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ABSTRACT

Hidden State Matching is shown to improve knowledge distillation of language
models by encouraging similarity between a student and its teacher’s hidden states,
as demonstrated by DistilBERT and its successors. This typically uses a cosine loss,
which restricts the dimensionality of the student to the teacher’s, severely limiting
the compression ratio. We present an alternative technique using Centered Kernel
Alignment (CKA) to match hidden states of different dimensionality, allowing
for smaller students and higher compression ratios. We show the efficacy of
our method using encoder–decoder (BART, mBART & T5) and encoder-only
(BERT) architectures across a range of tasks from classification to summarization
and translation. Our technique is competitive with the current state-of-the-art
distillation methods at comparable compression rates and does not require already
pretrained student models. It can scale to students smaller than the current methods,
is no slower in training and inference, and is considerably more flexible. The Code
is available on github1

1 INTRODUCTION

Modern LLM sizes have increased dramatically over the past few years, alongside their computational
requirements. This gives rise to the need for knowledge distillation (KD) of language models with
a high compression ratio, in order to produce small, fast models for inference that capture the key
capabilities of learning foundation models. An L×D transformer with L layers and D hidden states
usually has fully connected modules of dimension D × O(D), leading to a computational cost of
O(D2) for every layer. With slight abuse of notation, the memory required for the inference of a
transformer is O(LD2), motivating the need for streamlined models with smaller D for downstream
inference on resource-constrained devices. Xue et al. (2023) demonstrated that deeper and narrower
architectures typically yield the best performance for encoder-only models. Since the encoder plays
a pivotal role in Encoder-Decoder models, it provides the motivation to reduce the hidden state
dimension of the teacher during compression rather than reducing only the number of layers.

Existing distillation methods use cosine loss between the hidden states, such as in DistilBERT (Sanh
et al., 2019) or Shleifer & Rush (2020) on BART and mBART. This limits their application to students
with the same hidden state dimensionality as the teacher, severely restricting the compression ratio.
An exception is Jiao et al. (2020), which handles students with smaller dimensions using a linear
projection to match the student and teacher’s hidden states. This practice remains state-of-the-art
and has recently been employed in Muralidharan et al. (2024). Our work aims to distill students
with smaller dimensions than the teacher with a compression ratio typically > 2× using a hidden
loss based on Centered Kernel Alignment (CKA - Kornblith et al. (2019)). Existing methods for
sequence-level KD, such as Shleifer & Rush (2020), are limited to a compression ratio of 2×.
However, with the size of modern LLMs going into several billions of parameters, distillation with a
low compression ratio has minimal impact. Other KD approaches include aligning the student and
teacher attention matrices, such as in Wang et al. (2020). We instead start with benchmarks such as

∗Also at Google Research
1https://github.com/Sayan21/ICLR25-CKA
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Sanh et al. (2019) and Shleifer & Rush (2020), which use the hidden layer loss in addition to KL
Divergence and Masked or Causal modeling loss, respectively. Any gain from attention matching for
our methodology will also apply to the existing benchmarks.
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Figure 1: CKA loss between the layers
of the student and the teacher. The layers
with solid color are trainable.

The first attempt to solve a similar problem was DeepCCA
(Andrew et al., 2013), which can align the hidden states of
the student and the teacher through projection. However,
DeepCCA is computationally expensive and difficult to
scale when one of the dimensions is high. Instead, we use
CKA to match the student and teacher’s hidden states of
different dimensionality and formulate a stochastic loss
that can be scaled across mini-batches. This enables us to
create streamlined student models with lower hidden state
dimensions, which gives competitive results even from
random initialization. In contrast, Sanh et al. (2019) and
Shleifer & Rush (2020) achieve performance benefits by
initializing the student layers with the teacher’s weights,
which is impossible when the student dimension is smaller.

We show that CKA is also effective in pretraining distil-
lation for encoder–decoder models like mBART and T5
for multilingual tasks. Encoder–decoder models offer a
unique advantage over decoder-only models in terms of
KD: using the encoder as support, the decoder layers can
be pruned to only a handful or even one layer to speed
up inference (Shleifer & Rush, 2020). However, distilling
the encoders in such models requires pretraining on the

unsupervised corpus. Existing work such as Shleifer & Rush (2020) and Li et al. (2022) performs
end-to-end distillation for machine translation. They retain the teacher’s entire encoder and distill
only the decoder layers. This results in a low compression ratio, with the smallest student being only
half the size of the teacher. We demonstrate how pretraining distillation on multilingual corpora,
utilizing a CKA-based hidden state loss, can eliminate the need to retain the teacher’s encoder.

2 METHODOLOGY

We draw inspiration from Deep CCA in matching the hidden states of a pair of neural networks
(Andrew et al., 2013). The algorithm attempts to match the representations of two networks, regardless
of their dimensionality. In traditional Deep CCA, both networks are typically trained simultaneously
to learn maximally correlated representations across modalities. In our adaptation, on the other hand,
we keep the teacher network frozen while training the student network to match its hidden states.

Let us assume that the hidden states of the teacher and the students are hT ∈ RdT and hS ∈ RdS

respectively, with dimensions dT and dS , with dS ≤ dT . Let HS , HT ∈ RN×d∗ be the matrices with
the hidden states of all the data points stacked together as rows. Canonical Correlation Analysis
(CCA) takes into account the covariance and cross-correlation matrices between the hidden states,
ΣSS = 1

N−1H̃
⊤
S H̃S , ΣTT = 1

N−1H̃
⊤
T H̃T and ΣTS = 1

N−1H̃
⊤
T H̃S , where H̃S = HS − µ̂HS

and H̃T = HT − µ̂HT
are the centered hidden states of the student and the teacher with µ̂HT

=
1
N

∑N
i=1 hTi and µ̂HS

= 1
N

∑N
i=1 hSi as the mean of the teacher and student hidden states for

N samples. The goal of CCA is to learn two vectors a ∈ RdT and b ∈ RdS that maximize
RCCA = a⊤ΣTSb√

a⊤ΣTT a
√

b⊤ΣSSb
.

