
Supplementary Materials for
“ Efficient Test-Time Adaptation for Super-Resolution with

Second-Order Degradation and Reconstruction ”

Contents

A More Details of the Second-Order Degradation 2

A.1 Random Blur Degradation . 2

A.2 Random Noise Degradation . 2

A.3 Random JPEG Degradation . 2

B The Difference from Real-ESRGAN 2

B.1 Solving Different Problems . 2

B.2 Different Construction Schemes . 2

C Experimental Datasets 3

C.1 Construction Details of the DIV2K-C Dataset . 3

C.2 Construction Details of the DIV2K-MC Dataset . 4

C.3 More Test Datasets for Test-Time Image Super-Resolution 5

D Implementation Details 5

D.1 Implementation Details of the Degradation Classifier . 5

D.2 More Details of Super-Resolution Test-Time Adaptation . 5

E More Experimental Results 6

E.1 More Results of Test-Time Image Super-Resolution . 6

E.2 More Results on Test domains with Mixed Multiple Degradations. 7

E.3 More Results of Ablation Studies . 7

E.4 Effectiveness on a New Unknown Domain . 8

E.5 Comparison with Patch-Recurrence Reconstruction Loss . 8

E.6 Effect of the Feature-level Reconstruction . 8

E.7 Effect of Adaptation Iterations for Each Image . 9

E.8 The Statistics of the Degradation Types of Real-world Images 9

E.9 Further Analysis of the Domain Shift Issue . 9

F Visualization Results 10

F.1 Visualization Results on the DIV2K-C Images . 10

F.2 Visualization Results on the Real-World Images . 10

G Limitation Analysis and Border Impacts 11

G.1 Limitation Analysis . 11

G.2 Broader Impacts . 12

1

A More Details of the Second-Order Degradation

In our second-order degradation scheme, we randomly generate different degradations to degrade the
test image into its second-order degraded counterparts. In this section, we illustrate how to randomly
generate different types of degradations. Notably, we degrade the test images on the GPU device to
accelerate the degradation process.

A.1 Random Blur Degradation

Following [26, 22], we model blur degradation as a convolution with a linear Gaussian blur fil-
ter/kernel. Given a test image, we randomly generate a set of isotropic or anisotropic Gaussian
kernels k and use them to perform blur degradation on the test image. The probabilities of generating
an isotropic kernel and an anisotropic kernel are set to 0.5 and 0.5, respectively. The size of each
generated kernel is uniformly sampled from {7 × 7, 9 × 9, ..., 21 × 21}. We sample the standard
deviation of the blur kernel along the two principal axes σ1 and σ2 uniformly from [0.2, 3]. If k is
an isotropic Gaussian blur kernel, we set σ2 equal to σ1. If k is an anisotropic Gaussian kernel, we
further sample a rotation angle a uniformly from [−π, π], and use a rotation matrix to transform the
generated kernel based on the angle a. More details about how to generate a Gaussian blur kernel can
refer to Real-ESRGAN [22].

A.2 Random Noise Degradation

In our second-order degradation, we randomly generate a set of Gaussian noise maps n, and add them
to the test image to obtain a set of second-order images with different additive Gaussian noise. With a
probability of 60%, we generate noise for each channel of RGB images independently, otherwise, we
generate the same noise map for all three channels. We first generate a noise map whose values are
randomly generated from a normal Gaussian distribution. Then we sample a scale value to enlarge
the noise uniformly from [1, 30]. More details can be referred to Real-ESRGAN [22].

A.3 Random JPEG Degradation

For JPEG compression JPEGq, we sample a quality factor q uniformly from [30, 95], and use the
JPEG compression with the degradation q to degrade test images into a set of second-order degraded
images with compression artifacts. Note that JPEG compression with a lower q compress the test
image with a higher compression ratio and the compressed images are generally of a lower quality.
To accelerate the degradation process, we use DiffJPEG1, which is the PyTorch implementation of
JPEG compression, to process the test image on the GPU device.

B The Difference from Real-ESRGAN

In this part, we would like to discuss the difference between our SRTTA with Real-ESRGAN[22],
which proposes the concept of second-order degradations, to highlight the contribution of our SRTTA.

B.1 Solving Different Problems

Real-ESRGAN tries to enumerate all the degradations in real-world scenes and train an SR model to
solve the image restoration on any degradation. However, it is non-trivial to obtain all real-world
degradations, leading to domain shift issues when encountering unknown degradations during testing,
as shown in Figure 11 of real-ESRGAN [22]. Unlike real-ESRGAN [22], our SRTTA aims to adapt
the SR models to the test domains when test images contain unknown degradations. Our second-order
degradation scheme aims to quickly construct the pseudo-paired data (instead of the paired training
data) to adapt the SR model to the test domains.

B.2 Different Construction Schemes

Real-ESRGAN [22] proposes the second-order degradation to construct the paired training data,
whose low-resolution (LR) images are obtained from the ground-truth high-resolution (HR) images.

1https://github.com/mlomnitz/DiffJPEG

2

Then, the paired data is used to train an SR model during the training phase in a supervised learning
manner. Notably, the trained Real-ESRGAN [22] model is fixed during the test time. Instead,
our second-order degradation scheme constructs the pseudo-paired data using the test images with
unknown degradation (first-order degraded images). Our SRTTA model is continuously adapted to
different domains during testing in a self-supervised learning manner.

C Experimental Datasets

C.1 Construction Details of the DIV2K-C Dataset

To evaluate the practicality, we construct a new benchmark dataset named DIV2K-C, which contains
eight different degradations. We select the eight degradation types from the 15 corruptions of
ImageNet-C [11] that do not extremely change the image content, including Gaussian Blur, Defocus
Blur, Glass Blur, Gaussian Noise, Poisson Noise (Shot Noise), Impulse Noise, Speckle Noise, and
JPEG compression. Unlike the ImageNet-C [11], we do not use the same degradation level to
degrade all test images. Instead, we randomly generate the degradation level and further generate a
degradation for each image based on the degradation level. Unlike prior SR methods that investigate
a limited number of degradation types, the degradation scenarios we considered are more complex
(eight degradation types in total), which is more practical for real-world applications.

Given a degradation, we use the classical image degradation model [17, 22] to generate the low-
resolution (LR) test images from the high-resolution clean images. For blur degradation, we perform
the blur convolution on the HR images and then use the Bicubic downsampling to obtain the test LR
images. For noise and JPEG degradation, we first use the Bicubic downsampling to obtain clean LR
images and then perform noise or JPEG degradation on the clean LR images to obtain the final test
images. We show the visualization of some examples regarding each degradation type in Figure A.

