the definition for rk and δk, we get the following result,631

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

]
≤

2(1 + λD

n)K
(
f(x0)− f inf

)
K

+
2λD∆inf

n
.

Then we do determinant normalization and get,632

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D/ det(D)1/d

]
≤

2(1 + λD

n)K
(
f(x0)− f inf

)
det(D)1/dK

+
2λD∆inf

det(D)1/dn
. (44)

This concludes the proof.633

C.2 Convexity of the constraints634

Proposition 2. The set of matrices D that satisfy (21) is convex.635

Proof. The first inequality in (21) can be reformulated into636

D ⪯ L−1,

which is linear in D thus convex. For the second constraint in (21),637

max
i

{
λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])}
≤ n

K
, (45)

22

we can reformulate it into n constraints, one for each client i,638

λmax

(
E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

])
≤ n

K
, ∀i

⇔ E
[
L

1
2
i

(
Sk
i − Id

)
DLD

(
Sk
i − Id

)
L

1
2
i

]
⪯ n

K
Id, ∀i

⇔ L
1
2
i E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
L

1
2
i ⪯ n

K
Id, ∀i

⇔ E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
⪯ n

K
L−1

i , ∀i.

We then look at the individual condition for one client i,639

E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
⪯ n

K
L−1

i , (46)

that is for any vector 0 ̸= u ∈ Rd, we require640

u⊤E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
u ≤ n

K
u⊤L−1

i u, ∀u ̸= 0

⇔ tr
(
u⊤E

[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
u
)
≤ n

K
tr(u⊤L−1

i u), ∀u ̸= 0

⇔ E
[
tr(u⊤ (Sk

i − Id
)
DLD

(
Sk
i − Id

)
u)
]
≤ tr(u⊤L−1

i u), ∀u ̸= 0

⇔ tr(L
1
2DE

[(
Sk
i − Id

)
uu⊤ (Sk

i − Id
)]

DL
1
2) ≤ tr(u⊤L−1

i u), ∀u ̸= 0.

We now define function gu : Sd++ → R for every fixed u ̸= 0,641

gu(D) = tr(L
1
2DE

[(
Sk
i − Id

)
uu⊤ (Sk

i − Id
)]

DL
1
2), (47)

notice that uu⊤ is a rank-1 matrix that is positive semi-definite, so for every y ∈ Rd,642 ((
Sk
i − Id

)
y
)⊤

uu⊤ ((Sk
i − Id

)
y
)
≥ 0,

which means that
(
Sk
i − Id

)
uu⊤ (Sk

i − Id
)

is positive semi-definite, and thus is R :=643

E
[(
Sk
i − Id

)
uu⊤ (Sk

i − Id
)]

. Using Lemma 1, we know that gu(D) is a convex function for644

every 0 ̸= u ∈ Rd, thus its sub-level set {D ∈ Sd++ | gu(D) ≤ tr(u⊤L−1
i u)} is a convex set. The645

intersection of those convex sets corresponding to the individual constraint (46) of client i is convex.646

Again the intersection of those convex sets for each client i, which corresponds to (45), is still convex.647

For the third constraint in (21), we can transform it using similar steps as we obtain (45) into648

E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
⪯ nε2

4∆inf
det(D)1/dL−1

i , ∀i. (48)

If we look at each individual constraint, we can write in quadratic forms for any 0 ̸= u ∈ Rd,649

u⊤E
[(
Sk
i − Id

)
DLD

(
Sk
i − Id

)]
u ≤ nε2

4∆inf
det(D)1/d · u⊤L−1

i u, ∀u ̸= 0.

