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1 MORE RELATED WORKS

In the field of medical image privacy protection, federated learn-
ing (FL) [2, 11] has been extensively studied, allowing different
data centers to securely share training data while ensuring that
no participating center can access sensitive data from others [8, 9].
Federated learning, through distributed computing and strategies
to maintain data locality, prompts collaboration in medical image
analysis and reduces the risk of data breaches [5, 6, 10].

Another type of privacy protection method, unlearnable exam-
ples (UEs), as a specific type of data poisoning attacks [1], are
designed to protect the datasets from unauthorized model training
by injecting protective perturbation to images from the training
dataset [3]. Models trained on datasets protected by UEs tend to per-
form random guessing on clean test images. Lin et al. [7] propose
medical-prior-aware perturbation generation methods to effectively
and imperceptibly protect training datasets.

As we conclude in Table 1, federated learning and unlearnable
examples are designed for the protection of training data from being
seen and being used for unauthorized model training, respectively.
These two techniques cannot be adopted to protect test images
after the model deployment. Unlike FL and UEs, deformation-based,
homomorphic encryption-based, encoding-based, and our image
hiding-based methods can be used for safeguarding test images
against attacks. Different from existing privacy protection methods
for client-server MIA, we conceal medical images within natural
images and directly perform MIA in the steganographic domain of
the concealed images. This is less likely to attract the attention of
attackers.

2 MINOR LIMITATIONS

In our main manuscript, we discuss the necessity of further improv-
ing imperceptibility and MIA performance. Here, we present some
minor issues that we can deal with in the feature.

(1) Multi-class segmentation. Although our method supports
multi-classification, it is currently limited to supporting only three-
channel image hiding and extraction. This limitation stems from
our framework’s design, which only allows the hiding and recovery
of three-channel images.

(2) Robustness against steganalysis. The ability to resist steganaly-
sis is another concern. Existing DIH (Deep Image Hiding) methods
are somewhat vulnerable to steganalysis. If an insider were to leak
our pipeline, it would be challenging to defend against attackers
using steganography to extract patient images. We can use some
encryption to enhance our DIH process.

3 MORE IMPLEMENTATION DETAILS

Competing Methods. For competing medical image segmentation
methods, we either adopt the official hyperparameters or assign a
set of better ones. For deep image hiding (DIH) models, i.e., HiNet,
HiDDeN, and DeepStega, we utilize their pretrained weights to start

the training. For all compared covert MIA methods, the training
methodology is similar to HideMIA: first, the DIH network is frozen,
and the MIA network is trained using the total loss L;,;4; from
Eq. (8), followed by joint fine-tuning of the DIH and MIA networks
using L;osq1- Note that the original version of HiDDeN [12] is
not designed for image hiding but rather for concealing binary
information within images. We employ a reimplemented version
1 of HiDDeN from PUSNet [4], used for image hiding. Since the
official Github repository of DeepStega lacks pretrained weights,
we utilize weights reproduced by others 2, which exhibit similar
performance to the officially claimed metrics.

HideMIA. In AsyWA, due to limited computational resources, we
downsample the size of the feature maps to 1/2 using adaptive
average pooling and reduce the number of channels by half using
1 X 1 convolution before inputting them into AsyWA. Subsequently,
we apply interpolation and 1 X 1 convolution to upsample the
features outputted by AsyWA to match the size of the input features.
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17 Table 1: Characteristics for privacy-enhancing techniques for MIA. “FL” and “UEs” are short for federated learning and 175
18 unlearnable examples. Others are privacy-enhancing server-client frameworks for MIA. 176
119 177
120 Characteristics ‘ FL UEs Deformation-based HE-based Encoding-based Our HideMIA 178
121 179
. Data sharing during training | v X X X X X 50
s Protected subjects | Unauthorized model training | X v X X X X .
12’4 Testing data after Deployment | X X v v 4 v .
125 Exposing transmitted images as medical images - - v X X X 183
126 Degree of normal distribution modification - - Medium High High Low 184
127 Time complexity - - Low High Low Low 185
128 Difficulty in arousing attackers’ suspiction - - Medium High High Low 186
129 187
130 Table 2: Details of each MIA dataset. 188
131 189
132 Name Modality Subject Type Number of Images Number of Classes 190
133 191
» BUSI Ultrasound Breast  Segmentation 612 2 o
15 Kvasir-SEG Endoscope Intestine Segmentation 1,000 2 103
136 ChildDental X-ray Teeth  Segmentation 1,510 2 19;
. SIPaKMed Microscope Cell Classification 4,049 5 .
s DermaMNIST Dermatoscope Skin Classification 10,015 7 106
’ ChestCT CT Lung  Classification 1,000 4
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Figure 1: Visual comparisons for different DIH networks (xs¢egq)
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