HR Gaussian Blur Defocus Blur Glass Blur JPEG

Clean LR Gaussian Noise Poisson Noise Impulse Noise Speckle Noise0826 from DIV2K

HR Gaussian Blur Defocus Blur Glass Blur JPEG

Clean LR Gaussian Noise Poisson Noise Impulse Noise Speckle Noise0846 from DIV2K

Figure A: The visualization of examples regarding each degradation type on the DIV2K-C dataset.

Gaussian blur. Following BSRGAN [26], we generate low-resolution (LR) images with Gaussian
blur degradation. We randomly generate an isotropic Gaussian kernel or an anisotropic Gaussian
kernel for each high-resolution (HR) image. Then, we use the blur kernel to perform blur convolution
on the HR image and use Bicubic downsampling to obtain the final LR test images. For simplicity,
we follow the recipe of BSRGAN [26] to generate test images with blur degradation.

3

Defocus blur. To better compare the performance of different SR methods, we also use the common
Defocus blur degradation to degrade the HR images and obtain the LR images using the Bicubic
downsampling. As illustrated in ImageNet-C [11], Defocus blur often occurs when an image is out
of focus when we take pictures. We generate the blur kernel as ImageNet-C [11] and perform a blur
convolution on the HR images. But unlike ImageNet-C [11], the degradation level of Defocus blur is
randomly sampled from a given range.

Glass blur. We also choose another common degradation type, Glass Blur, which appears with
“frosted glass” windows or panels [11]. This blur degradation requires two Gaussian blur operations
and an operation that locally shuffles pixels between two blur operations. As mentioned above, the
degradation level is randomly sampled from a given range, such as the standard deviation of the
Gaussian blur kernel or the window size of the shuffling operation.

Gaussian noise. To generate test images with Gaussian noise, we sample the noise for each pixel
from a normal Gaussian distribution. The mean of the Gaussian distribution is zero, and the standard
deviation is uniformly sampled from the range of {2/255, 3/255, ..., 25/255}. More details can refer
to the implementation of BSRGAN [26].

Poisson (Shot) noise. Poisson noise, also called Shot noise, can model the sensor noise caused
by statistical quantum fluctuations. We randomly generate the Poisson noise map from a Poisson
distribution, which has an intensity proportional to the image intensity. Then, we add the generated
Poisson noise into the clean LR images to obtain the test images with Poisson noise. More details
can refer to the implementation of Real-ESRGAN [22].

Impulse noise. Impulse noise is caused by errors in the data transmission generated in noisy sensors
or communication channels, or by errors during the data capture from digital cameras [19]. The most
common form of Impulse noise is called salt-and-pepper noise. To generate test images with Impulse
noise, we uniformly select a set of pixels and replace them with zero or the maximum value (255).
More details can be referred to ImageNet-C [11].

Speckle noise. Speckle noise is an additive noise where the noise added to a pixel tends to be larger
if the original pixel intensity is larger. We first sampled the noise for each pixel from a Gaussian
distribution and multiple the noise value by the original pixel. Last, we add the generated noise map
into the LR clean images to obtain the final test images with Speckle noise.

JPEG compression. For JPEG compression, we use the OpenCV implementation of JPEG com-
pression2 to degrade the clean LR image into final test images. The compression quality factor q
is randomly sampled from [30, 90]. We first encode the clean LR images into the bit stream using
JPEG compression with the quality factor q and decode the bit stream to obtain the final test images.
Note that JPEG compression is a lossy compression technique, so the final test images are inevitably
corrupted with JPEG compression artifacts.

C.2 Construction Details of the DIV2K-MC Dataset

Since the real-world test images may contain multiple degradation types simultaneously, we further
develop a new benchmark dataset named DIV2K-MC, which includes four test domains with mixed
multiple degradations. The four domains are BlurNoise, BlurJPEG, NoiseJPEG and BlurNoiseJPEG.
The test images in the BlurNoiseJPEG domain contain the combined degradation of Gaussian blur,
Gaussian noise and JPEG degradations simultaneously.

BlurNoise. We generate LR images from HR images using Gaussian blur and Gaussian noise
degradation. We first randomly generate a Gaussian blur kernel to perform blur convolution on the
HR image. Then, we downsample the resulting image using Bicubic interpolation. Last, we randomly
sample a Gaussian noise map and add it to the downsampled image to obtain the final LR image.

BlurJPEG. We generate LR images from HR images using Gaussian blur and JPEG degradation. We
first randomly generate a Gaussian blur kernel to perform blur convolution on the HR image. Then,
the resulting image is downsampled by using Bicubic interpolation. Last, we use JPEG compression
with a random quality factor q to compress the downsampled image to obtain the final LR image.

NoiseJPEG. We generate LR images from HR images using Gaussian noise and JPEG degradation.
We first downsample HR image using Bicubic interpolation. Then, we randomly sample a Gaussian

2https://github.com/opencv/opencv

4

noise map and add it to the downsampled image. Last, we use JPEG compression with a random
quality factor q to compress the downsampled image to obtain the final LR image.

BlurNoiseJPEG. We generate LR images from HR images using Gaussian blur, Gaussian noise and
JPEG degradation. We first randomly generate a Gaussian blur kernel to perform blur convolution on
the HR image. Second, the resulting image is downsampled by using Bicubic interpolation. Then, we
randomly sample a Gaussian noise map and add it to the downsampled image. Last, we use JPEG
compression with a random quality factor q to compress the image to obtain the final LR image.

C.3 More Test Datasets for Test-Time Image Super-Resolution

Moreover, we also evaluate the performance of SR methods on real-world test images from
DPED [13], ADE20K [28] and OST300 [23], whose corresponding ground-truth HR images can not
be found. To evaluate the anti-forgetting performance, we report the adapted model performance on a
clean benchmark dataset Set5 [2] whose images are clean images that are downsampled from HR
images with Bicubic interpolation. Thus, these LR images do not contain any degradation.

D Implementation Details

D.1 Implementation Details of the Degradation Classifier

In our second-order degradation scheme, we use a pre-trained degradation classifier to predict
the degradation type for each test image. To obtain the pre-trained degradation classifier, we use
ResNet-50 [10] as the classifier and train it to recognize the degradation from test images.

In real-world scenes, test images may contain degradations other than these eight degradation types,
such as ringing or overshoot artifacts [22], which may be viewed as variations of blur, noise or JPEG.
Since it is infeasible to cover all the degradation types in real-world scenes, we make the degradation
classifier to predict the coarse-level four classes, including clean, blur, noise and JPEG.