CCA is usually computed through the Singular Value Decomposition of the matrix Σ
−1/2
TT ΣTSΣ

−1/2
SS

(Andrew et al., 2013). This makes the algorithm computationally very expensive. The scale of
our experiments makes backpropagation with SVD unfeasible, requiring a more efficient algorithm.
We adopt Centered Kernel Alignment (Kornblith et al., 2019) as an alternative to CCA for hidden
state matching. Let us define K and L as the kernels between the hidden states of the student
and the teacher respectively, as Ki,j = k

(
hSi

, hSj

)
and Li,j = l

(
hTi

, hTj

)
for some kernel

functions k : H × H → R and similar for l, with hS∗ , hT∗ ∈ H being the hidden states of
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the token pairs with index (i, j). Then the Hilbert Schimdt Independent Criteria is defined as
HSIC(K,L) = tr(KΓLΓ)/(N − 1)2, with Γ being the centering matrix defined as Γ = I − 1

N 11⊤.
The authors do not note any improvement in accuracy for a non-linear kernel over a linear one
(Kornblith et al., 2019). A linear kernel is also computationally less expensive, which is important for
scaling the algorithm, especially for larger language models. We use a linear kernel here, for which
the HSIC between the teacher and the student states is

HSIC(HS , HT ) =
1

(N − 1)2
∥H̃⊤

T H̃S∥2F = ∥ΣTS∥2F . (1)

The Linear CKA between the hidden states of the teacher and the students is defined as,

CKA(HS , HT ) =
HSIC(HS , HT )√

HSIC(HT , HT )
√

HSIC(HS , HS)
=

∥ΣTS∥2F
∥ΣTT ∥F ∥ΣSS∥F

. (2)

It can be shown that 0 ≤ CKA(HS , HT ) ≤ 1 (Proof in the Appendix). The authors of Kornblith
et al. (2019) also show that CKA is invariant to orthogonal transforms and isotropic scaling. If
the eigenvectors and eigenvalues of the covariance matrix ΣSS are uSi

and λSi
respectively for

i ∈ [dS ] and similar for ΣTT , then CKA(HS , HT ) can relate to them as CKA(HS , HT ) =∑dS

i=1

∑dT

j=1

λSi
λTj√∑dS

i=1 λ2
Si

√∑dT
j=1 λ2

Tj

⟨uSi
, uTj

⟩2 (Kornblith et al., 2019). Whereas if R̂CCA is the

estimated value of the CCA, it can be shown that R̂2
CCA = 1

dS

∑dS

i=1

∑dT

j=1⟨uSi
, uTj

⟩2 (Kornblith
et al., 2019). It can be observed that CKA(HS , HT ) turns into a quantity proportional to R̂2

CCA
when we simply replace each of λSi and λTi with a constant value. In other words, CKA is the
weighted sum of the same quantities, ⟨uSi , uTi⟩2, as the square of CCA with the weighting coefficient
as the product of the normalized eigenvalues of the Gram matrices. From this rationale, we use the
square root of CKA as a proxy for CCA to match the hidden states of the student and the teacher.
The corresponding loss between the hidden states is defined as 1−

√
CKA(HS , HT ), i.e.,

LH = 1− ∥ΣTS∥F√
∥ΣTT ∥F

√
∥ΣSS∥F

. (3)

2.1 MINIBATCH CKA

CKA, as defined above, must be computed over the entire dataset. However, it is not feasible to
compute it globally over all samples. We can estimate the covariance matrices for every single
minibatch, but the sample size can be very low, leading to high variance. We try to include more
samples in the estimation process and compute them over B mini-batches. If the covariance matrices
for minibatch b ∈ [B] are ΣTSb

, ΣTTb
& ΣSSb

respectively, we can then estimate the CKA from

them as the following, and then compute LH = 1−
√

ˆCKA(HS , HT ), where

ˆCKA(HS , HT ) =
∥
∑B

b=1 ΣTSb
∥2F

∥
∑B

b=1 ΣTTb
∥F ∥

∑B
b=1 ΣSSb

∥F
. (4)

The hidden states of the transformers are accessible after the Layernorm module (Ba et al., 2016), so
they have usually already been centered w.r.t. the mean of the batch. We incorporate the distillation
loss between the teacher and the student probabilities (LDist), typically defined in terms of KL
Divergence (Hinton et al., 2014). We finally add a causal language modeling (CLM) loss for the
student, making the final loss LCLM + LDist + LH . For pre-training distillation of such LMs, for a
document X with T tokens with xt being the one-hot vector for the token t, and Y being the target
sequence for some supervised data, the CLM losses for unsupervised and supervised cases are defined
as,

LCLM (x) = −
T∑

t=1

xt logP (x̂t|x<t) , LCLM (x, y) = −
T∑

t=1

yt logP (ŷt|x<t, y<t) . (5)
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Task Teacher #Params Pre-training Task-specific

Summarization BART-large (24× 1024) 440M None CNN, XSum
MT mBART-large (24× 1024) 610M mC4 EN→RO, EN→FR

MT with Prompt Flan-T5-3B (48× 2048) 3B mC4 EN→ES
Classification BERT-base (12× 768) 110M C4 GLUE

Table 1: Details of the pre-training as well as supervised datasets used for different tasks

3 EXPERIMENTS

Here, we describe the experiments for KD with CKA for three different tasks: summarization
(BART) in Section 3.1, machine translation (mBART in Section 3.2 and T5 in Section 3.3), and
classification with an encoder-only model (BERT) in Section 3.4. We construct our baseline using a
linear projection (Lin) to match the students’ hidden state dimension to that of the teacher’s, followed
by an MSE loss, similar to Jiao et al. (2020). Our distillation approach follows two stages,

1. Pretraining distillation of the teacher using an unsupervised corpus (except for BART)

2. Supervised distillation (BARTs & T5) or fine-tuning (BERT) using a supervised dataset

The details of the datasets for pretraining and downstream tasks are mentioned in Table 1 for different
models following the order in which they appear in this section. We keep the temperature at 1
unless mentioned otherwise and do not use hyperparameters to weigh the loss contributions. The
experimental details, including learning rate, batch size, and the GPUs used, are discussed in the
Appendix.

