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A Full Proof of Theorem 1

A.1 Generalization of Theorem 1

Instead of proving Theorem 1 directly, we will prove a slightly more general version that we will
state formally in Theorem 2. In short, this version considers a more general family of posteriors
that include an extra parameter o € (0, 1]. The original posterior of Algorithm 1 in Theorem 1
corresponds to the case of a = 1.

First, we introduce some notations used in the proof. We define
1 w1
Reg(f) = (Vi (z') — V] (z')).
Given state action pair [z", a"], we use the notation [z" 1 7] ~ P"(-|z", a") to denote the joint
probability of sampling the next state 2"*! ~ P"(.|z" a") and reward " ~ R"(:|z" a™).

Let ¢, = {[z", a", 2]} .c(m) be the trajectory of the s-th episode. In the following, the notation Sy

s§717syr s

at time ¢ includes all hlstorlc observations up to time ¢, which include both {(, }sc[g and { fs}sepy-
These observations are generated in the order f1 ~ po(-), C1 ~ 7y, fo ~ p(:[S1), o ~ gy,

Define the excess loss
ALM(FM 7 G) =(fM (g, ag) = vl = [ (@ )?
(T*fh+1($ ah) z _ fh+1(.13h+1))2
and define the potential ®, which contains the extra parameter o

t—1

OF(f) =—Inpl(f") +an Y AL"(f", ") (10)

s=1
t—1 B
+ alnthNpg exp ( - nZALh(fh, fh+1§ CS)>a
s=1
and define
Aft(a') = f1(=") - Qi(xh),

where Q% (2') = V*(«!) using our notation. Given S;_1, we may define the following generalized
posterior probability p; on F:

pe(f) ocexp( Z@h +)\Af1(x1)>. (11

We will also introduce the following definition.
Definition 8. We define for o € (0, 1), and e > 0:
—a/(l1-a)

KM'(a,e) = (1—a) lnth+1Npg+1pg (fh(e, fh+1)> :
and we define k" (1, ¢€) = lim,_,1- K" (a, €).
It is easy to check when o = 1, the posterior distribution of (11) is equivalent to the posterior
p(f]St—1) defined in (3).
When oo =1,

1
k"(1,)=  sup In < 0.

o e )

Therefore x(¢) defined in Definition 1 can be written as

H
=> k"1,
h=1

However, the advantage of using a value « < 1 is that x(«, €) can be much smaller than x(1, €).

We will prove the following theorem for o € (0, 1), which becomes Theorem 1 when ov — 1.
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Theorem 2. Consider Algorithm 1 with the posterior sampling probability (3) replaced by (11).
When nb? < 0.4, we have

T
Z ESt—l]Eff,Nﬁf, Reg(ft)

t=1

T

<idc(f M,T,0.25an/X) + (T/A) Y { —lnpg (J-'h( ,QZH)”

h=1
+ Xne(f)e +20)T(T —1)H + Te.

A.2 Proof of Theorem 2

We need a number of technical lemmas. We start with the following inequality, which is the basis of
our analysis.

Lemma 1.

H ) H R
Efep, (Z DI(f) — ANAfH (2! + lnpt(f)) =infE; () (Z DM(f) = AAF (2 + lnp(f)).
h=1 P h=1

Proof. This is a direct consequence of the well-known fact that (11) is the minimizer of the right hand
side. This fact is equivalent to the fact that the KL-divergence of any p(-) and p; is non-negative. [J

We also have the following bound, which is needed to estimate the left hand side and right hand side
of Lemma 1.

Lemma 2. For all function f € F, we have
E[zgﬂyrl}:]wph,(.‘zg’a.}:)ALh(fhv fh+1a Cs) (gh(fv xs s Ws ))2

Moreover, we have

4b?