Training details. Specifically, we use the 800 training HR images of DIV2K and randomly crop
them into patches with the size of 224 × 224 (instead of resizing them into 224 × 224). Similar
to the construction of DIV2K-C, we degrade each patch using a random selection of one of eight
degradation types. As for clean data, we do not perform any degradation on the patches. For training,
we apply Adam with β1 = 0.9, β2 = 0.999 and set the batch size as 256. The learning rate is
initialized to 10−3 and decreased to 10−6 with a cosine annealing out of 400 epochs in total.

Testing details. During testing, we directly input the whole test image with original resolution into
the classifier and output the predicted results to recognize the degradation type. The predicted results
of the multi-label degradation classifier C(·) are the probabilities of the three degradations, including
blur, noise and JPEG degradation. If the predicted probability of one degradation type is larger than
the threshold of 0.5, the test image is considered to contain the degradation of this type. The clean
image means that this image does not contain any degradation such as blur, noise, or JPEG, and we
directly use the pre-trained SR model to super-resolve these clean test images.

D.2 More Details of Super-Resolution Test-Time Adaptation

We use the baseline model of EDSR [16] with less than 2M parameters as our pre-trained SR model
for 2× and 4× SR. During adaptation, we only update the parameters in the Resblock of the EDSR
model. To avoid anti-forgetting, we use five clean test LR images from Set5 [2] to select important
parameters to be frozen in Eqn. (9). Moreover, when evaluating the anti-performance Set5 [2], we
directly use the adapted model to super-resolve the test images without using the classifier.

In our experiment, we conduct experiments in parameter-reset and lifelong settings. In the parameter-
reset setting, the model parameters will be reset after the adaptation on each domain, which is the
default setting of our SRTTA. In the lifelong setting, the model parameters will never be reset in the
long-term adaptation, in this case, we call our methods as SRTTA-lifelong.

For test-time adaptation, we use the Adam optimizer with the learning rate of 5 × 10−5 for the
pre-trained SR models. We set the batch size N to 32, and we randomly crop the test image into N
patches of size 96×96 and 64×64 for 2× and 4× SR, and degrade them into second-order degraded
patches. We perform S = 10 iterations of adaptation for each test image. For the balance weight in

5

Eqn. (6), we set α to 1. For the ratio of parameters to be frozen, we set the ρ to 0.50. To compare the
inference times of different SR methods, we measure all methods on a TITAN XP with 12G graphics
memory for a fair comparison. Due to the memory overload of HAT [6] and DDNM [24], we chop
the whole image into smaller patches and process them individually for these two methods. In our
experiments, we use the bold number to indicate the best result and the underlined number to indicate
the second-best result.

E More Experimental Results

E.1 More Results of Test-Time Image Super-Resolution

In this part, we compare our SRTTA with existing SR methods, including supervised pre-trained SR
methods, blind SR methods, zero-shot SR methods, and a TTA baseline with consistency loss. 1) The
supervised pre-trained SR methods learn to process test images with a predefined degradation process,
i.e., the Bicubic downsampling. These methods include the EDSR baseline [16], SwinIR [15], IPT [5]
and HAT [6], SRDiff [14], and Real-ESRNet [22]. Note that Real-ESRNet [22] is the PSNR-oriented
model of Real-ESRGAN [22], which use a complex combination of different degradation to construct
pair training data, including Gaussian blur, Gaussian Noise, Poisson Noise and JPEG compression,
and so on. 2) Blind SR models predict the blur kernel of test images and generate HR images
simultaneously, we compare with the state-of-the-art DAN [12] and DCLS-SR [18] methods. 3) Zero-
shot SR models construct the LR-HR paired images based on the assumption of the cross-scale patch
recurrence and train/update their SR model for each test image. These methods include ZSSR [20],
KernelGAN [1]+ZSSR [20], MZSR [7], DualSR [8], DDNM [24]. 4) Moreover, we implement a
baseline TTA method (dubbed TTA-C) that utilizes the augmentation consistency loss in Eqn. (8) to
adapt the pre-trained model, similar to MEMO [27] and CoTTA [21].

We provide more results of our SRTTA for 2× and 4× SR in terms of PSNR and SSIM metrics.
As shown in Table A and Table B, our SRTTA consistently outperforms existing SR methods on
the DIV2K-C dataset on average. We further provide more visualization results in Figure D, E,
F and G, which demonstrate our SRTTA is able to remove the degradation from test images and
generate plausible HR images. These results demonstrate that our SRTTA is able to quickly adapt the
pre-trained SR model to the test images with different degradation.

Table A: We report the PSNR/SSIM results of all corruption fields in DIV2K-C for 2× SR.

Methods GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean GPU Time

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM (seconds/image)

Bicubic 28.04/0.803 24.10/0.784 26.31/0.745 25.35/0.554 23.33/0.496 15.28/0.324 28.65/0.774 28.28/0.806 24.92/0.661 -
SwinIR [15] 30.40/0.838 25.52/0.673 27.82/0.773 25.35/0.510 22.36/0.428 15.34/0.242 30.45/0.774 30.74/0.846 26.00/0.636 13.08
IPT [5] 28.93/0.820 24.08/0.640 26.39/0.749 22.96/0.439 20.08/0.369 13.06/0.241 28.27/0.728 28.36/0.804 24.02/0.599 55.36
HAT [6] 29.00/0.821 24.08/0.640 26.40/0.749 22.31/0.417 19.33/0.349 11.91/0.192 28.02/0.722 28.25/0.802 23.66/0.587 25.01
DAN [12] 34.32/0.916 25.58/0.673 31.77/0.872 26.36/0.558 23.28/0.461 11.46/0.203 30.64/0.777 31.08/0.857 26.81/0.665 3.10
DCLS-SR [18] 33.93/0.914 25.55/0.671 31.98/0.872 25.45/0.521 21.59/0.415 8.12/0.112 30.66/0.784 30.86/0.848 26.02/0.642 1.45
ZSSR [20] 29.91/0.831 25.54/0.674 27.79/0.771 26.79/0.590 24.24/0.509 19.14/0.375 30.95/0.813 31.01/0.853 26.92/0.677 117.65
KernalGAN [1]+ZSSR 30.18/0.859 25.87/0.679 29.01/0.808 21.45/0.436 19.32/0.366 17.93/0.354 25.07/0.686 26.11/0.774 24.37/0.620 231.41
MZSR [7] 30.14/0.838 25.54/0.670 28.03/0.777 25.94/0.543 23.48/0.472 17.05/0.314 30.00/0.771 30.49/0.845 26.33/0.654 3.34
DualSR [8] 29.00/0.854 24.40/0.640 28.18/0.805 22.30/0.509 20.11/0.436 17.22/0.376 24.99/0.738 24.74/0.751 23.87/0.639 210.85
DDNM [24] 28.46/0.808 24.09/0.636 26.39/0.744 24.37/0.497 21.92/0.432 13.98/0.310 28.60/0.753 28.26/0.802 24.51/0.623 2,288.55
EDSR [16] 30.28/0.837 25.52/0.673 27.82/0.773 25.87/0.536 22.96/0.449 15.87/0.269 30.52/0.778 30.83/0.847 26.21/0.645 -
TTA-C 30.21/0.835 25.50/0.673 27.79/0.772 26.37/0.559 23.57/0.473 16.40/0.298 30.25/0.783 30.91/0.849 26.38/0.655 13.59