3.1 DISTILLATION FOR SUMMARIZATION

We begin by distilling BART-large (Lewis et al., 2020) for the downstream task of single-document
news summarization, using four student architectures as shown in Table 2. We follow the experimental
setup of Shleifer & Rush (2020), who perform distillation for summarization on the CNN Daily Mail
(Hermann et al., 2015) and XSum (Narayan et al., 2018) datasets. For a document x and its summary
y, the supervised loss is defined as in Equation (5). The other two losses are the KL Divergence and
the hidden state loss between the student and the teacher. We measure the performance using Rouge
(Lin, 2004).
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Figure 2: ROUGE scores vs. size of the BART students
trained with CKA loss, and of distilBART (Shleifer &
Rush, 2020) of around the same size trained with co-
sine loss between the hidden layers and initialized with
teacher’s weights. CKA produces higher ROUGE scores.

We distill students between 6 and 24 layers and
hidden states dimensions between 640 to 768
(see Table 2). We apply the CKA loss over each
hidden layer of the student, applied against
uniformly spaced layers in the teacher to ac-
commodate shallower student models. We also
distill the same students using linear projection-
based loss between the same pair of hidden
states, then with no hidden loss Table 2. We
do not distill any student with the same hidden
state as the teacher’s (1024), as CKA would be
pointless for this case. We also create distil-
BART models with 2, 4, 6, and 12 layers, us-
ing the same hidden dimensions as the teacher
(1024), as in Shleifer & Rush (2020). These
distilBART students are initialized by copying
the alternate layers of the teacher and distilled

with cosine loss between the hidden layers using the same hyperparameters as the other students
in Table 2. When we compare the Rouge scores against the student size for these two dissimilar
architectures, we see narrower students with CKA loss perform better (Figure 2). This shows that
when trained well, narrower encoder–decoders outperform their wider counterparts; a similar trend is
also observed in encoder-only models in (Xue et al., 2023).
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Model P(M) C.R. R2(CNN) RL(CNN) R2(XSum) RL(XSum)
BART-large (24 x 1024) 440 1.0× 21.0 30.6 21.8 36.5

KD wo H (6 × 640) 80 5.5× 15.1 25.8 13.5 27.4
Lin-B (6 × 640) 80 5.5× 14.8 −0.3 25.6 −0.2 12.7 −0.8 26.7 −0.7

CKA-B (6 × 640) 80 5.5× 16.8 +1.7 26.8 +1.0 15.0 +1.5 29.2 +1.8

KD wo H (6 × 768) 100 4.4× 16.4 26.8 15.1 29.2
Lin-B (6 × 768) 100 4.4× 15.5 −0.9 26.2 −0.6 14.1 −1.0 28.2 −1.0

CKA-B (6 × 768) 100 4.4× 17.7 +1.3 27.7 +0.9 16.5 +1.4 31.0 +1.7

KD wo H (12 × 768) 140 3.1× 17.7 27.7 17.6 32.0
Lin-B (12 × 768) 140 3.1× 17.7 +0.0 27.8 +0.1 17.7 +0.1 32.1 +0.1

CKA-B (12 × 768) 140 3.1× 18.5 +0.8 28.5 +0.8 18.7 +1.1 33.5 +1.5

KD wo H (24 × 768) 239 1.8× 19.0 29.1 20.3 34.7
Lin-B (24 × 768) 239 1.8× 19.2 +0.2 29.3 +0.2 20.7 +0.4 35.2 +0.5

CKA-B (24 × 768) 239 1.8× 19.5 +0.5 29.6 +0.5 21.3 +1.0 35.8 +1.1

Table 2: ROUGE-2 (R2) and ROUGE-L (RL) scores for different BART students on the CNN and XSUM
datasets for KD with CKA. Every BART student has an equal number of encoder and decoder layers. “KD wo
H” stands for KD without a loss on the hidden states, Lin-B for KD with the linear projection-based loss, and
CKA-B for CKA loss. All the students are trained with the same hyperparameters. The numbers on the right of
every column of Rouge score are the differences from the baseline (“KD wo H"), in green when positive and red
when negative. C.R. is the compression ratio

We further experimented with distilling the BART-large into students with smaller hidden dimensions
for all the baselines and CKA, as listed in Table 2. The linear projection gives benefit up to a
compression ratio of 3×, beyond which it degrades the results. The CKA method, however, improves
the performance for every case when we study the ablation with respect to the hidden layer loss, and
the margins of improvement increase with the compression ratio. For the highest compression ratios
of 5.5×, CKA increases the Rouge score by at least 1.0, while the linear loss fails to improve the
result.

3.2 DISTILLATION FOR MACHINE TRANSLATION

Next, we distill a multilingual mBART model (Liu et al., 2020) for machine translation. We choose
deep and narrow student architectures with the settings 12× 384, 12× 512, 24× 512, and 24× 640,
all having lower dimensions than the teacher (Table 3). As was the case with BART, we only consider
students with smaller hidden dimensions than the teacher.

We used multilingual data from mC4 (Xue et al., 2020) for all the languages the teacher mBART
model covers (details in Appendix). We used a causal modeling loss on the input (Equation (5)) and
uniformly weighed the loss terms. We used a context size of 512 and trained the students for 25
epochs, each containing 40, 000 text samples of mC4, and computed the sum of CLM loss and KL
divergence on the validation set of mC4 at the end of every epoch (Figure 3a). For the 24× 640 and
24× 512 models, we use the CKA loss between every pair of student and teacher hidden states. For
12× 512 and 12× 384, we use every alternate layer of the teacher.

The larger models converge faster, while the smaller students take much longer to converge. We plot
the sum of the CLM loss and KL divergence in Figure 3a, and exclude the hidden loss since their
values are incomparable. The loss converges faster than the KD with linear loss for the largest student
(300M). KD with linear loss converges to a higher loss than CKA for the 173M student, whereas it
does not even converge for the smallest student, 122M. We also pretrain a third set of models with no
hidden loss to study ablation.

