
VLM-Grounder: A VLM Agent for Zero-Shot 3D Visual
Grounding

Supplementary Material

A Dynamic Stitching 11

B Visual-Retrieval Benchmark Settings 12

C Ablation on Detectors 33

D VLM-Grounder Prompts 34

E Qualitative Results 55

F Discussions of Limitations 56

A Dynamic Stitching7

We employ a dynamic stitching algorithm to organize images into various layouts, with the pseu-8

docode provided in Algorithm 1. The process begins by calculating the largest layout that should be9

used. Given an image sequence with n images, and a maximum number of stitched images L, we10

first compute the quantity of each layout. We use the variables n4, n8, n16, and n27 to represent the11

number of (4, 1), (2, 4), (8, 2), and (9, 3) layouts, respectively.12

For example, assuming n = 84 and L = 6, we know n ≤ 16L. First, we calculate the minimum13

number of (8, 2) layouts required. Each (8, 2) layout accommodates 8 more images than a (2, 4)14

layout, so we divide the number of images exceeding what six (2, 4) layouts can store by 8 to find15

the minimum number of (8, 2) layouts needed. In this example, it is 5. Next, we compute the layout16

needed for the remaining images. We update the remaining image count to 84 − 5 ∗ 8 ∗ 2 = 4 and17

the stitched image count to 6− 5 = 1. Similarly, we determine that we need zero (2, 4) layouts and18

one (4, 1) layout for the remaining images. Thus, we have determined the number of each layout19

required. We then generate the stitched images in ascending order of layout size to ensure that only20

the largest layout may have unused space, thereby minimizing resolution waste.21

It is important to note that if the number of images is too large to be accommodated by L images22

of the largest layout, we select the largest layout to minimize the total number of stitched images.23

For any excess images, we maximize utilization efficiency by invoking the dynamic stitching24

function again to find the appropriate layout, setting the fixed number to 1 to minimize the count of25

stitched images. In this case, we first generate (9, 3) layouts and then recursively call the function to26

generate the remaining layouts, which may result in some unused space in smaller layouts.27

B Visual-Retrieval Benchmark Settings28

We randomly selected 1,000 images from the ScanNet dataset, assigning each a unique ID ranging29

from 00000 to 00999. Each image ID was annotated in red at the top-left corner. Additionally, a30

color block was generated at a random position within each image, using one of six colors: red,31

green, blue, yellow, white, or black. The images were then stitched using specific layouts, forming32

the basic image sets sent to the VLM. The VLM’s task was to identify all images, retrieve their33

IDs, and determine the color of the blocks. The VLM was required to return two lists—IDs and34

corresponding colors—as demonstrated in Fig.3. of the main paper.35

1

Algorithm 1: Dynamic Stitching Algorithm
1 Function dynamic stitching(imgs, L):

// candidate layouts: (4, 1), (2, 4), (8, 2), (9, 3)
Input: image sequence imgs, the maximum number of stitched images L
Output: stitched image sequence res

2 n← len(imgs);
3 res← [];
4 if n ≤ 4L then // (4, 1) layout is enough
5 res← stitch image(imgs, (4, 1));
6 else if n ≤ 8L then // at least one (2, 4) layout is used
7 n8 ← ⌈(n− 4L)/4⌉;
8 n4 ← L− n8;
9 res← res+stitch image(imgs[0 ... 4n4 − 1], (4, 1));