SRTTA (ours) 31.07/0.869 25.86/0.674 29.01/0.815 29.65/0.762 26.69/0.637 16.15/0.284 32.33/0.873 31.30/0.857 27.76/0.721 5.38
SRTTA-lifelong (ours) 31.07/0.869 25.83/0.674 29.18/0.819 29.48/0.797 27.10/0.673 16.27/0.273 31.71/0.864 31.22/0.853 27.73/0.728 5.38

Table B: We report the PSNR/SSIM results of all corruption fields in DIV2K-C for 4× SR.

Methods GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean GPU Time

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM (seconds/image)

Bicubic 25.83/0.718 24.10/0.641 25.35/0.699 23.17/0.500 22.15/0.475 15.1/0.384 25.29/0.658 25.07/0.681 23.27/0.595 -
Real-ESRNet [22] 26.82/0.765 25.17/0.704 26.75/0.762 25.49/0.701 25.06/0.692 19.24/0.509 26.47/0.749 25.70/0.720 25.09/0.700 1.12
SwinIR [15] 28.48/0.785 25.81/0.692 27.44/0.753 22.96/0.454 21.40/0.420 14.59/0.225 26.66/0.670 27.25/0.731 24.32/0.591 8.15
IPT [5] 26.98/0.760 24.36/0.660 25.98/0.726 20.94/0.385 19.30/0.357 12.86/0.270 24.89/0.628 25.22/0.685 22.57/0.559 35.29
HAT [6] 27.09/0.764 24.37/0.660 26.01/0.728 20.38/0.368 18.76/0.344 11.65/0.177 24.70/0.623 25.11/0.680 22.26/0.543 5.95
DAN [12] 28.71/0.809 25.02/0.679 28.88/0.812 21.79/0.414 20.26/0.387 8.70/0.110 25.10/0.631 25.21/0.686 22.96/0.566 1.18
DCLS-SR [18] 30.38/0.834 26.48/0.709 30.58/0.838 24.43/0.525 22.90/0.479 6.94/0.038 27.27/0.696 27.46/0.736 24.56/0.607 1.47
ZSSR [20] 27.84/0.763 25.83/0.691 27.34/0.745 24.26/0.543 23.04/0.500 17.75/0.402 26.72/0.700 27.03/0.727 24.97/0.634 117.34
KernalGAN [1]+ZSSR 26.04/0.754 25.84/0.696 26.75/0.755 20.64/0.427 19.63/0.407 16.58/0.361 22.50/0.578 23.36/0.663 22.67/0.580 417.80
MZSR [7] 25.76/0.722 25.05/0.676 25.77/0.712 22.38/0.471 21.37/0.429 16.46/0.342 24.20/0.621 25.09/0.695 23.26/0.584 2.14
SRDiff [14] 26.52/0.746 24.18/0.649 25.92/0.723 16.25/0.180 15.50/0.172 12.23/0.172 19.41/0.356 24.18/0.649 20.52/0.456 72.22
EDSR [16] 28.31/0.780 25.81/0.692 27.40/0.751 23.49/0.479 22.10/0.443 15.28/0.283 26.80/0.676 27.34/0.734 24.57/0.605 -
TTA-C 28.19/0.776 25.76/0.691 27.29/0.747 24.03/0.504 22.71/0.468 16.38/0.357 27.03/0.685 27.45/0.736 24.85/0.621 20.11

SRTTA (ours) 28.61/0.792 26.24/0.702 28.09/0.775 26.58/0.684 25.27/0.617 15.73/0.318 28.24/0.763 27.66/0.742 25.80/0.674 4.47
SRTTA-lifelong (ours) 28.61/0.792 26.25/0.701 28.18/0.776 26.43/0.699 25.56/0.658 15.92/0.312 27.74/0.757 27.61/0.740 25.79/0.679 4.47

6

E.2 More Results on Test domains with Mixed Multiple Degradations.

In this part, we evaluate our SRTTA on DIV2K-MC, which consists of four test domains with mixed
multiple degradations. In Table C, our SRTTA achieves the best performance on 4 domains with
different mixed degradations, e.g., 0.619 (DualSR) → 0.775 (our SRTTA-lifelong) regarding the
average SSIM metric. These results further validate the effectiveness of our proposed methods.

Table C: Comparison results with prior methods on DIV2K-MC. We report the PSNR(↑)/SSIM(↑)
values of different methods.

Methods BlurNoise BlurJPEG NoiseJPEG BlurNoiseJPEG Mean

SwinIR [15] 20.91/0.311 26.83/0.748 23.86/0.523 22.77/0.450 23.59/0.508
IPT [5] 21.28/0.327 26.83/0.748 24.15/0.535 22.96/0.459 23.81/0.517
HAT [6] 23.41/0.399 28.86/0.788 25.69/0.572 24.42/0.502 25.59/0.565

DAN [12] 24.14/0.438 28.95/0.791 26.20/0.593 24.82/0.519 26.03/0.585
DCLS-SR [18] 23.84/0.420 28.93/0.790 26.37/0.599 24.92/0.523 26.02/0.583

ZSSR [20] 24.95/0.493 29.02/0.793 26.68/0.617 25.24/0.542 26.47/0.611
KernelGAN [1]+ZSSR 23.08/0.424 28.32/0.786 21.90/0.474 22.76/0.443 24.02/0.532

MZSR [7] 18.73/0.213 24.90/0.667 20.37/0.398 20.62/0.354 21.16/0.408
DualSR [8] 25.59/0.561 28.24/0.787 23.78/0.586 24.62/0.541 25.56/0.619
DDNM [24] 22.62/0.389 26.82/0.746 25.11/0.582 23.81/0.504 24.59/0.555
EDSR [16] 24.02/0.430 28.93/0.790 26.08/0.587 24.73/0.514 25.94/0.580

TTA-C 24.29/0.446 28.93/0.790 26.35/0.598 24.91/0.522 26.12/0.589

SRTTA (ours) 26.93/0.709 28.93/0.798 29.13/0.784 27.12/0.728 28.02/0.755
SRTTA-lifelong (ours) 27.67/0.749 29.02/0.793 29.70/0.810 27.52/0.747 28.48/0.775

E.3 More Results of Ablation Studies

Effect of each component. In this part, we investigate the effect of each component and provide
more ablation studies. As shown in Table D, the baseline without the degradation classifier, generates
the second-order degraded images with random degradation types, achieving a limited performance in
terms of both PSNR and SSIM. The baseline without the adaptation consistency loss La results in the
model collapse due to the lack of the consistency constraint. Without the self-supervised adaptation
loss Ls, the TTA performance of the adapted model drops significantly. These experimental results
demonstrate the effectiveness of each component of our framework.

