
Learning Large Neighborhood Search Policy for
Integer Programming (Appendix)

A.1 Architecture of bipartite GCN

In this paper, we propose to factorize the selection of a variable subset into decisions on selection
of each variable, under our LNS framework. To represent such action factorization, we employ
the bipartite GCN as the destroy operator, as shown in Figure A.1. In specific, the bipartite GCN
comprises two stacks of graph convolution layers to compute the embeddings of variables, and one
MLP module that computes probabilities of selecting each variable in parallel.

Current solution value Variable to optimize Reoptimized solution value

𝑘-th graph convolution layer

Variable Node Constraint Node

𝑎11

𝑎12

𝑎22

𝑎23
𝑎24

𝑎34

𝑎11

𝑎12

𝑎22
𝑎23

𝑎24

𝑎34

𝑐2

𝑐3

𝑐1

𝑉(𝑘) 𝐶(𝑘+1) 𝑉(𝑘+1)

𝜇1𝑥1 + 𝜇2𝑥2 + 𝜇3𝑥3 + 𝜇4𝑥4

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + 𝑎14𝑥4 ≤ 𝑏1

min.

𝑣1

𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + 𝑎24𝑥4 ≤ 𝑏2

𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + 𝑎34𝑥4 ≤ 𝑏3

𝑐2

𝑐3

𝑐1

𝑣2 𝑣3 𝑣4

Variables with features 𝑉

Linear projection to 𝑉(0)

Linear

projection to 𝐶(0)

Constraints

with features 𝐶 MLP

𝝅(𝒂𝒕|𝒔𝒕)

4 × 128 3 × 128 4 × 128

4 × 1

Sample

Bipartite GCN (destroy operator) Environment

Update dynamic features

SOLVER
(repair operator)

IP formulation

𝑥1

𝑥2

𝑥3

𝑥4

𝑣1

𝑣2

𝑣3

𝑣4

𝑣1

𝑣2

𝑣3

𝑣4

IP formulation

𝑉(𝐾)

4 × 128

𝑥1

𝑥2

𝑥3

𝑥4

State 𝑠𝑡

(𝑘 = 0,… ,𝐾)

Figure A.1: Illustration of our LNS framework with the bipartite GCN based destroy operator.

A.2 Training details

Our RL algorithm for training LNS policies is depicted by the pseudo code in Algorithm 1. Compared
to the standard actor-critic algorithm, we use experience replay to empower the reuse of past samples
(lines 2-8). In addition, we customize the standard Q-actor-critic algorithm for the proposed action
factorization, by specializing the loss functions.

Algorithm 1: Customized Q-actor-critic for LNS
Input: actor πθ with parameters θ; critic Qω with parameters ω; empty reply buffer D; number of

iterations J ; step limit T ; number of updates U ; learning rates αθ , αω; discount factor γ.
1 for j = 1, 2, · · · , J do
2 draw M training instances;
3 for m = 1, 2, · · · , M do
4 for t = 1, 2, · · · , T do
5 sample ai

t ∼ πθ(a
i
t|st), derive the union at ;

6 receive reward rt and next state st+1;
7 sample ai

t+1 ∼ πθ(a
i
t+1|st+1), derive at+1;

8 store transition (st, at, rt, st+1, at+1) in D;

9 for u = 1, 2, · · · , U do
10 randomly sample a batch of transitions B from D;
11 update the parameters of actor and critic with yt = γQω(st+1, at+1) + rt;

ω ← ω + αω∇ω
1
|B|

∑
B(yt −Qω(st, at))

2; zt =
∑n

i=1 log(πθ(a
i
t|st));

θ ← θ + αθ∇θ
1
|B|

∑
B Qω(st, at)zt;

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

A.3 Semi-shared vs. fully-shared network

As stated in the main paper, our method can be employed to train any kind of policy network that is
able to represent the factorized action. We choose the fully-shared neural network since it can be
generalized to different problem sizes, which is critical to solve IP problems. Nevertheless, we also
experiment with a semi-shared neural network to show its performance on problem instances of the
fixed size. The architecture of the neural network is displayed in the upper half of Figure A.2, which
is similar to the one used for DQN based RL algorithms in [26]. Specifically, given a collection of
features for each variable, we first process them by a MLP to obtain variable embeddings. Then,
these embeddings are averaged and advanced by another MLP to obtain the state embedding. Lastly,
we concatenate each variable embedding with the state embedding and pass them through n MLPs
separately to get probabilities of n variables. For the fully-shared counterpart, we only replace the n
MLPs by a parameter-sharing MLP, as shown in the lower half of Figure A.2. All layers in MLPs are
activated by Tanh except the final output by Sigmoid.