10 res← res+stitch image(imgs[4n4 ...], (2, 4));
11 else if n ≤ 16L then // at least one (8, 2) layout is used
12 n16 ← ⌈(n− 8L)/8⌉;
13 n← max(n− 16n16, 0) ; // number of images remaining
14 n4,8 ← L− n16 ; // number of (4, 1), (2, 4) layouts
15 n8 ← ⌈(n− 4n4,8)/4⌉;
16 n4 ← n4,8 − n8;
17 res← res+stitch image(imgs[0 ... 4n4 − 1], (4, 1));
18 res← res+stitch image(imgs[4n4 ... 4n4 + 8n8 − 1], (2, 4));
19 res← res+stitch image(imgs[4n4 + 8n8 ...], (8, 2));
20 else if n ≤ 27L then // at least one (9, 3) layout is used
21 n27 ← ⌈(n− 16L)/11⌉;
22 n4,8,16 ← L− n27 ; // number of (4, 1), (2, 4), (8, 2) layouts
23 n← max(n− 27n27, 0) ; // number of images remaining
24 n16 ← ⌈(n− 8n4,8,16)/8⌉;
25 n4,8 ← n4,8,16 − n16 ; // number of (4, 1), (2, 4) layouts
26 n← max(n− 16n16, 0);
27 n8 ← ⌈(n− 4n4,8)/4⌉;
28 n4 ← n4,8 − n8;
29 res← res+stitch image(imgs[0 ... 4n4 − 1], (4, 1));
30 res← res+stitch image(imgs[4n4 ... 4n4 + 8n8 − 1], (2, 4));
31 res← res+stitch image(imgs[4n4 + 8n8 ... 4n4 + 8n8 + 16n16 − 1], (8, 2));
32 res← res+stitch image(imgs[4n4 + 8n8 + 16n16 ...], (9, 3));
33 else // use more than L stitched images
34 n27 ← ⌊n/27⌋;
35 res← res+stitch image(imgs[0 ... 27n27 − 1], (9, 3));
36 res← res+dynamic stitching (imgs[27n27 ...], 1);
37 return res;

2

Table 1: 3D Visual Grounding Results with YOLOv8-World and Grounding DINO 1.5. * indi-
cates that the evaluation is based on 2D masks.

Overall Unique Multiple

Methods Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

VLM-Grounder (YOLOv8-World) 44.8 28.4 57.5 31.9 41.9 27.6
VLM-Grounder (GDINO-1.5) 51.6 32.8 66.0 29.8 48.3 33.5

VLM-Grounder* (YOLOv8-World) 53.2 45.2 74.5 63.8 48.3 40.9
VLM-Grounder* (GDINO-1.5) 62.4 53.2 87.2 76.6 56.7 47.8

Occasionally, the VLM might retrieve the same ID from different images, leading to conflicts where36

multiple ID-color pairs exist for the same ID. In such cases, if at least one retrieved ID matches the37

ground truth, it is considered correct. In other words, we calculated the Recall as the accuracy in38

this benchmark. For instance, in Fig.3. of the main paper, if four images were input and the VLM39

retrieved four pairs, but the pair 00003-yellow was incorrect (the ground truth being 00003-blue),40

the accuracy for this benchmark would be 0.75.41

The benchmark investigated two primary variables:42

Stitching layout. The stitching layout defines the rows and columns in which images are stitched,43

which can be regarded as “visual resolution”.44

Visual length. The number of stitched images included in a single conversation, which can be45

regarded as “visual context length”.46

We also measured the request time cost. By duplicating an image from 1 to 30 times within a request,47

we conducted 10 trials for each duplication count and calculated the average request time cost.48

C Ablation on Detectors49

As Grounding DINO-1.5 [1] is a closed-source model, we can only request detections through its50

API. For open-source research, we also employ the widely-used open-source alternative YOLOv8-51

World [2, 3] for our experiments. Results on the ScanRefer [4] dataset are presented in Tab. 1.52

D VLM-Grounder Prompts53

We used several prompts in our work, as shown in the Tab. 2, including query analysis prompt,54

grounding system prompt, input prompt, bbox select prompt, image ID invalid prompt, and de-55

tection not exist prompt.56

For each query, we utilize the query analysis prompt to extract the category and associated condi-57

tions of the target object, such as position, shape, color, or relative relationships with other objects.58

In the grounding and feedback process, we first employed the grounding system prompt to guide59

VLM in performing visual grounding tasks. Then, we utilize the input prompt to provide infor-60

mation such as our image, query statement, target object category, and grounding conditions, with61

stitched images appended. VLM would return the query results in the specified JSON format.62

If the target image ID in the returned results does not contain any target object, we use the detec-63

tion not exist prompt to inform VLM and request it to make a new selection. In case the image ID64

provided cannot find the corresponding image, we employ the image ID invalid prompt to notify65

VLM for a fresh selection. Furthermore, if there are multiple target objects in the chosen image, we66

use the bbox select prompt to instruct VLM in selecting the correct bounding box ID.67

3

Table 2: Prompts of VLM-Grounder. The placeholders in the table represent different variables. {query}
denotes the user query, while {pred target class} and {conditions} represent the target object’s category
and grounding conditions, respectively. {num view selections} refers to the total number of images, and
{num candidate bboxes} indicates the number of candidate bounding boxes. In the image ID invalid prompt
and detection not exist prompt, {image id} refers to the image ID selected by the VLM.