Table D: We report the PSNR/SSIM results of ablation studies of different components for 2× SR.

Methods GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRTTA (ours) 31.07/0.869 25.86/0.674 29.01/0.815 29.66/0.762 26.69/0.637 16.15/0.284 32.33/0.873 31.30/0.857 27.76/0.721
- w/o classifier C(·) 29.43/0.812 25.51/0.675 27.51/0.756 22.05/0.546 25.64/0.571 15.66/0.260 31.50/0.836 31.19/0.855 26.06/0.664
- w/o Ls 30.65/0.854 25.87/0.680 28.43/0.795 28.04/0.644 24.83/0.534 15.96/0.274 31.96/0.847 31.47/0.862 27.15/0.686
- w/o La 12.29/0.254 5.67/0.397 5.65/0.403 12.87/0.477 10.29/0.072 11.48/0.213 11.67/0.218 11.99/0.477 10.24/0.314

Effect of the hyperparameter α in Eqn. (6). In this part, we investigate the effect of the weight of
adaptation consistency loss α. As shown in Table E, the adapted model with α = 1 achieves the best
TTA performance. Thus, we set the α = 1 by default for our SRTTA during adaptation.

Table E: We report the PSNR/SSIM results of ablation studies of α for 2× SR.

GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean Set5
α PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

0 12.29/0.254 5.67/0.397 5.65/0.403 12.87/0.477 10.29/0.072 11.48/0.213 11.67/0.218 11.99/0.477 10.24/0.314 11.42/0.421
0.1 11.11/0.318 8.02/0.043 5.65/0.403 22.78/0.683 5.65/0.403 12.50/0.484 15.03/0.542 30.95/0.850 13.96/0.466 37.66/0.959
0.5 10.47/0.134 10.46/0.313 23.69/0.708 29.21/0.797 27.80/0.717 16.30/0.290 32.10/0.871 30.98/0.850 22.63/0.585 37.75/0.959
1 31.07/0.869 25.86/0.674 29.01/0.815 29.66/0.762 26.69/0.637 16.15/0.284 32.33/0.873 31.30/0.857 27.76/0.721 34.59/0.924
2 30.86/0.862 25.91/0.678 28.71/0.804 29.04/0.710 25.89/0.591 16.06/0.279 32.23/0.865 31.45/0.861 27.52/0.706 35.41/0.933
5 30.74/0.857 25.91/0.680 28.53/0.798 28.47/0.670 25.29/0.558 16.00/0.276 32.08/0.855 31.48/0.862 27.31/0.695 35.89/0.939

Effect of the hyperparameter ρ in Eqn. (9). In this part, we analyze the effect of the hyperparameter
ρ, which decides the ratio of parameters to freeze, for the test-time adaptation. In Table F, when
ρ = 0.50, our SRTTA achieves the best TTA performance on the DIV2K-C dataset on average in the
lifelong setting. Meanwhile, we also investigate the effect of the adaptive parameter preservation
(APP) strategy in the parameter-reset setting. As shown in Table F, our APP strategy (with ρ = 0.50)

7

merely has little impact on the TTA in the parameter-reset setting. These results demonstrate the
effectiveness of the APP strategy in test-time adaptation for image super-resolution.

Table F: We report the PSNR/SSIM results of ablation studies of ρ for 2× SR in the parameter-reset
and lifelong setting, our model is SRTTA and SRTTA-lifelong.

Setting 0 0.1 0.2 0.3 0.5 0.7 0.9 1

SRTTA 27.74/0.729 27.79/0.730 27.82/0.729 27.82/0.727 27.76/0.721 27.55/0.709 27.08/0.682 26.21/0.645
SRTTA-lifelong 27.46/0.726 27.60/0.727 27.66/0.728 27.72/0.728 27.73/0.728 27.73/0.725 27.50/0.706 26.21/0.645

Comparison with other anti-forgetting methods. In this part, we compare our adaptive parameter
preservation (APP) strategy with two baseline methods to demonstrate the effectiveness of our strategy
in preserving the learned knowledge of pre-trained SR models. Stochastic Restoration (STO) [21]
randomly selects a different set of parameters (with a ratio of 1%) and restores them back to the
parameters of the pre-trained models. Random Selection (RS) selects a fixed set of parameters
before adaption and freezes them not to update. As shown in Table G, our APP strategy achieves the
best TTA results on the DIV2K-C dataset. Meanwhile, with the same ratio of selected parameters,
our APP strategy consistently outperforms the Random Selection baseline for the anti-forgetting.
These results demonstrate that our adaptive selection is able to select the important parameters and
preserve the knowledge of the pre-trained model.

Table G: We report the PSNR/SSIM results of ablation studies of adaptive parameter preservation
(APP) strategy for 2× SR in the lifelong setting.

Dataset STO [21] RS with different ρ APP with different ρ (ours)

0.3 0.5 0.7 0.3 0.5 0.7

DIV2K-C (with degradation shift) 27.17/0.687 27.52/0.727 27.62/0.728 27.68/0.726 27.72/0.728 27.73/0.728 27.73/0.725

Set5 (w/o degradation shift) 35.57/0.938 33.95/0.913 34.02/0.914 34.24/0.918 34.11/0.916 34.23/0.917 34.38/0.920

E.4 Effectiveness on a New Unknown Domain

In this part, we further evaluate our SRTTA on a new unknown domain with the degradation of
processed camera sensor noise [3, 26], which is not used in the training phase of the SR model or
that of the degradation classifier. We report the PSNR(↑) and SSIM(↑) values of different methods on
100 images with random processed camera sensor noise. In Table H, our SRTTA method is also able
to improve the model performance on this unknown degradation. These experimental results further
demonstrate the generalization capability of our SRTTA model to unknown degradation types.