Figure A.2: Architectures of the semi-shared and
fully-shared policy networks.

Following the experimental setting for SCIP in
the main paper, we train both the fully-shared
and semi-shared networks on SC, MIS, CA and
MC, with the customized actor-critic algorithm
we designed. We evaluate the average objective
value over the validation set after each training
iteration. All training curves of initial 50 itera-
tions are displayed in Figure A.3. We find that
the fully-shared network is able to learn effi-
ciently on SC, CA and MC, while semi-shared
network performs better on MIS. It indicates that
our training algorithm can be applied to different
kinds of policy networks, and the fully-shared
network is more effective in learning LNS poli-
cies for IP problems. For the semi-shared net-
work, despite the good performance with rela-
tively low-dimensional action spaces in [26], it
needs far more sub-networks in our RL tasks
with thousands of action dimensions, which are
intractable to train together and also prevent the
generalization to different problem sizes.

(a) SC (b) MIS (c) CA (d) MC

Figure A.3: Training curves of the semi-shared and fully-shared networks.

A.4 State features

In this paper, we represent the state by a bipartite graph G = (V, C,A) attached by the features of
variables, constraints and edges (i.e. V, C and A), which are listed in Table A.1. The logic behind
this design is to reflect the instance information and the dynamic solving status, both of which are
critical to learn effective policies in LNS. For the static features, we consider the ones used in [20],
which learns variable selection policies in B&B algorithm. It has been shown that these features
have the potential to predict variables for branching. From the perspective of learning LNS, we only
extract these features at the root node as the instance information. Also, we preprocess these features

2

in two ways: 1) we delete the ones with zero variance from the features of variables, which are the
same constant across all training instances; 2) we only use the right-hand-side (RHS) vector as the
features for constraints. For dynamic features, we consider the efficiency of the solving process and
directly record values of the current solution and incumbent at each step of LNS. These dynamic
features are linked with the static features of variables and then attached to variable nodes V .

Table A.1: The list of features for variables, constraints and edges. S. and D. denote the static and
dynamic attribute, respectively.

Feature Types Description Length S./D.
Variable features (V) Normalized reduced cost. 1 S.

Normalized objective coefficient. 1 S.
Normalized LP age. 1 S.
Equality of solution value and lower bound, 0 or 1. 1 S.
Equality of solution value and upper bound, 0 or 1. 1 S.
Fractionality of solution value. 1 S.
One-hot encoding of simplex basis status (i.e., lower,
basic, upper). 3 S.

Solution value at root node. 1 S.
Solution value at the current step. 1 D.
Value in the incumbent. 1 D.
Average value in historical incumbents. 1 D.

Constraint features (C) Constraint right-hand side. 1 S.
Edge features (A) Coefficient in incidence matrix. 1 S.

A.5 Comparison of short-term performance

In the main paper, we found that FT-LNS cannot outperform R-LNS with the long time limit due to
its poor generalization to unseen states. However, according to [21], FT-LNS can outperform R-LNS
with relatively short time limit, i.e. the similar runtime used in training of FT-LNS. To verify this
point, we compare our method and LNS baselines with such setting. Specifically, we first test FT-LNS
with the same number of LNS steps as in its training, and record its runtime. Then we test our method
and other baselines using the runtime of FT-LNS as time limit. All results are summarized in Table
A.2. As shown, FT-LNS can indeed surpass R-LNS on all problems, which indicates its effectiveness
in short-term improvement and is consistent with [21]. Nevertheless, for these experiments with short
time limits, it is clear that our method still consistently outperforms all LNS baselines with smaller
gaps across all problems.

