A APPENDIX

Physical

A.1 PHYSICAL PROPERTIES PREDICTED BY FILTER

Table 2: The physical properties predicted by FILTER, along with their descriptions and expected ranges.

Expected

Physical Description		
Rule of Five	A manager of a malagera's drug literage based on its	Range
Rule of Five	A measure of a molecule's drug-likeness based on its molecular weight, lipophilicity, and hydrogen bond-	0-5
	ing.	
Ghose Filter	Evaluates drug-likeness considering molecular weight,	0-5
	lipophilicity, and hydrogen bonding.	
MDDR-Like Rule	Assesses drug-likeness based on molecular weight,	0-5
	lipophilicity, and hydrogen bonding.	
Rotatable Bond Count	The number of rotatable bonds in a molecule, influenc-	0-20
	ing its flexibility.	
Bioavailability	Extent to which a molecule is absorbed and available	0-100%
5	for use by the body.	
Number of Rings	The number of cyclic structures within a molecule, af-	0-10
i tunicer er runge	fecting its stability and binding.	0 10
H Bond Donor Count	The number of hydrogen bond donors, impacting sol-	0-10
Ti Dona Donor Count	ubility and binding interactions.	0.10
H Bond Acceptor Count	The number of hydrogen bond acceptors, influencing	0-10
II Bolid Acceptor Count	solubility and molecular interactions.	0-10
Physiological Charge	The net charge of a molecule at physiological pH, af-	-10 to 1
Physiological Charge	facting its solubility and transport	-10 10 1
Malda Dalat	fecting its solubility and transport.	0.50000
Melting Point	The temperature at which a molecule transitions from	0-500°C
	solid to liquid.	0.1000
Water Solubility	Degree to which a molecule dissolves in water, affect-	0-100%
	ing bioavailability.	
Polar Surface Area (PSA)	Total polar surface area of a molecule, influencing	0-200 Å
	membrane permeability and drug transport.	
Boiling Point	The temperature at which a molecule transitions from	0-500°C
	liquid to gas.	
logP	Measure of a molecule's lipophilicity, affecting its	-10 to 1
	ability to cross cell membranes.	
Refractivity	Measure of a molecule's ability to refract light, related	0-100
	to its volume and electron distribution.	
pKa (Strongest Acidic)	The pKa value of the most acidic group in a molecule,	0-14
	influencing its ionization state.	
Polarizability	The ability of a molecule's electron cloud to be dis-	0-100
-	torted by external electric fields.	
pKa (Strongest Basic)	The pKa value of the most basic group in a molecule,	0-14
/	affecting its protonation state.	
рКа	General pKa value of a molecule, indicating its acid-	0-14
1	base properties.	
logS	Measure of a molecule's solubility in a solvent, im-	-10 to 1
	pacting its bioavailability.	
Radioactivity	Measure of a molecule's radioactivity, important for	0-100
Ruaiouetivity	safety and regulatory compliance.	0 100
caco2 Permeability	Assesses a molecule's permeability across the Caco-2	0-100%
Caco2 I Childadinty		0-100%
	cell line, predicting intestinal absorption.	

A.2 RESULTS ACROSS ALL MODELS AND TARGET PROPERTIES BY FILTER

Table 3: Summary of results across all models and target properties; results in **bold** indicate the best performance for each metric.

Task Type	Target Property	Metric	NN	XGB	Combined
Binary Classification	Bioavailability	ROC AUC	0.9101	0.9090	0.9104
		Accuracy	0.8194	0.8367	0.8367
		Precision	0.9700	0.9659	0.9653
		F1 Score	0.8848	0.8974	0.8975
Regression	caco2 Permeability	RMSE	1.8883	1.8707	1.8583
		MAE	0.9583	0.8674	0.8950
Binary Classification	Ghose Filter	ROC AUC	0.8821	0.8810	0.8828
		Accuracy	0.8189	0.8166	0.8171
		Precision	0.8166	0.8261	0.8246
		F1 Score	0.8366	0.8314	0.8323
Regression	logS	RMSE	2.6052	2.3354	2.4140
		MAE	1.4450	1.1462	1.2394
Binary Classification	MDDR-Like Rule	ROC AUC	0.9157	0.9117	0.9135
		F1 Score	0.6830	0.6922	0.6966
Regression	Polar Surface Area	RMSE	0.8869	0.8453	0.8513
		MAE	0.5393	0.4361	0.4831
Regression	рКа	RMSE	0.5179	0.5296	0.5184
		MAE	0.2335	0.2456	0.2384
Binary Classification	Rule of Five	ROC AUC	0.8830	0.8792	0.8817
		F1 Score	0.8568	0.8606	0.8508

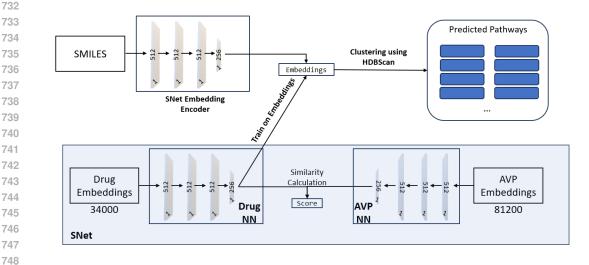


Figure 4: Prediction engine for embedding newly synthesized molecules into SNet space based on chemical structure, enabling pathway clustering and functional analysis by proximity to known drugs with established biological functions in biological space.

SMILES	JNK1	JNK2	JNK3	FA7
C12Cc3c(c(O)ccc3)C(=O)C1=C(O)C1(O)	13.4	11.7	13.4	9.9
C12Cc3c(c(O)ccc3N3CCN(CC3)c3ncc(F)	12.6	11.0	12.6	6.3
C12Cc3c(c(O)ccc3n3cc(c4c3cccc4)C3	12.4	10.8	12.4	9.4
C12Cc3c(c(O)ccc3n3c(nc(c3)CNC(=O	12.4	14.7	12.4	10.2
C12Cc3c(c(O)ccc3n3c(ncc3c3n[nH]c4	12.3	9.3	12.3	11.4
C12Cc3c(c(0)ccc3)C(=0)C1=C(0)C1(0	10.0	14.5	10.0	9.7
C12Cc3c(c(O)ccc3n3cc(c4c3cccc4)C3	9.4	13.9	9.4	7.6
n1(c(ncc1)c1nc[nH]c1c1[nH]cc(n1)C	9.8	13.9	9.8	9.0
CCC(=C(c1ccccc1)c1ccc(cc1)ONC(=O	9.8	10.3	13.3	7.0
CCC(=C(c1ccccc1)c1ccc(cc1)ONC(=O	9.5	12.1	13.3	6.3
CCC(=C(c1ccccc1)c1ccc(cc1)OCCc1n	6.5	7.3	13.3	8.0

756	Table 4: Top docking scores for synthesized molecules and JNK1, JNK2, JNK3, and FA7 proteins.
757	