We distill the pre-trained mBART students for the downstream task of translation from English
to Romanian using the WMT16 dataset (Bojar et al., 2016). We use the supervised loss defined
in Equation (5) for the sentence pair (x, y) where x is an English sentence and y is its Romanian
translation. Table 3 presents the BLEU scores for EN to RO translation using different student
architectures, with the teacher benchmark result taken from Shleifer & Rush (2020). We also train
two DistilBART models with a compression ratio of approximately 2× using cosine loss between the
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Model P(M) C.R. EN→RO EN→FR
woPT woH Lin CKA woPT woH Lin CKA

mB-L(24 x 1024) 610 1.0× 27.0 40.0

mB (12× 384) 122 5.0× 8.9 8.8 8.0 -0.8 18.7 +9.9 26.3 34.5 30.9 -3.6 39.2 +4.7
mB (12× 512) 173 3.5× 14.3 19.8 17.9 -1.9 22.3 +2.5 34.3 37.4 36.6 -0.8 40.2 +2.8
mB (24× 512) 217 2.8× 19.5 21.6 21.7 +0.1 24.5 +2.9 37.2 38.6 40.0 +1.4 41.7 +3.1
mB (24× 640) 300 2.0× 23.7 23.6 24.6 +1.0 26.3 +1.7 38.9 40.0 41.2 +1.2 42.3 +2.3

dmB (2×1024) 287 2.1× 15.5 31.5
dmB (4×1024) 319 1.9× 21.5 39.3

Table 3: BLEU scores for different mBART student models for EN-RO and EN-FR translation. Every student
mBART has an equal number of encoder and decoder layers. woPT stands for KD with CKA but without
pretraining. woH for KD with no hidden states loss, Lin for KD with the linear hidden loss, and CKA for
KD with CKA loss, all with pretraining distillation on mC4. The distil-mBART (dmB) students are initialized
with weights from the teacher layers and distilled using cosine loss between the hidden layers using the same
hyperparameters as the rest of the mB students. The numbers on the right of the Lin and CKA columns are the
differences from the baseline of KD with no hidden loss (woH), in green when positive and red when negative.

hidden layers, as described in Shleifer & Rush (2020). The lowest number of parameters a distilBART
model can scale to is 287M, while we can easily scale down to smaller students. Smaller students
make them accessible to practitioners with limited GPU resources. Furthermore, our CKA students
achieve significantly better BLEU scores, even at a compression ratio of 2× than the distilBARTs.

We further distill an mBART model fine-tuned for context-aware machine translation from English
to French (Sarti et al., 2024) on IWSLT2017 (Cettolo et al., 2017) with a context comprising up
to 4 sentences. The authors also demonstrated that context-aware fine-tuning enhances translation
accuracy even without context, and we utilize their fine-tuned mBART as a teacher for distilling
translation without context. The training set used is a combination of 2 million instances randomly
sampled (without replacement) from the English-French subset of the WMT14 dataset (Bojar et al.,
2014) and the training samples of the IWSLT dataset (232K), resulting in a total of 2.23 million
training samples. The evaluation is performed on the test set of IWSLT2017 (8.6K). Our largest
student (24× 640) outperforms the teacher at a compression ratio of 2× (Table 3). The performance
benefit can be attributed to the data augmentation from the WMT14 corpus. It is similar to the case of
TinyBERT (Jiao et al., 2020), which also uses data augmentation during distillation and outperforms
the teacher BERT-base for MNLI (Williams et al., 2017) at a compression ratio 2×. Our smallest
student, with 122M parameters, produces a BLEU score only 0.8 lower than a teacher 5× larger.

Model EN→RO EN→FR
mB-Large (24 x 1024) 312.4 108.0

mBART (12× 384) 59.6 52.8
mBART (12× 512) 61.9 56.5
mBART (24× 512) 96.3 75.8
mBART (24× 640) 102.0 81.2

Table 4: Inference time in ms for different mBART
students, with the teacher at the top

When we compare the performance of CKA loss
with that based on linear projection, CKA performs
far better when we study the ablation w.r.t the hid-
den loss. The maximum gain in performance comes
at the highest compression ratio. Similar to the
case of BART, linear loss degrades performance at
a high compression ratio of 5×. The variation of the
BLEU score w.r.t the size of the students is shown
in Figure 3. We further calculate the inference time
of the distilled students on a 40GB A100 GPU. All
the CKA students achieve substantially lower infer-
ence times (Table 4) than the teacher for EN-RO or
better BLEU scores at moderately lower inference

times, e.g., the 24-layer students for EN-FR.

Another area where our approach differs from Sequential KD used in Shleifer & Rush (2020) is
the teacher-generated labels: it is very expensive to generate labels from the teacher through beam
search. For example, it takes over 300 hours on the EN-RO dataset of 620K with an 80GB NVIDIA
A100 GPU, with a FLOP count of around 161 PFLOPs. Generating teacher labels for a dataset with
millions of training samples is extremely challenging, which precludes data augmentation during
knowledge distillation (KD). Our pretraining-based approach requires no teacher decoding but only
one expensive pre-training stage on a multilingual corpus (mC4), after which it can be fine-tuned for
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Figure 3: Distillation loss for pretraining of mBART using CKA and the linear loss on the validation set of mC4
(left), with the arrows pointing to where grokking happens in the student models. BLEU score vs. parameter size
of mBART for EN-RO and EN-FR translation in the next two, respectively. wo PT stands for KD with CKA
but without pretraining, wo H for KD with no hidden states loss, Lin for KD with the hidden loss with linear
projection, and CKA for KD with CKA loss. KD without pretraining distillation (w/o PT) performs the worst

specific translation tasks. For example, we use the same pre-trained models for supervised distillation
in EN-RO and EN-FR. The FLOP counts for the pretraining distillation on mC4 are 79, 84, 90,
and 99 PFLOPs, respectively, for the students in Table 4 in increasing order of size. In contrast,
distil-mBART must repeat expensive teacher-based decoding to generate pseudo labels for every
task. Our technique is thus more economical and can augment as much data as necessary to improve
performance for downstream tasks, as we have done for EN-FR translation.

3.3 DISTILLATION OF ZERO-SHOT MODEL

Instruction-tuned language models have become the workhorse of NLP. Here, we demonstrate our
technique can be applied to distill Flan-T5-3B (Chung et al., 2024), an instruction-tuned encoder–
decoder model. The advantage of such models is that they can perform a wide range of tasks with
reasonable accuracy without fine-tuning, which can be expensive for a 3B model. Most of the KD
performed on such models in the literature is based on teacher-generated labels, as in West et al.
(2022). In contrast, we perform generic KD on Flan-T5-3B, first by pretraining distillation followed
by supervised KD, and skip the expensive step of generating teacher labels.