E[xg‘*'l g)ALh(fh7fh+17CS)2 < ?(gh(fv s s))Q-

e~ PR (|2l a

Proof. For notation simplicity, we introduce the random variable

7 = fh( h) _ h _ fh—i-l( h+1)

Lg, g
h

which depends on [z?T! r?], conditioned on [z", a"]. The expecation E over Z is with respect to

the joint conditional probablhty Ph(-|2" a"). Then
EZ =& (fv Ls, 9)

h+1 h]

and
ALM(fM P () = 27 — (2 - EZ)%.
Since
E[Z* - (2 - EZ)’) = (EZ)’,
we obtain

Ep bt pnopi (ot oy DL (P [, 66) = (B2)? = (En(f3 2, al))™.
Also Z € [~b,b— 1] and max Z — min Z < b (when conditioned on [z", a"]). This implies that
E(Z? — (Z —EZ)?)? = (EZ)*[4EZ? — 3(EZ)?] < ng(EZ)Q.

We note that the maximum of 4EZ? — 3(EZ)? is achieved with Z € {—b,0} and EZ = —2b/3.
This leads to the second desired inequality. O
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The above lemma implies the following exponential moment estimate.
Lemma 3. Ifnb? < 0.8, then for all function f € F, we have

IHE[z;‘“,rQ]NPh(-\zQ,aQ) exp ( — nALh(fh, fh"H, Cs))
SE[ RHL k) PA(|gh ah) ©XP ( - nALh(fh, fh+17 Cs)) -1
- 0. 2577(5h(f7 ;CS, s))Q'

Proof. From 77b2 < 0.8, we know that
—nALM(f", 7, ¢) <08
This implies that

exp (= nALM (" 14 C))
=1 = AL (G (= AL LG )AL (R £ G2
<= ALY, M G) + 06T ALY (F", f77, ¢0)?

where we have used the fact that ¢)(2) = (e* — 1 — 2)/2?% is an increasing function of z, and
(0.8) < 0.67. It follows from Lemma 2 that

B nst g pn (o an) €XP ( —nALM(f Ce))
SE[J;Q+1’TQ}NP}L(.‘12,GQ) exXp ( - nALh(fhv fh+17 Cs)) -
<E[ wit g pn e any [TIAL (P G + 067 ALY, [, ()]

<-0 2577(8h(f7 Lss a))27

where the first inequality is due to In z < z — 1. The last inequality used 0.67(4nb?/3) < 0.75 and
Lemma 2. This proves the desired bound. O

The following lemma upper bounds the right hand side of Lemma 1.
Lemma 4. Ifnb? < 0.8, then
H

inf Eo, Byt [zé (f) = AAf (@) + Inp(f)

h=1

<A +dan(t — )H Zlnpo Fn(e, Qhin))-
h=1

Proof. Consider any f € F. For any f h € F;, that only depends on S,_;, we obtain from Lemma 3:
E¢, exp ( - nALh(fh,th,CS)) — 1< 025K, (f"(x,a) — T " (2,0))? <0. (12)
Now, let

t
W} = Es,Efop(y InEf_p exp ( — Y ALR(fR, i gs)),

then using the notation

] e (0L 1ALh(fh7fh+17Cs))
Q;L(fh|fh+1ast71) = 5
Efn pn exP ( NSy AL, e, Cs)>
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we have

W;L - W:—l = ESsEfNP(') lnthrwq?(.Vthl,ssil) €xXp < - 7)ALh(fhv fh+1, Cs))

S]ESS]EfNP(') <th“"(j2('|fh+l,ss—1) eXp < - nALh(.fha .fh+17 §9)> - 1> S Oa

where the first inequality is due to In z < z — 1, and the second inequality is from (12).

By noticing that W/ = 0, we obtain

t
WE = W+ S W <.
s=1

That is:

t—1 )

Es, \Efmp() INE iy exp ( —n > ALMf, <5)> <0. (13)

s=1

This implies that for an arbitrary p(-):

H
Es, i Efep() {Z Y (f) = AAf (") + 1np(f)]
h=1

H t—1
=Es, 1 Efp() [ M) +an DO TALM(f ¢
s=1
3 o ()
tad B e ( - nZALWf%ﬂH%g)) in p]
h=1 ’ po(f)

<Es, \Efup() [ AASH(x +Za772 (En(f;w3, )" +1n Z%((J;”))}

where in the derivation, the first equality used the definition of <I>f( f) in (10); the second inequality
used (13), and then used the first equality of Lemma 2 to bound the expectation of AL(-) by &j.