Using the linearity of expectation and the trace operator with the trace trick, we can transform the650

above condition into,651

tr(L
1
2DE

[(
Sk
i − Id

)
uu⊤ (Sk

i − Id
)]

DL
1
2) ≤ nε2

4∆inf
det(D)

1
d tr(u⊤L−1

i u) ∀u ̸= 0.

notice that we have already shown that R = E
[(
Sk
i − Id

)
uu⊤ (Sk

i − Id
)]

∈ Sd+, thus if we apply652

Lemma 1, we know that the LHS is a convex function, while we know that det(D)
1
d is a concave653

function for hermitian positive definite matrices D. So the set of D satisfying the constraint here654

for every u ∈ Rd is convex, thus the intersection of them is convex, which means that the set of655

D satisfying the constraint for each client i is convex. Thus the intersection of those convex sets656

corresponding to different clients, which corresponds to (48), is still convex. Now we know that the657

set of D satisfying each of the three constraints in (21) is convex, thus the intersection of them is658

convex. This concludes the proof.659

23

C.2.1 Proof of Corollary 1660

For the first term in the RHS of convergence bound (20) under condition (21), we know that661

2(1 +
λD

n
)K ≤ 2 · exp(λD · K

n
) ≤ 2 · exp(1) ≤ 6,

thus662

2(1 + λD

n)K
(
f(x0)− f inf

)
det(D)1/d K

≤
6
(
f(x0)− f inf

)
det(D)1/d K

≤
6
(
f(x0)− f inf

)
det(D)1/d

· ε2 det(D)
1
d

12 (f(x0)− f inf)

=
ε2

2
.

While for the second term of RHS in (20), we have663

2λD∆inf

det(D)1/d n
≤ 2∆inf

det(D)1/d n
· ε

2(det(D))1/d n

4∆inf

≤ ε2

2
.

Thus we know that the left hand side of (20) is upper bounded by664

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤ ε2

2
+

ε2

2
= ε2.

This concludes the proof.665

C.3 Distributed det-CGD2666

We also extend det-CGD2 to the distributed case. Consider the method667

xk+1 = xk − 1

n

n∑
i=1

T k
i D∇fi(x

k), (49)

where D ∈ Sd++ is the stepsize matrix, and each T k
i is a sequence of sketch matrices drawn randomly668

from some distribution T over Sd+ independent of each other, satisfying669

E
[
T k
i

]
= Id. (50)

C.3.1 Analysis of distributed det-CGD2670

In this section, we present the theory for Algorithm 2, which is an analogue of Theorem 3. We first671

present the following lemma which is necessary for our analysis.672

Lemma 7. For any sketch T k
i of client i drawn randomly from some distribution T over Sd+ which673

satisfies674

E
[
T k
i

]
= Id,

the following inequality holds for any x ∈ Rd for each client i,675

E
[∥∥T k

i Dx−Dx
∥∥2
L

]
≤ λmax

(
L

1
2
i DE

[(
T k
i − Id

)
L
(
T k
i − Id

)]
DL

1
2
i

)
· ∥x∥2L−1

i
. (51)

Theorem 4. Let fi : Rd → R satisfies Assumption 4 and f satisfies Assumption 1 and Assumption 2676

with smoothness matrix L. If the stepsize satisfies,677

DLD ⪯ D, (52)
then the following convergence bound is true for the iteration of Algorithm 2678

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤

2(1 +
λ′
D

n)K
(
f(x0)− f inf

)
det(D)1/d K

+
2λ′

D∆inf

det(D)1/d n
, (53)

where ∆inf := f inf − 1
n

∑n
i=1 f

inf
i and679

λ′
D := max

i

{
λmax

(
E
[
L

1
2
i D

(
T k
i − Id

)
L
(
T k
i − Id

)
DL

1
2
i

])}
.

24

Proof. We first define function g(x) as follows,680

g(x) =
1

n

n∑
i=1

T k
i D∇fi(x

k).

As a result, Algorithm 2 can be written as681

xk+1 = xk − g(xk).

Notice that682

E [g(x)] =
1

n

n∑
i=1

E
[
T k
i

]
D∇fi(x) = D∇f(x). (54)

We then start with the L matrix smoothness of function f ,683

f(xk+1) ≤ f(xk) +
〈
∇f(xk), xk+1 − xk

〉
+

1

2

〈
L(xk+1 − xk), xk+1 − xk

〉
= f(xk) +

〈
∇f(xk),−g(xk)

〉
+

1

2

〈
L
(
−g(xk)

)
,−g(xk)

〉
= f(xk)−

〈
∇f(xk), g(xk)

〉
+

1

2

〈
Lg(xk), g(xk)

〉
.