We first perform pre-training distillation on four student models: 12×768 (145M), 24×768 (T5-Base
250M), 24 × 1024 (425M), and 48 × 1024 (T5-Large 780M). We use the same mC4 corpus for
pre-training, with a context length of 1024. However, since Flan-T5 is primarily trained on English
tasks, we sample the English corpus of mC4 with a probability of 0.67 and add 33 other non-English
language corpora, each with a probability of 0.01 (details in the Appendix). We used a context size of
1024 and trained the students for 25 epochs, each containing 40, 000 multilingual text samples from
mC4 using the unsupervised loss defined in Equation (5). The experiments with CKA loss are similar
to those with mBART. However, the baseline with linear projection does not converge, regardless
of whether pretraining is used. Convergence is difficult for CKA loss alone, and the 12× 768 and

Model P(M) C.R. FT KD
wo PT wo H CKA

Flan-T5-3B (48× 2048) 2.85B 1.0× 28.0 -

T5 (12× 768) 145M 19.7× 22.0 -5.2 23.4 -3.8 25.3 -1.9 27.2
T5 (24× 768) 250M 11.4× 24.3 -5.0 26.0 -3.3 27.7 -1.6 29.3

T5 (24× 1024) 425M 6.7× 26.1 -4.7 27.9 -2.9 29.4 -1.4 30.8
T5 (48× 1024) 780M 3.6× 28.0 -3.8 29.3 -2.5 30.6 -1.2 31.8

Table 5: BLEU scores for different Flan-T5 student models. FT stands for the BLEU of the fine-tuned Flan-T5
models without KD (zero-shot for the teacher), wo PT stands for KD without pretraining, wo H stands for
KD with pretraining but no hidden states loss, and CKA stands for KD with pretraining using CKA loss. The
numbers on the right side in the KD columns are the difference from the score for CKA to study ablation
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24 × 1024 models converged only after initializing the weights from the converged 24 × 768 and
48× 1024 models.

We further run a supervised distillation on the pre-trained students for English-Spanish translation
using the WMT13 corpus (Allauzen et al., 2013) by adding the prompt “Translate from English to
Spanish:” in front of every English sentence. We sample 3 million sentence pairs from the WMT13
corpus, which is 14.5 million sentences in size, without replacement for training, and then measure
the BLEU score on the test set. In the absence of the linear baseline, we provide the result for KD
with only KL Divergence and no hidden loss in Table 5. We also fine-tune the student models on
the same dataset that we use as a second baseline, and then add a third baseline for students with no
pretraining distillation (Table 5). We use the Flan-T5 base (24× 768) and large (48× 1024) models
from Wolf et al. (2019) for fine-tuning and create the other two models (12× 768 and 24× 1024) by
removing the alternate layers from them. KD with CKA-based hidden loss gives a BLEU score gain
of 1.1 (for 780M) to 1.9 (for 145M) over KD with no hidden layer loss.

3.4 DISTILLATION OF ENCODER-ONLY MODEL

We finally apply CKA loss to the task-agnostic distillation of BERT. We discard the masked loss used
in Sanh et al. (2019) and perform a pure distillation using the combination of only KL Divergence
and the loss on the hidden layer, i.e., LDist + LH . We distill the BERT-base models into student
models of several configurations: 12 L × 512 D, chosen to have the same number of parameters
as DistilBERT (67M); 8× 512 slightly smaller than 4− layer DistilBERT (52M); and two smaller
models (12× 384 and 6× 384) with a reduced intermediate size 1536.
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Figure 4: Difference in KL Divergence of KD with
CKA Loss vs. the baseline of linear projection (Lin) on
the validation set of C4 corpus. KD with CKA always
results in a lower KL Divergence across all student sizes.

Similar to the case of mBART, we distill the stu-
dent first using C4. We replace the cosine loss on
the hidden layers of DistilBERT with the CKA
loss. We add CKA loss between every pair of
hidden states for the 12-layer student, skip every
3rd layer for the 8-layer student, and use every
alternate layer for the 6-layer student. We train
the model for 30 epochs, with each step involv-
ing 320, 000 sample texts from the C4 training
set, and compute the KL Divergence for the C4
validation set at the end of every epoch. The KL
Divergence plots are shown in Figure 4 for the
CKA loss compared to the baseline method with
a linear projection for various student models.
CKA performs better for students of all sizes.

We further fine-tune the distilled student with CKA loss on downstream GLUE tasks, specifically:
SST-2 (Socher et al., 2013) for sentiment classification; MRPC (Dolan & Brockett, 2005), QQP and
STS-B for paraphrase similarity matching (Conneau & Kiela, 2018); MNLI (Williams et al., 2017),
QNLI (Rajpurkar et al., 2016) and RTE (Wang et al., 2018) for natural language inference; and COLA
(Warstadt et al., 2019) for linguistic acceptability. We report the Matthew correlation coefficient for
COLA, the F1 score for MRPC and QQP, Spearman’s rank correlation for STSB, and accuracy for
the remaining datasets. CKA outperforms the linear baseline for all tasks, with the largest difference
observed for COLA. We do not repeat the other baselines, as the benefits of pretraining or hidden
state matching for BERT distillation are well established in works like Sanh et al. (2019) and Jiao
et al. (2020).

The authors of DistilBERT initialize the students by copying the weights of the alternating layers from
the teacher into the student model. However, we initialize the student with random weights due to the
dimension difference. Our 12×512 model is competitive with MiniLM (6×768) of equal size (67M)
and outperforms 6-layer DistilBERT on almost every task except for SST2, where it is equivalent.
Since Jung et al. (2023) shows that KD with CKA is either competitive or outperforms attention
matching in MiniLM for the same student architectures, we do not repeat the same experiments. Our
8× 512 model outperforms the 4−layer DistilBERT and, for MNLI, even the 6−layer DistilBERT.
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Task P(M) C.R. COLA SST-2 MRPC RTE STSB MNLI-m QNLI QQP
# of Samples 8.5K 67.3K 3.7K 2.5K 5.7K 390K 105K 364K

BERT base (12 x 768) 110 1.0× 52.1 93.5 88.9 66.4 87.1 84.6 90.5 71.2

LinBERT (6 x 384) 22.0 5.0× 27.0 89.2 80.4 52.7 78.2 80.1 84.9 68.1
CKABERT (6 x 384) 22.0 5.0× 29.6 90.1 82.0 53.8 80.9 81.0 86.6 68.3

LinBERT (12 x 384) 33.0 3.3× 41.1 90.2 83.0 58.4 81.7 81.1 85.8 69.2
CKABERT (12 x 384) 33.0 3.3× 44.8 91.0 83.9 61.2 82.9 82.0 87.1 69.7