Table A.2: Results with short time limits.
SC MIS CA MC

Methods Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%

SCIP 586.72 ±9.14 3.38 -659.78±1.14 2.23 -93715±2.64 8.34 -840.68±1.49 3.93
U-LNS 615.78±12.68 12.44 -660.30±1.13 2.15 -99302±2.75 2.77 -852.39±1.65 2.59
R-LNS 588.70±8.54 3.79 -667.54±1.14 1.08 -98705±1.93 3.37 -851.57±1.45 2.68
FT-LNS 578.38±9.23 1.89 -670.48±1.13 0.64 -100323±2.00 1.89 -865.01±1.72 1.15

Ours 575.80±8.94 1.46 -673.78±0.11 0.15 -100867±2.11 1.37 -872.47±1.24 0.30

A.6 Testing on MIS with Gurobi

On the training set of MIS, Gurobi solves most instances optimally with 40s in average. As stated in
the main paper, our method aims to improve solvers in bounded time and cannot guarantee optimality.
Thus, in contrast to 100s time limit for other problems, we evaluate all methods on MIS with 20s.
The other experimental settings follow those in Section 5.3. The results are displayed in Table A.3.
As shown, our method effectively improves Gurobi to achieve smaller gaps, although it is already
able to deliver high-quality solutions quickly. Also, our method is consistently superior to baselines
on all instances groups, demonstrating good generalization to different-sized problems.

3

Table A.3: Results on MIS with Gurobi.
MIS MIS2 MIS4

Methods Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%

Gurobi 682.22 ± 1.06 0.08 -1359.54 ± 0.84 0.59 -2645.88 ± 1.10 2.96
U-LNS 682.02 ± 0.95 0.11 -1359.36 ± 0.74 0.61 -2723.44 ± 0.52 0.12
R-LNS 681.82 ± 0.98 0.14 -1365.64 ± 0.67 0.15 -2722.60 ± 0.52 0.15
FT-LNS 682.20 ± 0.94 0.09 -1358.86 ± 0.77 0.64 -2722.18 ± 0.56 0.16

Ours 682.24 ± 0.94 0.08 -1367.48 ± 0.65 0.02 -2724.08 ± 0.52 0.09

A.7 Generalization with Gurobi

Here we further evaluate the generalization of our LNS framework with Gurobi as the repair operator.
We test all methods with 100s time limit, same as in Section 5.3. For FT-LNS and our method, the
learned policies on small instances are directly used. The results are summarized in Table A.4. We
can observe that while our method is slightly inferior to U-LNS and R-LNS on SC4, it can still
generalize well to much larger instances on the problems CA4 and MC4, and outperform all baselines.
This indicates that our method has a good generalization ability to improve Gurobi, the leading
commercial solver, for solving instances of different scales.

Table A.4: Generalization to large instances with Gurobi.
SC4 CA4 MC4

Methods Obj.±Std.% Gap% Obj.±Std.% Gap% Obj.±Std.% Gap%

Gurobi 183.60 ± 7.29 5.30 -377557 ± 0.85 13.87 -3373.11 ± 1.05 1.46
U-LNS 176.84 ± 6.89 1.43 -436224 ± 1.12 0.49 -3388.31 ± 0.73 1.02
R-LNS 176.08 ± 6.47 1.01 -435669 ± 0.67 0.62 -3389.47 ± 0.70 0.98
FT-LNS 201.14 ± 9.65 15.35 -395027 ± 3.56 9.89 -3373.20 ± 2.31 1.48