We then take expectation conditioned on xk,684

E
[
f(xk+1) | xk

]
≤ f(xk)−

〈
∇f(xk),E

[
g(xk) | xk

]〉
+

1

2
E
[〈
Lg(xk), g(xk)

〉
| xk

]
= f(xk)−

〈
∇f(xk),D∇f(xk)

〉
+

1

2
E
[〈
Lg(xk), g(xk)

〉
| xk

]︸ ︷︷ ︸
:=T

. (55)

We then upper bound the last term T in the following way685

T = E
[∥∥g(xk)

∥∥2
L
| xk

]
(33)
= E

[∥∥∥g(xk)− E
[
g(xk) | xk

]2
L

∥∥∥ | xk
]
+
∥∥E [g(x) | xk

]∥∥2
L
.

From (54) we deduce686

T = E
[∥∥g(xk)−D∇f(xk)

∥∥2
L
| xk

]
+
∥∥D∇f(xk)

∥∥2
L

= E

∥∥∥∥∥ 1n
n∑

i=1

T k
i D∇fi(x

k)− D

n

n∑
i=1

∇fi(x
k)

∥∥∥∥∥
2

L

| xk

+
∥∥∇f(xk)

∥∥2
DLD

= E

∥∥∥∥∥ 1n∑
i=1

(
T k
i D −D

)
∇fi(x

k)

∥∥∥∥∥
2

L

| xk

+
∥∥∇f(xk)

∥∥2
DLD

.

Recalling (34) we obtain687

T =
1

n2

n∑
i=1

E
[∥∥T k

i D∇fi(x
k)−D∇fi(x

k)
∥∥2
L
| xk

]
+
∥∥∇f(xk)

∥∥2
DLD

(52)
≤ 1

n2

n∑
i=1

E
[∥∥T k

i D∇fi(x
k)−D∇fi(x

k)
∥∥2
L
| xk

]
+
∥∥∇f(xk)

∥∥2
D
.

By applying Lemma 7, we get688

T ≤ 1

n2

n∑
i=1

λmax

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)∥∥∇fi(x
k)
∥∥2
L−1

i

+
∥∥∇f(xk)

∥∥2
D

(36)
≤ λ′

D · 2
n

(
f(xk)− 1

n

n∑
i=1

f inf
i

)
+
∥∥∇f(xk)

∥∥2
D
.

25

Then we plug the upper bound of T back into (55), we get689

E
[
f(xk+1) | xk

]
≤ f(xk)− 1

2

∥∥∇f(xk)
∥∥2
D

+
λ′
D

n

(
f(xk)− f inf

)
+

λ′
D

n
(f inf − 1

n

n∑
i=1

f inf
i).

Taking expectation, subtracting f inf from both sides, and using tower property, we get690

E
[
f(xk+1)− f inf

]
≤ E

[
f(xk)− f inf

]
− 1

2
E
[∥∥∇f(xk)

∥∥2
D

]
+

λ′
D

n
E
[
f(xk)− f inf

]
+

λ′
D

n
∆inf .

Then following similar steps as in the proof of Theorem 3, we are able to get691

min
0≤k≤K−1

E
[∥∥∇f(xk)

∥∥2
D

det(D)1/d

]
≤

2(1 +
λ′
D

n)K
(
f(x0)− f inf

)
det(D)1/d K

+
2λ′

D∆inf

det(D)1/d n
.

This concludes the proof.692

Due to the same reason for Algorithm 1, we don’t need to worry about exponential blow-up in693

convergence bound (53) as we can always upper bound the exponential term by some constant by694

carefully controlling the stepsize matrix. Similarly, one corollary can be formulated to sum up the695

convergence conditions for Algorithm 2.696

Corollary 4. We reach an error level of ε2 in (53) if the following conditions are satisfied:697

DLD ⪯ D, λ′
D ≤ min

{
n

K
,
nε2

4∆inf
det(D)1/d

}
, K ≥ 12(f(x0)− f inf)

det(D)1/dε2
. (56)

The proof of this corollary is exactly the same as Corollary 1.698

C.3.2 Optimal stepsize699

In order to minimize the iteration complexity for Algorithm 2, the following optimization problem700

needs to be solved701

min log det(D−1)

subject to D satisfies (56)