query analysis prompt

You are working on a 3D visual grounding task, which involves receiving a query that specifies a particular
object by describing its attributes and grounding conditions to uniquely identify the object. Here, attributes
refer to the inherent properties of the object, such as category, color, appearance, function, etc. Grounding
conditions refer to considerations of other objects or other conditions in the scene, such as location, relative
position to other objects, etc. Now, I need you to first parse this query, return the category of the object to be
found, and list each of the object’s attributes and grounding conditions. Each attribute and condition should
be returned individually. Sometimes the object’s category is not explicitly specified, and you need to deduce
it through reasoning. If you cannot deduce after reasoning, you can use ‘unknown’ for the category. Your
response should be formatted as a JSON object. Here are some examples:
Input:
Query: this is a brown cabinet. it is to the right of a picture.
Output:
{
“target class”: “cabinet”,
“attributes”: [“it’s brown”],
“conditions”: [“it’s to the right of a picture”]
}
...(two more examples)
Ensure your response adheres strictly to this JSON format, as it will be directly parsed and used.
Query: {query}

grounding system prompt

You are good at finding objects specified by user queries in indoor rooms by watching the videos scanning the
rooms.

bbox select prompt

Great! Here is the detailed version of your selected image. There are {num candidate bboxes} candidate
objects shown in the image. I have annotated each object at the center with an object ID in white color text
and black background. Do not mix the annotated IDs with the actual appearance of the objects. Please give
me the ID of the correct target object for the query. Reply using JSON format with two keys “reasoning” and
“object id” like this:
{
“reasoning”: “your reasons”, // Explain the justification why you select the object ID.
“object id”: 0 // The object ID you selected. Always give one object ID from the image, which you are the
most confident of, even you think the image does not contain the correct object.
}

image ID invalid prompt

The image {image id} you selected does not exist. Did you perhaps see it incorrectly? Please reconsider and se-
lect another image. Remember to reply using JSON format with the three keys “reasoning”, “target image id”,
and “reference image ids” as required before.

detection not exist prompt

The image {image id} you selected does not seem to include any objects that fall into the category of
{pred target class}. Please reconsider and select another image. Remember to reply using JSON format with
the three keys “reasoning”, “target image id”, and “reference image ids” as required before.

4

input prompt

Imagine you are in a room and are asked to find one object. Given a series of images from a video scanning an
indoor room and a query describing a specific object in the room, you need to analyze the images to locate the
object mentioned in the query within the images. You will be provided with multiple images, and the top-left
corner of each image will have an ID indicating the order in which it appears in the video. Adjacent images
have adjacent IDs. Please note that to save space, multiple images have been combined into one image with
dynamic layouts. You will also be provided with a query sentence describing the object that needs to be found,
as well as a parsed version of this query describing the target class of the object to be found and the conditions
that this object must satisfy. Please find the ID of the image containing this object based on these conditions.
Note that I have filtered the video to remove some images that do not contain objects of the target class. To
locate the target object, you need to consider multiple images from different perspectives and determine which
image contains the object that meets the conditions. Note, that each condition might not be judged based on just
one image alone. Also, the conditions may not be accurate, so it’s reasonable for the correct object not to meet
all the conditions. You need to find the most possible object based on the query. If you think multiple objects
are correct, simply return the one you are most confident of. If you think no objects are meeting the conditions,
make a guess to avoid returning nothing. Usually the correct object is visible in multiple images, and you
should return the image in which the object is most clearly observed. Your response should be formatted as a
JSON object with three keys “reasoning”, “target image id”, and “reference image ids” like this:
{
“reasoning”: “your reasoning process” // Explain the process of how you identified and located the target object.
If reasoning across different images is needed, explain which images were used and how you reasoned with
them.
“target image id”: “00001”, // Replace with the actual image ID (only one ID) annotated on the image that
contains the target object.
“reference image ids”: [“00001”, “00002”, ...] // A list of IDs of images that are used to determine wether the
conditions are met or not.
}
Here is a good example:
query: Find the black table that is surrounded by four chairs.
{
“reasoning”: “After carefully examining all the input images, I found image 00003, 00005, and 00021 contain
different tables, but only the tables in image 00003 and 00021 are black. Further, I found image 00001, image
00002, image 00003, and image 00004 show four chairs and these chairs surround the black table in image
00003. The chair in image 00005 does not meet this condition. So the correct object is the table in image
00003”,
“target image id”: “00003”,
“reference image ids”: [“00001”, “00002”, “00003”, “00004”]
}
Now start the task:
Query: “{query}”
Target Class: {pred target class}
Conditions: {conditions}
Here are the {num view selections} images for your reference.