E.5 Comparison with Patch-Recurrence Reconstruction Loss

Table H: Results of different methods on
the unknown domain with the degrada-
tion of processed camera sensor noise.

Methods PSNR SSIM

SwinIR [15] 19.45 0.496
IPT [5] 19.51 0.500
HAT [6] 21.52 0.596

DDNM [24] 19.63 0.518
DAN [12] 21.53 0.598

DCLS-SR [18] 21.57 0.605
DualSR [8] 21.14 0.586
MZSR [7] 20.40 0.438
ZSSR [20] 21.57 0.621

KernelGAN [1]+ZSSR 20.60 0.543
EDSR [16] 21.56 0.601

SRTTA (ours) 21.81 0.647

In this part, we investigate the effect of our second-order
reconstruction loss. We compare our loss with the loss
of existing zero-shot methods [20, 7, 1]. Based on the
assumption of patch recurrence across scales [9, 29], these
methods downsample the test image to obtain an image
with a lower resolution and reconstruct the test image
from the downsampled image. For simplicity, we call this
patch-recurrence loss. For a fair comparison, we further
downsample the second-order degraded images that are
obtained using our second-order degradation scheme and
reconstruct the test image with the patch-recurrence loss.
As shown in Table I, our SRTTA with our second-order
reconstruction loss consistently outperforms the baseline
with the patch-recurrence loss. These results demonstrate
the effectiveness of our second-order reconstruction loss.

E.6 Effect of the Feature-level Reconstruction

In this part, we investigate the effect of different reconstruction levels. In our second-order recon-
struction, we use the feature-level reconstruction to adapt the pre-trained model as in Eqn. (6). We

8

Table I: We report the PSNR/SSIM results of ablation studies of the patch-recurrence reconstruction
loss for 2×SR in parameter-reset and lifelong settings.

GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean
methods Setting PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Patch-recurrence loss parameter-reset 29.87/0.828 25.51/0.674 27.67/0.767 28.55/0.680 26.41/0.605 19.72/0.407 31.71/0.842 31.02/0.853 27.56/0.707
Patch-recurrence loss lifelong 29.87/0.828 25.51/0.674 27.67/0.767 28.52/0.678 26.40/0.604 20.48/0.430 31.76/0.846 31.01/0.853 27.65/0.710

SRTTA(ours) parameter-reset 31.07/0.869 25.86/0.674 29.01/0.815 29.66/0.762 26.69/0.637 16.15/0.284 32.33/0.873 31.30/0.857 27.76/0.721
SRTTA(ours) lifelong 31.07/0.869 25.83/0.674 29.18/0.819 29.48/0.797 27.10/0.673 16.27/0.273 31.71/0.864 31.22/0.853 27.73/0.728

Table J: We report the PSNR/SSIM results of ablation studies of feature-level and image-level
reconstruction for 2× SR in the lifelong setting.

GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean
Reconstruct-level Scale PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

EDSR [16] 2 30.28/0.837 25.52/0.673 27.82/0.773 25.87/0.536 22.96/0.449 15.87/0.269 30.52/0.778 30.83/0.847 26.21/0.645
Image-level 2 31.21/0.871 25.73/0.671 29.16/0.817 29.56/0.796 26.74/0.654 16.24/0.263 32.47/0.884 31.44/0.860 27.82/0.727

Feature-level 2 31.07/0.869 25.83/0.674 29.18/0.819 29.48/0.797 27.10/0.673 16.27/0.273 31.71/0.864 31.22/0.853 27.73/0.728

EDSR [16] 4 28.31/0.780 25.81/0.692 27.40/0.751 23.49/0.479 22.10/0.443 15.28/0.283 26.80/0.676 27.34/0.734 24.57/0.605
Image-level 4 28.61/0.790 26.23/0.697 28.13/0.773 26.46/0.685 25.28/0.623 15.72/0.297 28.02/0.751 27.74/0.746 25.77/0.670

Feature-level 4 28.78/0.795 26.31/0.703 28.16/0.776 26.28/0.691 25.46/0.643 15.62/0.294 27.77/0.755 27.61/0.740 25.75/0.675

compare a baseline with an image-level reconstruction, which means we reconstruct the output of the
SR model instead of the feature in the middle layer. As shown in Table J, when reconstructing at
the image level, the adapted model achieves a comparable performance for both 2× SR and 4× SR.
Thus, both reconstruction levels are optional, we use the feature-level reconstruction by default.

Table K: We report the PSNR/SSIM results of ablation studies of adapted iterations for 2× SR in the
parameter-reset setting.

GaussianBlur DefocusBlur GlassBlur GaussianNoise PossionNoise ImpulseNoise SpeckleNoise JPEG Mean GPU Time
Iterations PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM seconds/image

1 30.49/0.844 25.59/0.675 28.08/0.782 27.05/0.592 24.34/0.507 15.98/0.279 31.32/0.810 31.09/0.853 26.74/0.668 0.60
2 30.72/0.854 25.82/0.679 28.62/0.800 27.76/0.630 24.99/0.538 16.02/0.280 31.76/0.830 31.23/0.856 27.12/0.683 1.41
5 30.64/0.861 25.80/0.677 28.88/0.811 28.90/0.702 26.10/0.600 15.98/0.278 32.19/0.861 31.37/0.859 27.48/0.706 2.73

10 31.07/0.869 25.86/0.674 29.01/0.815 29.66/0.762 26.69/0.637 16.15/0.284 32.33/0.873 31.30/0.857 27.76/0.721 5.38
20 31.15/0.870 25.80/0.675 29.32/0.824 29.24/0.772 26.05/0.601 16.08/0.276 32.14/0.865 31.31/0.856 27.64/0.717 10.82
50 30.71/0.856 25.64/0.674 29.28/0.821 29.12/0.743 25.40/0.569 16.02/0.265 31.54/0.838 28.46/0.846 27.02/0.701 25.64

E.7 Effect of Adaptation Iterations for Each Image

In this part, we investigate the effect of different adaptation iterations for each image. As shown in
Table K, we compare the TTA performance of SRTTA with a different number of iterations S for
each image. When the number of iterations S is small, the adapted SR model is not able to learn how
to remove the degradation for these images well. When the number of iterations S is too large, the
performance improvement of SRTTA diminishes and the adaptation cost will be greatly increased.
Thus, we set S to 10 for a better efficiency-accuracy trade-off.

E.8 The Statistics of the Degradation Types of Real-world Images

In this part, we count the statistics of the degradation types of real-world images and report the results
in Table L. We use our degradation classifier to identify the degradation types of real-world images
from five datasets, including RealSR [4], DRealSR [25], DPED [13], OST300 [23] and ADE20K [28].
Experimental results in Table L show that the degradation type of blur happens the most among these
real-world datasets.