Note that if for all h
fh € File, QZ+1)

then |f(z", a") — Q5 (2", a®)| < e. Therefore using the Bellman equation, we know

|gh(f737s,(l )l < ‘f( 57 5) Qh( s’ s)|+5up‘f( 5+1)_Qh(xs+l)‘ §26

Therefore

H t—1
an Y (En( f,xé, ay) 2 < damH (t — 1)
h=1 s=1
By taking p(f) = po(f)I(f € F(€))/po(F(e)), with F(e) = [], Fn(e, Q). we obtain the

desired bound. O

The following lemma lower bounds the entropy term on the left hand side of Lemma 1.
Lemma 5. We have

H
Efpe(r) MPe(f) 2B s, mpe(f) + (1 — a)Epp, Y Inpe(f*)
h=1

H
a
>2 > Epep, Inpe( £, 1)
h=1
H

+ (1= 050)Efup, Inpe(f1) + (1= ) Y Epop, Inpe(f7).
h=2
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Proof. The first bound follows from the following inequality

pe(f)

N 2
Hh:1 pe(f")
which is equivalent to the known fact that mutual information is non-negative (or KL-divergence is

non-negative). The second inequality is equivalent to

Efp, 1

)

H
Efp npr(f) > 0.5E jop, mpi(f1) +0.5 Y Epep, npe(f*, fH). (14)
h=1

To prove (14), we consider the following two inequalities:

H
0.5E fp, Inpe(f) > 0.5 Esop, Inpy(f", f"*)I(his a odd number)
h=1
and
H
0.5Efp, Inps(f) > 0.5Efp, Inp(f1) + 0.5 Z Efop, Inpe(f*, fPT1)I(h is an even number).
h=1

Both follow from the fact that mutual information is non-negative. By adding the above two
inequalities, we obtain (14). ]

We will use the following decomposition to lower bound the left hand side of Lemma 1.
Lemma 6.

H
Es,_, g, (Z 1)~ AAF () + 1nﬁt(f)>
h=1

>Es,_; Ejnp, {— AAS (&) + (1 - 0.50) In 22U 1)}

po(f!)
A
H it 5 (fh phtl
pt(f af )
+_050Rs, , Bpp, [0y 2AL"(F", f,¢) +1n
hz::l " [ ; o (FMpg T (1)
B
H t—1 ~ ﬁt(f.h+1)
+ ZEgt_l Efep, |[oInEg 0 exp *772 AL 7 ) |+ (1= a)n |
h=1 ’ s=1 po" (f*H)
Ch
Proof. We note from (10) that
t—1
7 (f) = —Inpg(f*) +and AL, f*4.¢0)
s=1
t—1 .
+aln ]Ef,wpg exp (—nz ALh(fh’ fh+1, Cb)) .
s=1
Now we can simply apply the second inequality of Lemma 5. O

We have the following result for A in Lemma 6.

Lemma 7. We have
A> —)XEs, , Ej,p, A ().
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Proof. This follows from the fact that the following KL-divergence is nonnegative:

be(f})
P(lJ(ftl) =0

]Eft ~pt In

The following proposition is from Zhang [2005] . The proof is included for completeness.
Proposition 4. For each fixed f € F, we define a random variable for all s and h as follows:

LM G = = 2nALM (" ¢
~IE {1 ) p g an) XD ( = AL (", <s>>-
Then for all h: "
Es,_, exp (Zf?(fﬁfh“,cs)) =1
s=1

Proof. We can prove the proposition by induction. Assume that the equation

t'—1

Est/—l €Xp < Z g?(fh7 fh-‘rl’ Cs)) =1
s=1

holds for some 1 < ¢’ < t. Then

tl
]ESt/ €xXp (Z gf(fha chrlv §5)>
s=1
t'—1

:]EStzfl exp ( Z g?(fh7 fh+17 CS))Eft/NP(-|St/1) ' ]EC,,/NTFft/ €xp (gf’ (fh7 f}H_la Ct’))
s=1
t'—1

—Es, _, oxp (Z £2<fh,fh“,<s>> =1
s=1
Note that in the derivation, we have used the fact that

B¢, ~ry,, exp ( ;L/(f}Laf}L+17Ct’)) =1

The desired result now follows from induction.