Following similar techniques in the proof of Proposition 2, we are able to prove that the above702

optimization problem is still a convex optimization problem. One simple way to find stepsize matrices703

is that we first fix W ∈ Sd++ and we find the optimal 0 < γ ∈ R, such that D = γW satisfies (56).704

C.4 DCGD with constant stepsize705

In this section we describe the convergence result for DCGD from [KR20]. We assume that the706

component functions fi satisfy Assumption 4 with Li = LiId and f satisfies Assumption 1 and 2707

with L = LId. [KR20] proposed a unified analysis for non-convex optimization algorithms based on708

a generic upper bound on the second moment of the gradient estimator g(xk):709

E
[∥∥g(xk)

∥∥2] ≤ 2A
(
f(xk)− f inf

)
+B

∥∥∇f(xk)
∥∥2 + C, (57)

In our case the gradient estimator is defined as follows710

gDCGD(x
k) =

1

n

n∑
i=1

Sk
i ∇fi(x

k). (58)

Here each Sk
i is the sketch matrix on the i-th client at the k-th iteration. One may check that gDCGD711

satisfies (57) with the following constants:712

A =
ωLmax

n
, B = 1, C =

2ωLmax

n
∆inf . (59)

26

The constant Lmax is defined as the maximum of all Li and ω = λmax

(
E
[(
Sk
i

)⊤
Sk
i

])
− 1.713

Applying Corollary 1 from [KR20], we deduce the following. If714

γ ≤ min

{
1

L
,

√
n√

ωLLmaxK
,

nϵ2

4LLmaxω∆inf

}
and γK ≥

12
(
f(x0)− f inf

)
ε2

, (60)

then715

min
k=0,...,K−1

E
[∥∥∇f(xk)

∥∥2] ≤ ϵ2. (61)

D Proofs of technical lemmas716

D.1 Proof of Lemma 1717

Let us pick any two matrices D1,D2 ∈ Sd++, scalar α satisfying 0 ≤ α ≤ 1 and show that the718

following inequality holds regardless of the choice of R,719

f(αD1 + (1− α)D2) ≤ αf(D1) + (1− α)f(D2). (62)

For the LHS, we have720

f(αD1 + (1− α)D2)

= tr(L
1
2 (αD1 + (1− α)D2)R(αD1 + (1− α)D2)L

1
2)

= α2 tr(L
1
2D1RD1L

1
2) + (1− α)2 tr(L

1
2D2RD2L

1
2)

+α(1− α) tr(L
1
2D1RD2L

1
2) + α(1− α) tr(L

1
2D2RD1L

1
2).

and for the RHS, we have721

αf(D1) + (1− α)f(D2) = α tr(L
1
2D1RD1L

1
2) + (1− α) tr(L

1
2D2RD2L

1
2).

Thus (62) can be simplified to the following inequality after rearranging terms722

α(1− α) tr(L
1
2D1RD2L

1
2) + α(1− α) tr(L

1
2D2RD1L

1
2)

≤ α(1− α) tr(L
1
2D1RD1L

1
2) + α(1− α) tr(L

1
2D2RD2L

1
2).

This is equivalent to723

tr(L
1
2D1RD1L

1
2) + tr(L

1
2D2RD2L

1
2)− tr(L

1
2D1RD2L

1
2)− tr(L

1
2D2RD1L

1
2) ≥ 0.

To show that the above inequality holds, we do the following transformation for the LHS724

tr(L
1
2D1RD1L

1
2) + tr(L

1
2D2RD2L

1
2)− tr(L

1
2D1RD2L

1
2)− tr(L

1
2D2RD1L

1
2)

= tr(L
1
2D1R(D1 −D2)L

1
2) + tr(L

1
2D2R(D2 −D1)L

1
2)

= tr(L
1
2 (D1 −D2)R(D1 −D2)L

1
2).

Since R ∈ Sd+ and D1 −D2,L are symmetric, for any vector u ∈ Rd725

u⊤L
1
2 (D1 −D2)R(D1 −D2)L

1
2u =

(
(D1 −D2)L

1
2u
)⊤

R
(
(D1 −D2)L

1
2u
)
≥ 0. (63)

Thus, L
1
2 (D1 −D2)R(D1 −D2)L

1
2 ∈ Sd+, which yields the positivity of its trace. Therefore, (62)726

holds, thus f(D) is a convex function. This concludes the proof.727

27

D.2 Proof of Lemma 2728

Proof.