E Qualitative Results68

In this section, we present three demonstrations to elucidate the capabilities and behavior of VLM-Grounder69

in various scenarios. First, in Fig. 1, we illustrate the basic execution process involving a single target object70

within a scene. Subsequently, we demonstrate the execution process in a more complex scene containing71

multiple target objects, where the VLM is employed to accurately select the correct object, as in Fig. 2. Lastly,72

we showcase the execution process in a scenario where the VLM initially selects an incorrect image, thereby73

triggering a feedback mechanism, as shown in Fig. 3. Morphological operations are applied to all the masks74

including matched images. In all these examples, we only illustrate four ensemble images and show the result75

of the morphological operation on the anchor mask. The system prompt and query analysis are also omitted in76

the figures for clarity.77

F Discussions of Limitations78

While VLM-Grounder achieves superior zero-shot 3D visual grounding by directly operating on 2D images79

without requiring 3D point clouds or object priors, it has several limitations:80

5

Capabilities of VLMs. VLM-Grounder depends on the vision-language model (VLM) for analyzing81

grounding conditions and locating target objects in sequences of 2D images. If the VLM lacks the ability to82

process multiple images or struggles with scene understanding from real 2D scans, performance may degrade.83

In this study, we use the GPT-4o model, which delivers excellent results. VLM technology is continuously84

advancing, and VLM-Grounder’s modular design allows us to replace the current VLM with more powerful85

models as they become available, potentially enhancing future performance.86

Noise from 2D Models. VLM-Grounder utilizes off-the-shelf 2D open-vocabulary detectors and87

segmentation models to filter images and generate detailed image masks for projection. Despite their88

strengths, these 2D foundation models are not infallible. Issues like missed detections, false detections, or89

incorrect segmentations can prevent VLM-Grounder from identifying the target object, lead to selecting the90

wrong object, or produce noisy target masks. This noise can result in inaccurate 3D bounding box projections.91

Noise from Sensors. VLM-Grounder predicts the 3D bounding box of the target object from 2D images,92

relying on accurate camera intrinsics, extrinsics, and depth maps. However, in datasets like ScanNet [5], these93

parameters often contain noise. For instance, depth sensors can be inaccurate at object boundaries, and RGB94

images may suffer from motion blur. Such sensor noise leads to inaccuracies in the predicted 3D bounding95

boxes. While sensor noise is an unavoidable challenge in robotic vision, VLM-Grounder attempts to mitigate96

these issues through its grounding and feedback scheme combined with multi-view ensemble projection.97

However, it cannot completely eliminate the effects of sensor inaccuracies. In practical robotic deployments,98

robots typically have multiple types of sensors. Using multi-sensor fusion can help reduce noise and improve99

VLM-Grounder’s performance.100

6

... {input prompt}
Now start the task:
Query: "the radiator on the wall. the radiator is next to the toilet."
Target Class: radiator
Conditions: ["it's next to the toilet", "it's on the wall"]
Here are the 15 images for your reference.

reasoning: After examining all the images, I found that images 00056, 00057, 00058, 00059, 00070,
00071, 00072, and 00073 show a radiator on the wall. Among these, images 00056, 00057, 00058,
00059, 00070, and 00071 show the radiator next to a toilet. The radiator is most clearly observed in
image 00058, where it is clearly visible next to the toilet.
target_image_id: 00058,
reference_image_ids: [00056, 00057, 00058, 00059, 00070, 00071]

Ensemble Projection Noise Filtering & Get 3D BBox

Target Bounding Box Morpho. OpsSAM Multi-View Matching

Image Sequence

Dynamic Stitching

View Pre-Selection

Figure 1: Demo of VLM-Grounder.

7

Target Bounding Box

Image Sequence

... {input prompt}
Now start the task:
Query: "There is a rectangular dark cabinet. it is next to a white cabinet."
Target Class: cabinet
Conditions: ["it's rectangular", "it's dark", "it's next to a white cabinet"]
Here are the 35 images for your reference.