The following lemma bounds B}, in Lemma 6. This is a key estimate in our analysis.
Lemma 8. Assume nb> < 0.4, then
t—1

Bh ZO~25Q772]E&_1 ]EfN;f)t Eﬂfs (Eh(f;x’;,ag))Q.

s=1

Proof. Given any fixed f € F, we consider the random variable ¢/ in Proposition 4.

It follows that
t—1 b, (Fl Fht1
E ~Ps - ? h? h+1a s) +1 pt(f 7f ) ‘|
frop Lz_; E(™ " G) LR ()
t—1
| L p(", £
Zlgf]Epr ; —gh(fh P ) +In pg(fh)PgH(th)]

t—1
=—1In E'fh,,\,p(h),]Ef}L+1Npg+l exp (Z§Q<fha fh+1a Cs)) )

s=1
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In the above derivation, the last equation used the fact that the minimum over p is achieved at

t—1
p(F*, F0) o ph (PRl (1) exp (Z e, i, @)) |
s=1

This implies that
t—1
Es,_ Ef~p, Z =& (M MG + In
s=1

ﬁt(fh7 fh+1)

ph(Mpp ()
t—1

> — E5t71 lnthNZ,gIthHNng exXp (Zf?(fha fh+17 Cs))
s=1

t—1
> — lnthNPQEf}L+1NpS+1ESt—1 exp (Zé‘?(fh7 fh-i-l7 Cs)) =0.
s=1

The derivation used the concavity of log and Proposition 4. Now in the definition of ¢/(-), We can
use Lemma 3 to obtain the bound

B nit g p(fon,an) €XP ( = 2pAL"(f", f Cs)> < —0.50(En(f3 2%, a))?,

which implies the desired result. O

The following lemma bounds C}, in Lemma 6.
Lemma 9. We have for all h > 1:

t—1 —a/(l—a)
Cp>-(1-a)lEs,_, lnth+1Npg+1 <]th~pg exp < — UZALh(fh, fhrt Cs))) .

s=1
Proof. We have
= > 3 h+1
Efvp, |[@lnEz o exp —nZALh(fh’fh+17<s) +(1-a) lnﬁ(lfih)l
° = PhL ()
=l h( th+l

i a h(Fh rh p" (")
>(1—a) I;LfEprh [1& lnEf”thg, exp <_7721AL " f +17Cs)> —|—an

t—1 —a/(l1-a)
=—(1-a) lnIEf,LHNng (th~pg exp ( — nz ALh(fh7 fh+17Cs))> 7
s=1

where the inf over p” is achieved at

t—1 —a/(l-a)
P sl (B e (— 0 AL G ) ) .

s=1

This leads to the lemma. O

The above bound implies the following estimate of C}, in Lemma 6, which is easier to interpret.
Lemma 10. Forall h > 1,

Ch > —ane(2b+€)(t — 1) — &"(a, €).

Proof. For f* € Fp,(e, f**1), we have
[ALM(F*, 8 G <(En(f 28, al))? + 2b|E(f, 2, al)] < €(2b + ).
It follows that
t—1
pogg oxp (130 AL P G) ) 2 (e M exp (= ale = D+ )

s=1

This implies the bound. O
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The following result, referred to as the value-function error decomposition in Jiang et al. [2017], is
well-known.