E.9 Further Analysis of the Domain Shift Issue

In this part, we investigate the effect of the domain shift issues for pre-trained SR models, which are
trained on specific domains with different degradation types. We use the EDSR baseline model as the
model for analysis. In total, we separately train four EDSR baseline models on clean, blur, noise and
JPEG domains, respectively. The corresponding four models are named EDSR, EDSR-B, EDSR-N
and EDSR-J, respectively. We evaluate these four models on clean images and the test images with
Gaussian Blur, Gaussian Noise or JPEG degradations in Figure B and Figure C.

As shown in Figure B and Figure C, when domain shift occurs, the pre-trained EDSR models, which
are trained on domains different from the test domains, cannot remove the degradation from test

9

Table L: The count of the predicted degradation types of the real-world images from the five datasets.
Note that some images can contain more than one degradation type simultaneously.

Dataset (# Images) Clean Blur Noise JPEG

RealSR (912) 48 860 1 149
DRealSR (35148) 1378 33770 0 1

DPED (187) 103 33 21 64
OST300 (300) 52 23 14 221

ADE20K (27574) 0 3452 2424 27573

Total (64121) 1581 38138 2460 28008

EDSR

EDSR-B EDSR-N EDSR-J

HR

LR

SRTTA(ours)

(a) Visualization results under clean domain.

EDSR

EDSR-B (upper-bound) EDSR-N EDSR-J

HR

LR

SRTTA(ours)

(b) Visualization results under Gaussian Blur.

EDSR

EDSR-B EDSR-N (upper-bound) EDSR-J

HR

LR

SRTTA(ours)

(c) Visualization results under Gaussian Noise.

EDSR SRTTA(ours)

EDSR-B EDSR-N EDSR-J (upper-bound)

HR

LR

(d) Visualization results under JPEG.

Figure B: Visualization of the domain shift issue under different domains for 2× SR.

images and generate unsatisfactory HR images with artifacts. For example, EDSR-B models cannot
remove the noise and JPEG degradation, the EDSR-N and EDSR-J are also unable to remove the blur
degradation. Instead, after test-time adaptation, our SRTTA is capable of handling the test images
with unknown degradations and generating HR images with fewer artifacts. For example, our SRTTA
is able to generate sharper HR images than EDSR-N and EDSR-J under Gaussian Blur domains.
Indeed, our SRTTA models may be unable to completely remove the degradation compared with the
upper-bound models, such as EDSR-B under Gaussian Blur. Thus, these drawbacks are required to
be further addressed in future works.

F Visualization Results

F.1 Visualization Results on the DIV2K-C Images

In this part, we show more visualization comparison results of different SR methods on test images
of the DIV2K-C dataset for both 2× and 4× SR. As shown in Figures D and E, our SRTTA is able
to reduce the degradation from the test images and generate more plausible HR images.

F.2 Visualization Results on the Real-World Images

In this part, we conduct a comprehensive comparison of our SRTTA with existing approaches on two
real-world datasets, including DPED [13], ADE20K [28] and OST300 [23]. As shown in Figures F
and G, our SRTTA methods consistently generate more satisfactory HR images with less degradation
of unknown noise or artifacts.

10

HR EDSR

EDSR-B EDSR-N EDSR-JLR

SRTTA(ours)

(a) Visualization results under clean domain.

EDSR

EDSR-B (upper-bound) EDSR-N EDSR-J

HR

LR

SRTTA(ours)

(b) Visualization results under Gaussian Blur.

EDSR

EDSR-B EDSR-N (upper-bound) EDSR-J

HR

LR

SRTTA(ours)

(c) Visualization results under Gaussian Noise.

EDSR

EDSR-B EDSR-N EDSR-J (upper-bound)

HR

LR

SRTTA(ours)

(d) Visualization results under JPEG.

Figure C: Visualization of the domain shift issue under different domains for 2× SR.

Ground-truth HR

KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)Bicubic DAN DDNM

HATDualSR SRTTA-lifelong(ours)

(a) Visualizations under Gaussian Noise for 2× SR

Ground-truth HR

Bicubic DAN KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)DDNM

HATDualSR SRTTA-lifelong(ours)

(b) Visualizations under JEPG Compression for 2× SR

Figure D: Visualization comparison on DIV2K-C test images with degradation for 2× SR.

G Limitation Analysis and Border Impacts

G.1 Limitation Analysis

In this part, we analyze the limitations of our SRTTA and existing SR methods. When test images are
corrupted at a high level, our SRTTA may not be able to completely remove the degradation and result
in generated HR images with the existing degradation. For example, we show more visualization
results of different methods on test images with Impulse Noise degradation in Figure H.

11

Ground-truth HR

Bicubic DAN KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)SRDiff

HATIPT SRTTA-lifelong(ours)

(a) Visualizations under PossionNoise for 4× SR

Ground-truth HR

Bicubic DAN KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)SRDiff

HATIPT SRTTA-lifelong(ours)

(b) Visualizations under JEPG Compression for 4× SR

Figure E: Visualization comparison on DIV2K-C test images with degradation for 4× SR.

Since Real-ESRGAN [22] uses several different degradation types to construct training data, this
model is able to remove the degradation in many cases. However, this model still suffers from the
degradation shift issue, such as it cannot remove the gray Impulse noise from the test images as shown
in Figure H(a). Moreover, Real-ESRGAN may generate HR images with over-smooth regions when
removing the noise degradation and introduce some unpleasant artifacts due to the GAN training [22],
which are shown in Figure H(b) and Figure H(c), respectively. Although our SRTTA cannot also
completely remove the degradation from the test images in these cases, our SRTTA often preserves
the original information of the test images. These results show the limitations of our SRTTA and
existing methods and have a great impact on the practical application. Thus, these drawbacks are in
urgent need to address in future works.

G.2 Broader Impacts

Our proposed SRTTA method is capable of improving the resolution of low-resolution test images in
real-world applications, resulting in enhanced image clarity and enabling a precise understanding of
image content. However, it is important to exercise caution during aggressive TTA adaptation, as this
may result in the introduction of artifacts or distortions that have the potential to negatively impact
downstream analyses such as microscopy, remote sensing, and surveillance.

12

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR SwinIR EDSR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNM

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSRSwinIR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNM

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSRSwinIR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNM

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSRSwinIR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNM

Figure F: Visualization comparison of different methods on real-world test images from DPED [13].

13

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNMSwinIR

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNMSwinIR

(a) Visualization comparisons on ADE20K [28] test images.