DistilBERT (4 x 768) 52.2 2.1× 32.8 91.4 82.4 54.1 76.1 78.9 85.2 68.5
LinBERT (8 x 512) 49.8 2.2× 42.7 90.9 83.8 55.3 82.3 82.0 87.9 69.2

CKABERT (8 x 512) 49.8 2.2× 45.3 91.8 86.1 58.5 83.4 83.0 88.5 69.7

DistilBERT (6 x 768) 66.9 1.6× 49.0 92.3 86.9 58.4 81.3 82.6 88.8 69.6
MiniLM (6 x 768) 66.9 1.6× 49.2 92.0 88.4 65.1 85.0 83.0 90.1 69.9

LinBERT (12 x 512) 66.5 1.6× 46.5 91.4 87.0 61.0 83.3 83.0 89.6 69.6
CKABERT (12 x 512) 66.5 1.6× 50.2 92.3 87.8 63.0 84.9 88.5 90.0 70.0

Table 6: Results for different student encoder-only models on the GLUE test set, with the teacher BERT-base at
the top. The students for CKA and Linear loss (Lin) are distilled with the same hyperparameters. The DistilBERT
results are taken from Jiao et al. (2020). The results of MiniLM are generated using the model from huggingface

4 RELATED WORK

4.1 KNOWLEDGE DISTILLATION OF SEQUENCE-BASED LMS

There has been extensive work on KD for downstream classification tasks with BERT. Turc et al.
(2019) demonstrated that two-stage distillation typically yields better results for transformers such
as BERT (Devlin et al., 2018) or GPT-2 (Radford et al., 2019) compared to single-stage distillation
on downstream tasks. The first stage involves pretraining distillation on a generic, unsupervised
corpus, such as Wikipedia or the OpenWebText dataset, and the students are then further distilled
using supervised datasets for various downstream tasks.

The KD literature on language models can be categorized into two main areas. The first group aims
to enhance the pretraining distillation of the initial stage. For example, Turc et al. (2019) uses no loss
on the hidden layers, Sanh et al. (2019) uses a cosine loss, and Wang et al. (2020) uses layerwise
attention matching. Our work falls into this category. The second category uses the pre-trained
models and focuses on downstream tasks. This includes Sun et al. (2019), which uses MSE loss
on normalized hidden states, and Fu et al. (2021), which uses contrastive hidden state matching.
However, both assume that the student’s dimension is the same as the teacher’s.

Generative downstream tasks, such as machine translation or summarization, are usually more
complicated than classification. Early work (Kim & Rush, 2016) suggested fine-tuning the students
on labels generated by the teacher. Subsequently, Shleifer & Rush (2020) combined this with the KL
Divergence of the logits. Other works follow this approach, such as Li et al. (2022), which includes
quantization with KD, or Wen et al. (2023), which replaces the KL Divergence with Jensen-Shannon
Divergence and Total Variation Distance. Recently, reinforcement learning has been used to improve
divergence, such as on-policy distillation by Agarwal et al. (2024), which utilizes a reverse KL
Divergence. However, our contribution focuses on hidden state matching and will give equal benefits
irrespective of the divergence between the student and the teacher. Other on-policy distillation work,
such as (Gu et al., 2024), also adopts a loss based on reinforcement learning, although they generate
sequences from a mixture of teacher and student distributions. The generation step is expensive and
limits their efficiency. and the largest dataset they use contains 15,000 data points. Unlike Agarwal
et al. (2024) and (Gu et al., 2024), which use the smaller pre-trained models of Flan-T5 or other LMs
as a starting point, we derive our Flan-T5 students from scratch through pre-training distillation.

4.2 CENTERED KERNEL ALIGNMENT

CKA was proposed to measure the similarity between different layers of deep networks (Kornblith
et al., 2019). However, it has been applied far beyond comparing layers between two similar
networks, including measuring similarity between heterogeneous networks (e.g., Vision Transformers
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(Dosovitskiy et al., 2020) and Resnet (Raghu et al., 2021)) and in speech (Ollerenshaw et al., 2022),
where its value has been shown to follow CCA closely. Raghu et al. (2019) study CCA and CKA
scores of different layers during the inner loop iteration of meta-learning (Finn et al., 2017) and show
that the two metrics follow a similar trend. Saha et al. (2022) uses a similar CKA Loss for feature
extraction for image classification on Tiny-Imagenet and CIFAR-100.

In NLP, CKA has been used to study the similarity between the intermediate layers of BERT (Sridhar
& Sarah, 2020) and to investigate the similarity between the layers of the original and fine-tuned
models for BERT-style transformer models Phang et al. (2021). Recently, Jung et al. (2023) used
CKA to extract structural features from BERT during distillation. However, unlike our work, they
use the standard DistillBERT (6× 768) as the student with the same dimension as the teacher and do
not reduce the dimension.

5 CONCLUSION

We proposed a novel hidden state matching using Centered Kernel Alignment for language model
distillation. We perform our experiments on a wide range of teachers from 110M BERT-base to 3B
Flan-T5. Based on our experiments, we make the following key observations:

• Hidden loss using CKA almost always improves the performance for both summarization
and translation. The same does not hold for the linear baseline.

• The linear loss does not work beyond a compression ratio of 3× for the encoder–decoders.
The generative tasks result in more complex hidden states during the decoding, and the
linear projection cannot match hidden states that are too disparate.

• Pretraining distillation on a multi-lingual corpus improves the performance of machine
translation even without the hidden layer loss for both mBART and Flan-T5

• The higher the complexity of a model, the more significant the performance gap between
CKA and the linear baseline. The performance of the linear loss is much closer to that of
CKA for simpler models, such as BERT, in classification tasks. However, unlike classifi-
cation, the generative tasks for more complex encoder–decoders use CLM loss based on
a sequential structure. And there, the linear loss falls short. Flan-T5 is the most complex
model we distill with the highest compression ratios, for which it does not converge.

For the smallest BART student (80M), CKA produces at least +1.0 ROUGE score improvements.
The linear baseline does not converge for the smallest 122 M student for mBART, whereas it does not
converge for any model for Flan-T5. We get a BLEU score improvement of +9.9 for the EN-RO
and +4.7 for EN-FR translation for the smallest mBART student (122M). For Flan-T5, the smallest
student (145M) produces a BLEU score only 0.8 lower than that of a 20× larger teacher.