Proposition 5 (Jiang et al. [2017]). Given any f,. Let ¢ = {[z}',al',r[}pei) ~ 7y, be the
trajectory of the greedy policy my,, we have

H

Reg(fi) =B¢inny, O En(froaf,al) — Af ().

h=1

Equipped with all technical results above, we are ready to state the assemble all parts in the proof of
Theorem 2:

Proof of Theorem 2. Let

5ff)\€h(ft,xt,at 025anZE (Eh ft» Ls) s)>2'

Then from the definition of decoupling coefficient, we obtain

T

H
/\2
> Es, Efmp Beinm, Y08 < Z—de(F, M, T,0.25an/)). (15)
t=1 " h=1 an

From Proposition 5, we obtain

H
Est—lEftNﬁt)‘ Reg(ft) - Est—lEftNﬁtECtNTrft Z 62?
h=1
H t-1 2
= — AEs,_,Efop AfH (D) +0.250n 3 S Es,  Ejonp . (Eh(ft, zh, af;))
h=1s=1
H H
<Es, , Efnp, ( Z —AAfH (2t + lnmf)) +ane(2b+e)(t —1)H + > _ r"(a,e)
h=1 h=1
H
=Es,_, ir}}fEpr(Z — M (2 —i—lnp(f))
H
+ane(2b+¢)(t —1)H + Z kM (a,e)
h=1
H H
<Ae+ame(e+4e+2b)(t— 1) H =Y Inpl(Fle, Qi) + > _ " (v ).
h=1 h=1

The first equality used the definition of 6”. The first inequality used Lemma 6 and Lemma 7 and
Lemma 8 and Lemma 10. The second equality used Lemma 1. The second inequality follows from
Lemma 4.

By summing over t = 1 to ¢t = 7', and use (15), we obtain the desired bound. O

We are now ready to prove Theorem 1. Note that

_lnpg(f(€7Q2+1)) < K“h(la€>7

we have

—Zlnpo (6, @hy1)) +Z’f a, €) < 25(e).

h=1
By taking € = b/T"?, we obtain the desired result.
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B Proofs for Decoupling Coefficient Bounds

B.1 Proof of Proposition 1 (Linear MDP)

Proof of Proposition 1. Completeness follows from the fact that the ) function of any policy  is
linear for linear MDPs. This follows directly from the Bellman equation.

QZ(‘T70') = rh(z,a) + Ew/wPh [Vhw+1(z/)] = <¢('Ia a)70h> + /S szr+1(x/)<¢(z7a)v dﬂh(x/»
= <¢($, a)vw;{> )

where wj; = 0, + [ Vi7, | («")d pn (2"). Hence the optimal Q-function is iin the function class.
Boundedness follows from ||¢(z,a)|| < 1 and ||f|| < (H + 1)Vd.

Completeness follows by

(T £ 1)) = 17 (,0) + B e 1 (o', ')
= (0e,0),00) + [ max [ (@' ) 0l 0), dn(a) = (6L, 0) ).

where v = 0, + [ maxaea [T (2, a)d pn(2).

Bounding the decoupling coefficient. By the same argument, the Bellman error is linear
En(fix,a) = (d(z,a),w"(f))
for some w"(f) € R ||w"(f)|| < VdH. Denote ¢" = E,, [¢(z",a")] and ®} = A +
Yoy S(a", aM)g(a", )T
t—1

Tl'ft [gh(ftvxtaa‘t /’(‘ZETI'f 8h(ft7msaa )2]

s=1
=w (ft) ¢t _Mw (fe) TZwa 95 ah)(b(xh,ah)T]wh(ft)

Sw (ft) ¢t - pw (ft)T(I)t—lw (Jl?t)"‘/i)\dlt]2

1 _
= @(QS?)T((I)?—l) o) + pAdH?,
where the first inequality uses Jensen’s inequality and the second is GM-AM inequality. Summing
over all terms yields

t—1

H
Z |: Ty gh ftvajt?at HZEﬂf gh ftv ) ]:|

MH

t=1 h=1
H
In(det <I>h —dIn(A
<Z[ne ")) n()+)\'u01T}
— 4u
din(AN+T/d) — dIn(\
< g(AHT/d) =dIn) ey
Ap
Setting A = min{1, e HZT} finishes the proof. O

B.2 Proof of Proposition 2 (Generalized Linear Value Functions)