E
[∥∥Sk

i x− x
∥∥2
DLD

]
= E

[〈
(Sk

i − Id)x,DLD(Sk
i − Id)x

〉]
= E

[
x⊤(Sk

i − Id)DLD(Sk
i − Id)x

]
= x⊤E

[
(Sk

i − Id)DLD(Sk
i − Id)

]
x

= x⊤L
− 1

2
i

(
L

1
2
i E
[
(Sk

i − Id)DLD(Sk
i − Id)

]
L

1
2
i

)
L

− 1
2

i x

≤ λmax

(
L

1
2
i E
[
(Sk

i − Id)DLD(Sk
i − Id)

]
L

1
2
i

)∥∥∥L− 1
2

i x
∥∥∥2

= λmax

(
L

1
2
i E
[
(Sk

i − Id)DLD(Sk
i − Id)

]
L

1
2
i

)
∥x∥2L−1

i
.

This completes the proof.729

D.3 Proof of Lemma 3730

Proof. We have731

E
[
∥x− E [x]∥2M

]
= E [⟨x− E [x] ,M (x− E [x])⟩]

= E
[
(x− E [x])

⊤
M (x− E [x])

]
= E

[
x⊤Mx− E [x]

⊤
Mx− x⊤ME [x] + E [x]

⊤
ME [x]

]
= E

[
x⊤Mx

]
− 2E [x]

⊤
ME [x] + E [x]

⊤
ME [x]

= E
[
x⊤Mx

]
− E [x]

⊤
ME [x]

= E
[
∥x∥2M

]
− ∥E [x]∥2M ,

which concludes the proof.732

D.4 Proof of Lemma 4733

Proof. We have734

E

∥∥∥∥∥ 1n
n∑

i=1

ai

∥∥∥∥∥
2

M

 =
1

n2

n∑
i=1

E [⟨ai,Mai⟩] +
1

n2

∑
i̸=j

E [⟨ai,Maj⟩]

=
1

n2

n∑
i=1

E
[
∥ai∥2M

]
+

1

n

∑
i̸=j

⟨E [ai] ,ME [aj]⟩

=
1

n2

n∑
i=1

E
[
∥ai∥2M

]
.

This concludes the proof.735

D.5 Proof of Lemma 5736

Proof. Notice that737

E [Sx] = E [S]x = x.

28

We start with variance decomposition in the matrix norm,738

E
[
∥Sx− x∥2M

]
(33)
= E

[
∥Sx∥2M

]
− ∥x∥2M

= E [⟨Sx,MSx⟩]− ⟨x,Mx⟩
= ⟨x,E [SMS]x⟩ − ⟨x,Mx⟩
= ⟨x, (E [SMS]−M)x⟩
= ∥x∥2E[SMS]−M .

This concludes the proof.739

D.6 Proof of Lemma 6740

Proof. We follow the definition of L matrix smoothness of function f , that for any x+, x ∈ Rd, we741

have742

f(x+) ≤ f(x) +
〈
∇f(x), x+ − x

〉
+

1

2

〈
x+ − x,L(x+ − x)

〉
.

We plug in x+ = x−L−1∇f(x), and get743

f inf ≤ f(x+) ≤ f(x)−
〈
∇f(x),L−1∇f(x)

〉
+

1

2

〈
∇f(x),L−1∇f(x)

〉
.

Rearranging terms we get744

∥∇f(x)∥2L−1 ≤ 2
(
f(x)− f inf

)
, (64)

which completes the proof.745

D.7 Proof of Lemma 7746

Proof.

E
[∥∥T k

i Dx−Dx
∥∥2
L

]
= E

[〈
(T k

i − Id)Dx,L(T k
i − Id)Dx

〉]
= E

[
x⊤D(T k

i − Id)L(T k
i − Id)Dx

]
= x⊤DE

[
(T k

i − Id)L(T k
i − Id)

]
Dx

= x⊤L
− 1

2
i

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)
L

− 1
2

i x

≤ λmax

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)∥∥∥L− 1
2

i x
∥∥∥2

= λmax

(
L

1
2
i DE

[
(T k

i − Id)L(T k
i − Id)

]
DL

1
2
i

)
∥x∥2L−1

i
.