5.1 WHY MULTI-LINGUAL PRETRAINING WORKS

The largest difference using pretraining with CKA occurs in the distillation of machine translation
on mBART and Flan-T5 models. Why would a similar method not also work for BART? The
key difference between mBART and BART is that BART is trained exclusively on English data.
The supervised datasets CNN and XSUM used for summarization are also exclusively in English
and contain entire paragraphs as input prompts. As long as the input texts of CNN or XSUM are
reasonably representative of all the word representations of BART, the student’s encoders will learn
the word features. We ran a study on pretraining BART students using C4 but did not see a significant
benefit in downstream performance.

The downstream translation tasks of mBART contain only a sentence or two of a specific pair of
languages, which is insufficient for extracting all the teacher’s word representation features. The
encoder plays the most significant role in synthesizing the word representation for encoder–decoder
models, while the decoder takes the features for the input sentence from the encoder through the
cross-attention. Figure 3a shows the grokking during the pertaining distillation, and the grokked
students perform much better than their counterparts without pertaining (Table 3), with the smaller
ones being worse. The smaller the student’s encoder, the lower the capability to learn the teacher’s
complex word representation features. Other works like Agarwal et al. (2024) start with the smaller
Flan-T5 models as the initial students, which are already trained on multilingual datasets.

10



Published as a conference paper at ICLR 2025

6 ACKNOWLEDGEMENT

The authors thank Prof. Timothy Baldwin of the University of Melbourne/MBZUAI for his valuable
feedback on different experiments and the manuscript. This research was supported by The University
of Melbourne’s Research Computing Services (Spartan) and the Petascale Campus Initiative.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.

Alexander Allauzen, Nicolas Pécheux, Quoc Khanh Do, Marco Dinarelli, Thomas Lavergne, Aurélien
Max, Hai-Son Le, and François Yvon. Limsi@ wmt13. In Proceedings of the Eighth Workshop on
Statistical Machine Translation, pp. 62–69, 2013.

Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation analysis.
In International conference on machine learning, pp. 1247–1255. PMLR, 2013.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes
Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, Radu Soricut, Lucia
Specia, and Aleš Tamchyna. Findings of the 2014 workshop on statistical machine translation.
In Proceedings of the Ninth Workshop on Statistical Machine Translation, pp. 12–58, Baltimore,
Maryland, USA, June 2014. Association for Computational Linguistics. URL http://www.
aclweb.org/anthology/W/W14/W14-3302.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz, et al. Findings of the
2016 conference on machine translation (wmt16). In First Conference on Machine Translation, pp.
131–198. Association for Computational Linguistics, 2016.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli, Jan Niehues, Sebastian Stüker, Katsuitho Sudoh,
Koichiro Yoshino, and Christian Federmann. Overview of the iwslt 2017 evaluation campaign. In
Proceedings of the 14th International Workshop on Spoken Language Translation, pp. 2–14, 2017.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence representa-
tions. arXiv preprint arXiv:1803.05449, 2018.

Sayantan Dasgupta, Trevor Cohn, and Timothy Baldwin. Cost-effective distillation of large language
models. In Findings of the Association for Computational Linguistics: ACL 2023, pp. 7346–7354,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In
Third International Workshop on Paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

11

http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302


Published as a conference paper at ICLR 2025

Hao Fu, Shaojun Zhou, Qihong Yang, Junjie Tang, Guiquan Liu, Kaikui Liu, and Xiaolong Li. Lrc-
bert: latent-representation contrastive knowledge distillation for natural language understanding.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12830–12838,
2021.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS 2014 Deep Learning Workshop, 2014. doi: 10.48550/ARXIV.1503.02531. URL https:
//arxiv.org/abs/1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
TinyBERT: Distilling BERT for natural language understanding. In Findings of the Association
for Computational Linguistics: EMNLP 2020, November 2020.

Hee-Jun Jung, Doyeon Kim, Seung-Hoon Na, and Kangil Kim. Feature structure distillation with
centered kernel alignment in bert transferring. Expert Systems with Applications, 234:120980,
2023.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 7871–7880, Online, July 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.acl-main.703. URL https://aclanthology.org/
2020.acl-main.703.

Zheng Li, Zijian Wang, Ming Tan, Ramesh Nallapati, Parminder Bhatia, Andrew Arnold, Bing
Xiang, and Dan Roth. Dq-bart: Efficient sequence-to-sequence model via joint distillation and
quantization. arXiv preprint arXiv:2203.11239, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pp. 74–81, 2004.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike
Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation.
Transactions of the Association for Computational Linguistics, 8:726–742, 2020. doi: 10.1162/
tacl_a_00343. URL https://aclanthology.org/2020.tacl-1.47.

Saurav Muralidharan, Sharath Turuvekere Sreenivas, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Compact
language models via pruning and knowledge distillation. arXiv preprint arXiv:2407.14679, 2024.

Shashi Narayan, Shay B Cohen, and Mirella Lapata. Don’t give me the details, just the sum-
mary! topic-aware convolutional neural networks for extreme summarization. arXiv preprint
arXiv:1808.08745, 2018.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same
things? uncovering how neural network representations vary with width and depth. arXiv preprint
arXiv:2010.15327, 2020.

12

https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1503.02531
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.acl-main.703
https://aclanthology.org/2020.tacl-1.47


Published as a conference paper at ICLR 2025

Anna Ollerenshaw, Md Asif Jalal, and Thomas Hain. Insights on neural representations for end-to-end
speech recognition. arXiv preprint arXiv:2205.09456, 2022.

Jason Phang, Haokun Liu, and Samuel R Bowman. Fine-tuned transformers show clusters of similar
representations across layers. arXiv preprint arXiv:2109.08406, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature reuse?
towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157, 2019.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Doso-
vitskiy. Do vision transformers see like convolutional neural networks? In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 12116–12128. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/652cf38361a209088302ba2b8b7f51e0-Paper.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Aninda Saha, Alina Bialkowski, and Sara Khalifa. Distilling representational similarity using centered
kernel alignment (cka). In Proceedings of the the 33rd British Machine Vision Conference (BMVC
2022). British Machine Vision Association, 2022.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version of
BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019. URL http://arxiv.
org/abs/1910.01108.