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNMSwinIR

LR

Bicubic DAN kernelGAN+ZSSR

ZSSR EDSR SRTTA-lifelong(ours)

DCLS-SR HAT

DDNMSwinIR

(b) Visualization comparisons on OST300 [23] test images.

Figure G: Visualization comparison on real-world test images from for 2× SR.

14

Ground-truth HR

Bicubic IPT KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)SRDiff

HATRealesrGAN SRTTA-lifelong(ours)

(a) Limitation visualization under Impulse Noise.

Ground-truth HR

Bicubic IPT KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)SRDiff

HATRealesrGAN SRTTA-lifelong(ours)

(b) Limitation Visualization under Impulse Noise.

Ground-truth HR

Bicubic IPT KernelGAN+ZSSR

ZSSR EDSR

SRTTA(ours)SRDiff

HATRealesrGAN SRTTA-lifelong(ours)

(c) Limitation visualization under Impulse Noise.

Figure H: Limitations visualization on DIV2K-C test images with degradation for 4× SR.

15

References
[1] S. Bell-Kligler, A. Shocher, and M. Irani. Blind super-resolution kernel estimation using an internal-gan.

In Advances in Neural Information Processing Systems, volume 32, 2019.

[2] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel. Low-complexity single-image super-
resolution based on nonnegative neighbor embedding. In British Machine Vision Conference, pages 1–10.
BMVA press, 2012.

[3] T. Brooks, B. Mildenhall, T. Xue, J. Chen, D. Sharlet, and J. T. Barron. Unprocessing images for learned
raw denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11036–11045, 2019.

[4] J. Cai, H. Zeng, H. Yong, Z. Cao, and L. Zhang. Toward real-world single image super-resolution: A new
benchmark and a new model. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3086–3095, 2019.

[5] H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao. Pre-trained image
processing transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12299–12310, 2021.

[6] X. Chen, X. Wang, J. Zhou, Y. Qiao, and C. Dong. Activating more pixels in image super-resolution
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 22367–22377, 2023.

[7] X. Cheng, Z. Fu, and J. Yang. Zero-shot image super-resolution with depth guided internal degradation
learning. In European Conference on Computer Vision, pages 265–280. Springer, 2020.

[8] M. Emad, M. Peemen, and H. Corporaal. Dualsr: Zero-shot dual learning for real-world super-resolution.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1630–1639,
2021.

[9] D. Glasner, S. Bagon, and M. Irani. Super-resolution from a single image. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 349–356. IEEE, 2009.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[11] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corruptions and
perturbations. In International Conference on Learning Representations, 2019.

[12] Y. Huang, S. Li, L. Wang, T. Tan, et al. Unfolding the alternating optimization for blind super resolution.
In Advances in Neural Information Processing Systems, volume 33, pages 5632–5643, 2020.

[13] A. Ignatov, N. Kobyshev, R. Timofte, K. Vanhoey, and L. Van Gool. Dslr-quality photos on mobile devices
with deep convolutional networks. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 3277–3285, 2017.

[14] H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen. Srdiff: Single image super-
resolution with diffusion probabilistic models. Neurocomputing, 479:47–59, 2022.

[15] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte. Swinir: Image restoration using
swin transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1833–1844, 2021.

[16] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced deep residual networks for single image
super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pages 136–144, 2017.

[17] P. Liu, H. Zhang, Y. Cao, S. Liu, D. Ren, and W. Zuo. Learning cascaded convolutional networks for blind
single image super-resolution. Neurocomputing, 417:371–383, 2020.

[18] Z. Luo, H. Huang, L. Yu, Y. Li, H. Fan, and S. Liu. Deep constrained least squares for blind image super-
resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 17642–17652, 2022.

[19] S. Schulte, M. Nachtegael, V. De Witte, D. Van der Weken, and E. E. Kerre. A fuzzy impulse noise
detection and reduction method. IEEE Transactions on Image Processing, 15(5):1153–1162, 2006.

16

[20] A. Shocher, N. Cohen, and M. Irani. “zero-shot” super-resolution using deep internal learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3118–3126,
2018.

[21] Q. Wang, O. Fink, L. Van Gool, and D. Dai. Continual test-time domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7201–7211, 2022.

[22] X. Wang, L. Xie, C. Dong, and Y. Shan. Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
1905–1914, 2021.

[23] X. Wang, K. Yu, C. Dong, and C. C. Loy. Recovering realistic texture in image super-resolution by deep
spatial feature transform. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 606–615, 2018.

[24] Y. Wang, J. Yu, and J. Zhang. Zero-shot image restoration using denoising diffusion null-space model. In
The International Conference on Learning Representations, 2023.

[25] P. Wei, Z. Xie, H. Lu, Z. Zhan, Q. Ye, W. Zuo, and L. Lin. Component divide-and-conquer for real-world
image super-resolution. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part VIII 16, pages 101–117. Springer, 2020.

[26] K. Zhang, J. Liang, L. Van Gool, and R. Timofte. Designing a practical degradation model for deep blind
image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 4791–4800, 2021.

[27] M. Zhang, S. Levine, and C. Finn. Memo: Test time robustness via adaptation and augmentation. In
Advances in Neural Information Processing Systems, volume 35, pages 38629–38642, 2022.

[28] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba. Semantic understanding of
scenes through the ade20k dataset. International Journal of Computer Vision, 127:302–321, 2019.

[29] M. Zontak and M. Irani. Internal statistics of a single natural image. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 977–984. IEEE, 2011.

17

	More Details of the Second-Order Degradation
	Random Blur Degradation
	Random Noise Degradation
	Random JPEG Degradation

	The Difference from Real-ESRGAN
	Solving Different Problems
	Different Construction Schemes

	Experimental Datasets
	Construction Details of the DIV2K-C Dataset
	Construction Details of the DIV2K-MC Dataset
	More Test Datasets for Test-Time Image Super-Resolution

	Implementation Details
	Implementation Details of the Degradation Classifier
	More Details of Super-Resolution Test-Time Adaptation

	More Experimental Results
	More Results of Test-Time Image Super-Resolution
	More Results on Test domains with Mixed Multiple Degradations.
	More Results of Ablation Studies
	Effectiveness on a New Unknown Domain
	Comparison with Patch-Recurrence Reconstruction Loss
	Effect of the Feature-level Reconstruction
	Effect of Adaptation Iterations for Each Image
	The Statistics of the Degradation Types of Real-world Images
	Further Analysis of the Domain Shift Issue

	Visualization Results
	Visualization Results on the DIV2K-C Images
	Visualization Results on the Real-World Images

	Limitation Analysis and Border Impacts
	Limitation Analysis
	Broader Impacts