This completes the proof.747

E Experiments748

In this section, we describe the settings and results of numerical experiments to demonstrate the749

effectiveness of our method. We perform several experiments under single node case and distributed750

case. The code is available at https://anonymous.4open.science/r/detCGD_Code-A87D/.751

E.1 Single node case752

For single node case, we study the logistic regression problem with non-convex regularizer. The753

objective is given as754

f(x) =
1

n

n∑
i=1

log
(
1 + e−bi·⟨ai,x⟩

)
+ λ ·

d∑
j=1

x2
j

1 + x2
j

,

29

https://anonymous.4open.science/r/detCGD_Code-A87D/

0 1000 2000 3000 4000 5000

Iterations

10−2

10−1
G
K
,D

a1a, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−2

10−1

G
K
,D

mushrooms, rand-1 sketch, λ = 0.3

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−1

100

G
K
,D

a1a, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−1

100

G
K
,D

a8a, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

0 1000 2000 3000 4000 5000

Iterations

10−1

100

G
K
,D

mushrooms, rand-1 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D1

det-CGD1 with D2

det-CGD1 with D3

det-CGD2 with D4

Figure 2: Comparison of standard CGD, CGD-mat, det-CGD1 with D1 = γ1 ·diag−1(L), det-CGD1
with D2 = γ2 ·L−1, det-CGD1 with D3 = γ3 ·L−1/2 and det-CGD2 with D4 = γ4 · diag−1(L),
where γ1, γ2, γ3 are the optimal scaling factors for det-CGD1 in that case, D4 is the optimal matrix
stepsize for det-CGD2. Rand-1 sketch is used in all the methods through out the experiments. The
notation GK,D in the y-axis is defined in (65).

where x ∈ Rd is the model, (ai, bi) ∈ Rd × {−1,+1} is one data point in the dataset whose size755

is n. λ > 0 is a constant associated with the regularizer. We conduct numerical experiments using756

several datasets from the LibSVM repository [CL11]. We estimate the smoothness matrix of function757

f here as758

L =
1

n

n∑
i=1

aia
⊤
i

4
+ 2λ · Id.

E.1.1 Comparison to CGD with scalar stepsize, scalar smoothness constant759

The purpose of the first experiment is to show that by using matrix stepsize, det-CGD1 and det-CGD2760

will have better iteration and communication complexities compared to standard CGD (which uses761

scalar stepsize γ and scalar smoothness constant L = λmax(L)) and CGD with scalar stepsize γ · Id,762

smoothness matrix L. We use standard CGD to refer to CGD with scalar stepsize, scalar smoothness763

constant, and CGD-mat to refer to CGD with scalar stepsize, smoothness matrix in Figure 2, 3. The764

notation GK,D appears in the label of y axis is defined as765

GK,D :=
1

K

(
K−1∑
k=0

∥∥∇f(xk)
∥∥2

D

det(D)1/d

)
, (65)

it is the average matrix norm of the gradient of f over the first K − 1 iterations in log scale. The766

weight matrix here has determinant 1, and thus it is comparable to the standard Euclidean norm. The767

result is meaningful in this sense.768

The result presented in Figure 2 suggests that compared to standard CGD [KFJ18], CGD that uses769

smoothness matrices performs better in terms of both iteration complexity and communication770

complexity, while det-CGD1 and det-CGD2 with best diagonal matrix stepsizes outperform both of771

CGD and CGD with matrix smoothness which confirms our theory. The scaling factors γ1, γ2, γ3772

here for det-CGD1 are determined using Theorem 2 with ℓ = 1. The matrix stepsize for det-CGD2773

is determined through (11). det-CGD1 and det-CGD2 with diagonal matrix stepsizes perform very774

similarly in the experiment, this is expected since we are using rand-1 sketch, which means that the775