Proof of Proposition 2. We assume w.l.o.g. that k < 1 < K, otherwise we can scale the features
and the link function accordingly. By completeness assumption, there exists a g € J7, such that

gh = 7’h*(fth+1). The Bellman error is
gh(fa x, a) = U(<¢(8a a)7 fth) - gh(f; xZ, a) = U(<¢(S?a)agth) .
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By the Lipschitz property, we have for all s € [t]

k[((x,a), w(fo)] < [Enfsiz,a)| < K[((x,a), w"(f))]
for w"(fs) = fI — gl € R™.
The remaining proof is analogous to the previous one. Denote ¢" = E., [¢(z",a")] and @} =
M+ ot a)p(ah, a)T.

t—1

Ery [En(fisataf)] = 1) Eny [En(fi ol al)?]

s=1
t—1
< Kl (f,) 7o} = nk®w"(f)T Y Ex, [d(a",a")g(a", a") Tw"(f,)
s=1

< Kw'(f,) "o — pk*w" (f,) T} w"(f,) + Auk*d H?
2
4pk?

where the first inequality uses Jensen’s inequality and the second is GM-AM inequality. Summing
over all terms yields

<

(oM (@) ) + pk*AdH?,

t—1

T H
» {Em En(fisal,af)] = > Erp [En(fi 2l a?)ﬂ

s=1

-l In(det(®L)) — dlIn(\
SZKQ[ (det( 473])€2 (\)
din(A+T/d) — dIn())

4pk?

+ Aukz’ClT}

+ A\uk?dHT) .
Setting A = min{1, m} finishes the proof. O

B.3 Proof of Proposition 3 (Bellman-Eluder dimension Reduction)

We require the following Lemma to prove the reduction of Bellman-Eluder dimension to the decou-
pling coefficient.

Lemma 11. Let uq, pio, . . . pt—1 denote the measures over S x A obtained by following the policy
induced by (f,) ) at stage hand {vy, . . ., var} be the set of unique measures in this set in decreasing

order of occurrences and let (N;)M, be the number of times a measure appears in the sequence. If
the the e-Belmman-Eluder Dimension is E and |Ey qnp, [En(fi; 2, a)]| > €, then

t—1

Z Em,aw,us [gh (ft’ xZ, a)Q] Z wil (]ELGN,&H [Sh(ft; x, CL)D2

s=1

h N; Qf‘ﬂtzylA%G[E—l]
where w;" = [Z%E Ni‘|
=1

otherwise.

Proof. If uy = v, then the statement follows from Jensen’s inequality. Otherwise by by the Bellman-
Eluder dimension, for any set (11})Z ; of pairwise different measures, it holds that

E
Z Ew,awug [gh(ft; €z, a’)2] > (E$7a’\‘ﬂt [8h (.ft; z, a)DQ .

i=1

M i . . .
It remains to show that we can construct at least [#} sets of E pairwise different measures.
This follows trivially by selecting sets greedily from the largest remaining duplicates of measures. [

Equipped with this lemma, we can now present the proof of Proposition 3:
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Proof of Proposition 3. Denote eﬁs = Epn o [En(fi; 2, )], the LHS is

T
ZZett<EH+eTH+ Z Ze \T{el, > e}
t=1 h=1

t=E+1 h=1

For any h € [H], the RHS is bounded by Jensen’s inequality, AM-GM inequality and Cauchy-

Schwarz
T t—1
D3PI
1

t=1 s=

E(1+In(T))

m

\Y]

2E(1 +1n(T))

1+ In(T Z whel, ]I{ett > e}
t=E+1

T

Z erT{eh > €},

1
Zt:E-H UT? t=FE+1

Finally we need to bound the sum of weights ZtT: 1 ﬁ, which are defined in Lemma 11. Every time

the measure y; is in the set of the £/ — 1 most common measures, one of the counts N; fori € [E —1]
increases. Otherwise the count ) . - N; increases by 1. Hence

&
Il

—
~

>y

=1

~+ | =

+Z_:§§ (1+1n(T)).
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