Ours 177.66 ± 6.65 1.92 -437735 ± 0.80 0.15 -3390.32 ± 0.73 0.95

A.8 Testing on real-world instances in MIPLIB

In this appendix, we provide details of the experiment on real-world instances in MIPLIB. These
instances are grouped into "easy", "hard" and "open", according to their difficulties to solve. Since our
method is more suitable for large-scale IP problems, we filter out the "easy" instances with relatively
small sizes. We also filter out those instances that both SCIP and Gurobi cannot find any feasible
solution with 3600s time limit, and finally choose 35 representative "hard" or "open" instances with
only integer variables. Among the chosen instances, the number of variables ranges from 150 to
393800 (the average is 49563), and the number of constraints range from 301 to 850513 (the average
is 96778). Also, these instances cover the typical application of COP from distinct domains, e.g.,
vehicle routing, cryptographic research and wireless network. To cope with such heterogeneous
problems, we employ our method in the active search mode. Specifically, we apply the customized
Q-actor-critic in Algorithm 1 to each instance, with only two instances solved in each iteration, i.e.,
M = 2. In doing so, we can save computation memory and also raise the frequency of training. We
use Gurobi as the repair operator and set its time limit to 2s in each LNS step. In addition, we set the
step limit T=100, number of updates U=10, and batch size B=32. For the initial solution, we use the
one returned by Gurobi with 100s time limit. We set the whole time limit of active search to 1000s,
and compare the results of SCIP and Gurobi with 1000s and 3600s time limits. The other settings
follow those in Section 5.3.

All results are displayed in Table A.5. As shown, the proposed LNS framework can improve the
solver effectively, and achieve better solutions than SCIP and Gurobi for most instances with the
same or less runtime. Moreover, for the open instance "neos-3682128-sandon", we managed to find a
new best solution.

4

Table A.5: Results on MIPLIB. The "BKS" column lists the best know solutions given in MIPLIB.
Bold and * mean our method outperforms the solvers with 1000s and 3600s respectively. "-" means
no feasible solution is found.

Instance SCIP (1000s) SCIP (3600s) Gurobi (1000s) Gurobi (3600s) Ours (1000s) BKS

a2864-99blp -71 -71 -72 -72 -72 -257
bab3 - - -654709.9511 -655388.1120 -654912.9204 -656214.9542
bley_xs1noM 5227928.57 5227928.57 3999391.53 3938322.37 3975481.35 3874310.51
cdc7-4-3-2 -230 -230 -253 -257 -276* -289
comp12-2idx - 676 416 380 363* 291
ds 509.5625 461.9725 309 177 319 93.52
ex1010-pi 254 248 241 239 238* 235
graph20-80-1rand -1 -1 -3 -6 -6 -6
graph40-20-1rand -1 -1 0 -15 -14 -15
neos-3426085-ticino 234 232 226 226 226 225
neos-3594536-henty 410578 410578 402572 401948 402426 401382
neos-3682128-sandon 40971070.0 35804070.0 34674767.94751 34666770.0 34666765.12338* 34666770
ns1828997 43 32 145 133 128* 9
nursesched-medium-hint03 8074 8074 144 115 131 115
opm2-z12-s8 -36275 -38015 -33269 -33269 -53379* -58540
pb-grow22 0.0 0.0 -31152.0 -46217.0 -46881.0* -342763.0
proteindesign121hz512p9 - - 1499 1499 1489* 1473
queens-30 -33 -39 -39 -39 -39 -40
ramos3 242 242 252 245 248 192
rmine13 -611.536750 -611.536750 -2854.351313 -3493.781904 -3487.807859 -3494.715232
rmine15 -759.289522 -759.289522 -192.372262 -1979.559046 -5001.279118* -5018.006238
rococoC12-010001 44206.0 38905.0 35463 34673 35443 34270
s1234 319 319 41 29 41 29
scpj4scip 141 141 134 133 134 128
scpk4 346 342 331 330 329* 321
scpl4 296 296 281 279 281 262
sorrell3 -11 -15 -16 -16 -16 -16
sorrell4 -18 -18 -22 -23 -23 -24
sorrell7 -152 -152 -183 -187 -188* -196
supportcase2 - - 397 397 397 109137
t1717 236546 228907 201342 201342 195894* 158260
t1722 138927 138927 123984 117171 117978 109137
tokyometro - 33134.6 8493.3 8479.5 8582.70 8329.4
v150d30-2hopcds 42 41 41 41 41 41
z26 -1029 -1029 -1005 -1083 -1171* -1187

5

	Architecture of bipartite GCN
	Training details
	Semi-shared vs. fully-shared network
	State features
	Comparison of short-term performance
	Testing on MIS with Gurobi
	Generalization with Gurobi
	Testing on real-world instances in MIPLIB