30

stepsize matrix and the sketch matrix are commutable since they are both diagonal. We also notice776

that det-CGD1 with D2 = γ2 ·L−1 is always worse than D4 = γ4 · diag−1(L), this is also expected777

since we mentioned in Appendix B.5.1 that the result row 5 (corresponding to D2) in Table 1 is778

always worse than row 7 (corresponding to D4).779

E.1.2 Comparison of the two algorithms under the same stepsize780

The purpose of the second experiment is to compare the performance of det-CGD1 and det-CGD2 in781

terms of iteration complexity and communication complexity. We know the conditions for det-CGD1782

and det-CGD2 to converge are given by (7) and (8) respectively, as a result, we are able to obtain the783

optimal matrix stepsize for det-CGD2 if we are using rand-τ sparsification. It is given by784

D∗
2 =

τ

d

(
d− τ

d− 1
diag(L) +

τ − 1

d− 1
L

)−1

,

according to (11). The definition of GK,D is given in (65), τ here for random sparsification is set to785

be integers around {d
4 ,

d
2 ,

3d
4 }, where d is the dimension of the model.786

It can be observed from the result presented in Figure 3, that in almost all cases in this experiment, 2787

with D = D∗
2 outperforms the other methods. Compared to standard CGD and CGD with matrix788

stepsize, det-CGD1 and det-CGD2 are always better. This provides numerical evidence in support of789

our theory. In this case, the stepsize matrix is not diagonal for det-CGD1 and det-CGD2, so we do790

not expect them to perform similarly. Notice that in dataset phishing, the four algorithms behave791

very similarly, this is because the smoothness matrix L here has a very centralized spectrum.792

E.2 Distributed case793

For distributed case, we still use the logistic regression problem with non-convex regularizer as our794

experiment setting. The objective is given similarly as795

f(x) =
1

n

n∑
i=1

fi(x); fi(x) =
1

mi

mi∑
j=1

log
(
1 + e−bi,j ·⟨ai,j ,x⟩

)
+ λ ·

d∑
t=1

x2
t

1 + x2
t

,

where x ∈ Rd is the model, (ai,j , bi,j) ∈ Rd × {−1,+1} is one data point in the dataset of client i796

whose size is mi. λ > 0 is a constant associated with the regularizer. For each dataset used in the797

distributed setting, we randomly reshuffled the dataset before splitting it equally to each client. We798

estimate the smoothness matrices of function f and each individual function fi here as799

Li =
1

mi

mi∑
i=1

aia
⊤
i

4
+ 2λ · Id;

L =
1

n

n∑
i=1

Li.

The value of ∆inf here is determined in the following way, we first perform gradient descent on f800

and record the minimum value in the entire run, f inf , as the estimate of its global minimum, then we801

do the same procedure for each fi to obtain the estimate of its global minimum f inf
i . After that we802

estimate ∆inf using its definition.803

E.2.1 Comparison to standard DCGD in the distributed case804

This experiment is designed to show that D-det-CGD1 and D-det-CGD2 will have better iteration805

complexity and communication complexity compared to standard DCGD [KFJ18] and DCGD with806

scalar stepsize, smoothness matrix. We will use standard DCGD here to refer to DCGD with scalar807

stepsize, scalar smoothness constant, and DCGD-mat here to refer to DCGD with scalar stepsize,808

smoothness matrix. Rand-1 sparsifier is used in all the algorithms throughout the experiment. The809

error level is fixed as ε2 = 0.0001, the conditions for standard DCGD to converge can be deduced810

using Proposition 4 in [KR20], we use the largest possible scalar stepsize here for standard DCGD.811

The optimal scalar stepsize for DCGD-mat, optimal diagonal matrix stepsize D1 for D-det-CGD1812

and D2 for D-det-CGD2 can be determined using Corollary 1.813

31

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-30 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a1a, rand-60 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a1a, rand-90 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-31 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-62 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-93 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

phishing, rand-18 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

phishing, rand-35 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

phishing, rand-52 sketch, λ = 0.2

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

100

G
K
,D

mushrooms, rand-29 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

100

G
K
,D

mushrooms, rand-57 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

0 1000 2000 3000 4000 5000

Iterations

10−3

10−2

10−1

100

G
K
,D

mushrooms, rand-85 sketch, λ = 0.5

Standard CGD

CGD-mat

det-CGD1 with D = D∗2
det-CGD2 with D = D∗2

Figure 3: Comparison of standard CGD, CGD-mat det-CGD1 with stepsize D = D∗
2 and det-CGD2

with stepsize D = D∗
2 , where D∗

2 is the optimal stepsize matrix for det-CGD2 and the optimal
diagonal stepsize matrix for det-CGD1. Rand-τ sketch is used in all the algorithms throughout the
experiments. The notation GK,D in the y-axis is defined in (65).