Gabriele Sarti, Grzegorz Chrupała, Malvina Nissim, and Arianna Bisazza. Quantifying the plausibility
of context reliance in neural machine translation. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=XTHfNGI3zT.

Sam Shleifer and Alexander M Rush. Pre-trained summarization distillation. arXiv preprint
arXiv:2010.13002, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pp. 1631–1642, 2013.

Sharath Nittur Sridhar and Anthony Sarah. Undivided attention: Are intermediate layers necessary
for bert? arXiv preprint arXiv:2012.11881, 2020.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model com-
pression. arXiv arXiv:1908.09355, 2019. URL https://arxiv.org/abs/1908.09355.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Well-read students learn better:
On the importance of pre-training compact models. arXiv preprint arXiv:1908.08962, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353–355, Brussels, Belgium, November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/W18-5446. URL https://aclanthology.org/W18-5446.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
attention distillation for task-agnostic compression of pre-trained transformers. Advances in Neural
Information Processing Systems, 33:5776–5788, 2020.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

13

https://proceedings.neurips.cc/paper_files/paper/2021/file/652cf38361a209088302ba2b8b7f51e0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/652cf38361a209088302ba2b8b7f51e0-Paper.pdf
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://openreview.net/forum?id=XTHfNGI3zT
https://arxiv.org/abs/1908.09355
https://aclanthology.org/W18-5446


Published as a conference paper at ICLR 2025

Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-divergence minimization for sequence-level
knowledge distillation. arXiv preprint arXiv:2307.15190, 2023.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language models to
commonsense models. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4602–4625,
2022.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, and Jamie Brew. HuggingFace’s
transformers: State-of-the-art natural language processing. CoRR, abs/1910.03771, 2019. URL
http://arxiv.org/abs/1910.03771.

Fuzhao Xue, Jianghai Chen, Aixin Sun, Xiaozhe Ren, Zangwei Zheng, Xiaoxin He, Yongming
Chen, Xin Jiang, and Yang You. A study on transformer configuration and training objective. In
International Conference on Machine Learning, pp. 38913–38925. PMLR, 2023.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. mt5: A massively multilingual pre-trained text-to-text transformer. arXiv
preprint arXiv:2010.11934, 2020.

A PROOF OF THE UPPER BOUND OF CKA

We derived that for the linear case,

CKA(HS , HT ) =
∥ΣTS∥2F

∥ΣTT ∥F ∥ΣSS∥F
(6)

It can be observed that ∥ΣTS∥2F = tr(H̃SH̃
⊤
S H̃T H̃

⊤
T )/(N − 1)2, where tr stands for the trace of a

matrix (Equation 2 in Kornblith et al. (2019)). Now, since the Gram matrices H̃SH̃
⊤
S and H̃T H̃

⊤
T are

both positive semi-definite, using Cauchy-Schwarz inequality for their trace, we can show that

1

(N − 1)2
tr[H̃SH̃

⊤
S H̃T H̃

⊤
T ]

≤ 1

(N − 1)2

(
tr[(H̃SH̃

⊤
S )2]tr[(H̃T H̃

⊤
T )2]

)1/2

=

(
1

(N − 1)2
tr[H̃SH̃

⊤
S H̃SH̃

⊤
S ]

)1/2 (
1

(N − 1)2
tr[H̃T H̃

⊤
T H̃T H̃

⊤
T ]

)1/2

(7)

This proves ∥ΣTS∥2F ≤ ∥ΣSS∥F ∥ΣTT ∥F , and shows that the value of CKA(HS , HT ) is bounded
above by 1. And being a positive quantity, 0 ≤ CKA(HS , HT ) ≤ 1.

B ADDITIONAL EXPERIMENTAL DETAIL

B.1 SUMMARIZATION (BART)

We do not use hyperparameters to weigh the loss contributions for all the experiments. We use a batch
size of 16 and sum over 8 batches for the computation of CKA and the other losses through gradient
accumulation, making the effective batch size 256. We use the Adam optimizer with η = 1e− 4 and
weight decay 5e− 4. The context size used for the input document is 1024, while the context size for
the summary is 128. All the experiments are performed on an A100 GPU with 80GB memory.
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B.2 TRANSLATION (MBART & T5)

We do not use hyperparameters to weigh the loss contributions. We use Adam Optimizer with
η = 3e− 5 and weight decay 5e− 4 for all the pretraining distillation on mC42. The context size for
pretraining of mBART is 512. We sample the languages with the following codes from mC4 with an
equal probability: ar, cs, de, en, es, et, fi, fr, gu, hi, it, ja, kk, ko, lt, lv, my, ne, nl, ro, ru, si, tr, vi, zh,
af, az, bn, fa, he, id, ka, km, mk, ml, mn, mr, pl, ps, pt, sv, sw, ta, te, th, uk, ur, xh, gl, sl.

While for Flan-T5, we use a context size of 1024. We sample the English corpus of mC4 with a
probability of 0.67 and 33 other languages with a probability of 0.01 with the following codes: es, ja,
fa, hi, fr, zh, bn, de, it, te, ar, pl, ta, pt, ur, gl, he, ko, th, nl, id, tr, vi, ru, sv, fi, sw, ro, lt, cs, ms, so, el.

In the downstream translation tasks for both models, we use a context size of 256 for both source and
target sentences. All the experiments are performed on an A100 GPU with 80GB memory.

B.3 CLASSIFICATION (BERT)

We use a sequence length of 512 tokens during pretraining using C43 and use the Adam optimizer
with learning rate η = 2e − 4 and weight decay 5e − 4. We use a batch size of 32 for gradient
computation and then accumulate the gradient for 40 batches, resulting in a large batch size of 1280.
This is similar to using large batch sizes in Sanh et al. (2019). The covariance matrices are averaged
over the 40 batches for CKA loss computation during the pretraining and added to the final batch.
We do not use hyperparameters to weigh the loss contributions. All the experiments are performed on
an A40 GPU with 40GB memory.

The fine-tuning on GLUE tasks is done with the Adam optimizer with learning rate η = 3e−5 to 1e−4
and weight decay 5e− 4 for a batch size of 64. Since CKA loss gives a better KL Divergence than
the baseline, we fine-tuned only the students distilled with CKA for the downstream tasks. We did
not use any hidden state loss during fine-tuning.

2https://huggingface.co/datasets/legacy-datasets/mc4
3https://huggingface.co/datasets/legacy-datasets/c4
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