
Table 1: Link prediction performances (%) of our Neo-GNNs and heuristic methods on traditional
link prediction datasets. Each number is the average performance for 10 random initialization of
the experiments. Bold indicates the second best performance and underline indicates the best
performance.

Data CN Jac. AA RA PA Katz PR SR
Neo-GNN
(w/o GCN)

Neo-GNN

USAir 93.80± 1.22 89.79± 1.61 95.06± 1.03 95.77± 0.92 88.84± 1.45 92.88± 1.42 94.67± 1.08 78.89± 2.31 96.10± 0.79 95.56± 0.57

Power 58.80± 0.88 58.79± 0.88 58.79± 0.88 58.79± 0.88 44.33± 1.02 65.39± 1.55 66.00± 1.59 76.15± 1.06 76.17± 0.87 72.42± 1.34

Router 56.43± 0.52 56.40± 0.00 56.43± 0.51 56.43± 0.51 47.58± 1.47 38.62± 1.35 38.76± 1.39 37.40± 1.27 61.37± 0.53 60.08± 1.28

E.coli 93.71± 0.39 81.31± 0.61 95.36± 0.35 95.95± 0.35 91.82± 0.58 93.50± 0.44 95.57± 0.44 62.49± 1.43 96.01± 0.45 95.62± 0.51

PB 92.04± 0.35 87.41± 0.39 92.36± 0.34 92.46± 0.37 90.14± 0.45 92.92± 0.35 93.54± 0.41 77.08± 0.80 92.94± 0.22 92.48± 0.35

Yeast 89.37± 0.61 89.32± 0.60 89.43± 0.62 89.45± 0.62 82.20± 1.02 92.24± 0.61 92.76± 0.55 91.49± 0.57 94.08± 0.32 95.04± 0.32

C.ele 85.13± 1.61 80.19± 1.64 86.95± 1.40 87.49± 1.41 74.79± 2.04 86.34± 1.89 90.32± 1.49 77.07± 2.00 88.74± 1.62 89.20± 1.62

A Comparison to heuristic methods for link prediction

To compare our proposed methods with additional popular heuristics methods (Jaccard (Jac.), prefer-
ential attachment (PA), Katz, PageRank (PR), and SimRank (SR)) beyond overlapped neighbors-based
heuristics, we further conduct extensive experiments on seven traditional link prediction datasets,
USAir [1], Power [2], Router [3], E.coli [4], PB [5], Yeast [6], and C.ele [2], used by SEAL [7].

Datasets USAir [1] is a network of US Air lines with 332 nodes and 2,126 edges. PB [5] is a network
of US political blogs with 1,222 nodes and 16,714 edges. Yeast [6] is a protein-protein interaction
network in yeast with 2,375 nodes and 11,693 edges. C.ele [2] is a neural network of C. elegans with
297 nodes and 2,148 edges. Power [2] is an electrical grid of western US with 4,941 nodes and 6,594
edges. Router [3] is a router-level Internet with 5,022 nodes and 6,258 edges. E.coli [4] is a pairwise
reaction network of metabolites in E. coli with 1,805 nodes and 14,660 edges.

Evaluation results Table 1 shows link prediction results of the heuristic methods and Neo-GNNs
on tradiational link prediction datasets. Neo-GNN consistently shows better performance than
overlapped-based heuristic methods. Also, we can see that Neo-GNN overall shows better perfor-
mance than other heuristic methods, except that Pagerank performed better than Neo-GNN in two
datasets. Interestingly, though overlap-based heuristic methods perform worse in Power dataset,
our Neo-GNN show the best performance compared to all heuristic methods. This result shows
that Neo-GNN is not limited to the limitations of existing neighborhood-overlap based heuristics.
Although the performance was overall better than other heuristic methods, there is still a limit to
generalize higher-order heuristic methods such as Pagerank and Katz index that directly use distance
information. The direction of generalizing these heuristic methods will be a good future work.

B Analysis on the correlation between the adjacency matrix and the
multi-hop adjacency matrix

We observe that the improvement by our Neo-GNNs is more significant especially when the cor-
relation between the original adjacency matrix and the multi-hop adjacency matrix is high. Let
A ∈ RN×N denote an adjacency matrix. Then multi-hop adjacency matrix A′ ∈ RN×N is defined as

A′ij =

{
1 if (

∑K
k=2A

k
ij) > 0

0 otherwise.

A′ij = 1 means that there is at least one path connecting two nodes in K hops, which also means
that overlapped neighbors between two nodes exist within K/2 hops. Then the correlation between
A and A′ can be computed by corr(A,A′) = ρ(vec(A), vec(A′)), where ρ(·, ·) denotes Pearson
Correlation Coefficient between two vectors and vec(·) denotes the vectorization of a matrix. The
high correlation between A and A′ implies that if a link (or edge) exists between two nodes, then the
two nodes have overlapped neighbors and vice versa. In contrast, the closer the correlation is to 0, the
less useful it is to predict the actual link with overlapped neighbors. For example, the correlation ρ
between A and A′ in the training sets of DDI and Collab are about 0.0038 and 0.8727 respectively.
This indicates that our Neo-GNN is more effective on Collab rather than DDI. Our experiments in
Table 3 are consistent with our analysis.
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C Broader Impact

Our work focuses on how graph neural networks effectively utilize graph structures in link prediction.
Unlike the conventional GNNs that heavily rely on smoothed node features for link prediction,
our Neo-GNNs predict links by learning and utilizing structural information using only the graph
structures. This implies that our Neo-GNNs can be of great help in various graph-structured data that
have only graph structures without node features. Especially, in recommendation systems, which
is the most representative application field in link prediction, it is a sensitive issue to exploit users’
personal information that can be node features. Even in this case, our Neo-GNNs can safely make
recommendations by utilizing useful structural features only through the graph structures. Also, in
the biology domain, various relationships between drugs or proteins already exist, but the features for
each drug or protein are absent since expensive cost of feature engineering by domain experts are
required. Neo-GNNs can be used to discover meaningful relationships without features in the biology
domain. Besides, Structural Feature Generator in our Neo-GNNs generates structural features of
each node using an adjacency matrix whereas GNNs use input node features. We believe that the
Structural Feature Generator will benefit a variety of graph-related tasks beyond link prediction as a
model-agnostic module. However, Neo-GNNs need to be used carefully for link prediction in social
networks where privacy and anonymity is important.

D License of the assets

Our source code is implemented based on PyTorch which was released under Berkeley Software
Distribution (BSD) License. We implement various GNN-based baselines using PyTorch Geometric,
a graph-specified deep learning framework licensed under MIT. Additionally, we implement SEAL
from official GitHub repository 1 under MIT License. Both BSD license and MIT license can be used
or redistributed under stipulated conditions. Moreover, we conduct experiments on four benchmark
datasets from Open Graph Benchmark. Open Graph Benchmark is released under MIT License.
We visualize significant results by using Matplotlib and its license is based on Python Software
Foundation (PSF) license which is a permissive free software license.
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1https://github.com/facebookresearch/SEAL_OGB
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