32

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 40

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 80

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

G
K
,D

a1a, rand-1 sketch, λ = 0.1, n = 160

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

G
K
,D

a8a, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

G
K
,D

phishing, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

Figure 4: Comparison of standard DCGD, DCGD-mat, D-det-CGD1 with matrix stepsize D1 and
D-det-CGD2 with matrix stepsize D2, where D1,D2 are the optimal diagonal matrix stepsizes for
D-det-CGD1 and D-det-CGD2 respectively. Rand-1 sketch is used in all the algorithms throughout
the experiment. The notation GK,D in the y-axis is defined in (65).

From the result of Figure 4, we are able to see that both D-det-CGD1 and D-det-CGD2 outperform814

standard DCGD and DCGD-mat in terms of iteration complexity and communication complexity,815

which confirms our theory. Notice that D-det-CGD1, D-det-CGD2 are expected to perform very816

similarly because the stepsize matrix and sketches are diagonal which means that they are commutable.817

We also plot the corresponding standard Euclidean norm of iterates of D-det-CGD1 and D-det-CGD2818

in Figure 5, the EK here appears in the y-axis is defined as,819

EK :=
1

K

K−1∑
k=0

∥∥∇f(xk)
∥∥2 . (66)

820

33

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

E
K

a1a, rand-1 sketch, λ = 0.1, n = 40

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

E
K

a1a, rand-1 sketch, λ = 0.1, n = 80

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−3

10−2

10−1

E
K

a1a, rand-1 sketch, λ = 0.1, n = 160

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

E
K

a8a, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

E
K

a8a, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

10−1

E
K

a8a, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

E
K

phishing, rand-1 sketch, λ = 0.1, n = 200

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

E
K

phishing, rand-1 sketch, λ = 0.1, n = 400

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

0 2000 4000 6000 8000 10000

Iterations

10−4

10−3

10−2

E
K

phishing, rand-1 sketch, λ = 0.1, n = 800

Standard DCGD

DCGD-mat

D det-CGD1 diagonal D

D det-CGD2 diagonal D

Figure 5: Comparison of standard DCGD, DCGD-mat, D-det-CGD1 with matrix stepsize D1 and
D-det-CGD2 with matrix stepsize D2, where D1,D2 are the optimal diagonal matrix stepsizes for
D-det-CGD1 and D-det-CGD2 respectively. Rand-1 sketch is used in all the algorithms throughout
the experiment. The y-axis is now standard Euclidean norm defined in (66).

34

	Introduction
	Related work
	Contributions
	Preliminaries

	The algorithms
	Main results
	Optimal matrix stepsize

	Leveraging the layer-wise structure
	Distributed setting
	Conclusion
	Limitations
	Future work

	Single node case
	Proof of thm:main-D
	Proof of thm:opt-D

	Layer-wise case
	Proof of thm:blockdiag
	Bernoulli sketch for det-CGD2
	General cases for det-CGD1
	General cases for det-CGD2
	Interpretations of Table:comm-complex-single-node
	Comparison of row 5 and 7
	Comparison of row 6 and 7

	Distributed case
	Proof of thm:dist-alg1
	Convexity of the constraints
	Proof of cor:dist-cond-conv

	Distributed det-CGD2
	Analysis of distributed det-CGD2
	Optimal stepsize

	DCGD with constant stepsize

	Proofs of technical lemmas
	Proof of lemma:convexity-func
	Proof of lemma:5
	Proof of lemma:var-decomp
	Proof of lemma:var-sep
	Proof of lemma:property-of-sketch
	Proof of lemma:imp-smt-upd
	Proof of lemma:7

	Experiments
	Single node case
	Comparison to CGD with scalar stepsize, scalar smoothness constant
	Comparison of the two algorithms under the same stepsize

	Distributed case
	Comparison to standard DCGD in the distributed case