… {bbox select prompt}
There are 2 candidate objects shown in the image. I have annotated
each object at the center with an object ID in white color text and
black background.
…

Dynamic Stitching

View Pre-Selection

reasoning: After examining the images, I identified that images 00002, 00003, 00004, 00005, 00029,
00030, and 00032 show a dark rectangular cabinet next to a white cabinet. The dark cabinet is
clearly visible in image 00003, and it is next to a white cabinet. This satisfies all the conditions: the
cabinet is dark, rectangular, and next to a white cabinet.
target_image_id: 00003
reference_image_ids: [00002, 00003, 00004, 00005, 00029, 00030, 00032]

OV-Detection

Visual Prompt

reasoning: The query specifies a rectangular dark cabinet next to a white cabinet. In the image,
object ID:0 is a dark cabinet and object ID:1 is a white cabinet. Since object ID:0 is dark and
rectangular and is next to the white cabinet (ID:1), it meets all the conditions specified in the query.
object_id: 0

Target Image

Ensemble Projection

Morpho. OpsSAM Multi-View Matching

Noise Filtering & Get 3D BBox

Figure 2: Demo of VLM-Grounder with several target objects in the scene.

8

... {input prompt}
Now start the task:
Query: "there is a rectangular computer tower. it is on a stand with wheels
next to a sofa."
Target Class: computer tower
Conditions: ["it's rectangular", "it's on a stand with wheels", "it's next to a
sofa"]
Here are the 57 images for your reference.

reasoning: After examining the images, I found that images 00013, 00014, 00015, 00016, 00017,
00055, 00056, 00057, 00058, 00059, 00060, 00061, 00062, and 00063 show a computer tower that is
rectangular and on a stand with wheels. Additionally, images 00016, 00017, 00060, 00061, 00062,
and 00063 show that this stand is next to a sofa. Among these, image 00061 provides the clearest
view of the computer tower on the stand with wheels next to the sofa.
target_image_id: 00061
reference_image_ids: [00013, 00014, 00015, 00016, 00017, 00055, 00056, 00057, 00058, 00059,
00060, 00061, 00062, 00063]

Ensemble Projection Noise Filtering & Get 3D BBox

Target Bounding Box Morpho. OpsSAM Multi-View Matching

The image 61 you selected does not seem to include any objects that fall into the category of
computer tower. Please reconsider and select another image. Remember to reply using JSON
format with the three keys "reasoning", "target_image_id", and "reference_image_ids" as required
before.

reasoning: Upon re-evaluating the images, I found that images 00013, 00014, 00015, 00016, 00017,
00055, 00056, 00057, 00058, and 00059 show a rectangular computer tower on a stand with wheels.
Additionally, images 00016 and 00017 show that this stand is next to a sofa. Among these, image
00016 provides the clearest view of the computer tower on the stand with wheels next to the sofa.
target_image_id: 00016
reference_image_ids: [00013, 00014, 00015, 00016, 00017, 00055, 00056, 00057, 00058, 00059]

Image Sequence

Dynamic Stitching

View Pre-Selection

Figure 3: Demo of VLM-Grounder with feedback.

9

References101

[1] T. Ren, Q. Jiang, S. Liu, Z. Zeng, W. Liu, H. Gao, H. Huang, Z. Ma, X. Jiang, Y. Chen, et al. Grounding102

dino 1.5: Advance the” edge” of open-set object detection, 2024.103

[2] T. Cheng, L. Song, Y. Ge, W. Liu, X. Wang, and Y. Shan. Yolo-world: Real-time open-vocabulary object104

detection. arXiv preprint arXiv:2401.17270, 2024.105

[3] G. Jocher, A. Chaurasia, and J. Qiu. Ultralytics YOLO, Jan. 2023. URL106

https://github.com/ultralytics/ultralytics.107

[4] D. Z. Chen, A. X. Chang, and M. Nießner. Scanrefer: 3d object localization in rgb-d scans using natural108

language. In ECCV, 2020.109

[5] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet: Richly-annotated 3d110

reconstructions of indoor scenes. In CVPR, 2017.111

10

https://github.com/ultralytics/ultralytics

	Dynamic Stitching
	Visual-Retrieval Benchmark Settings
	Ablation on Detectors
	VLM-Grounder Prompts
	Qualitative Results
	Discussions of Limitations

