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1 MORE RELATEDWORKS
In the field of medical image privacy protection, federated learn-
ing (FL) [2, 11] has been extensively studied, allowing different
data centers to securely share training data while ensuring that
no participating center can access sensitive data from others [8, 9].
Federated learning, through distributed computing and strategies
to maintain data locality, prompts collaboration in medical image
analysis and reduces the risk of data breaches [5, 6, 10].

Another type of privacy protection method, unlearnable exam-
ples (UEs), as a specific type of data poisoning attacks [1], are
designed to protect the datasets from unauthorized model training
by injecting protective perturbation to images from the training
dataset [3]. Models trained on datasets protected by UEs tend to per-
form random guessing on clean test images. Lin et al. [7] propose
medical-prior-aware perturbation generationmethods to effectively
and imperceptibly protect training datasets.

As we conclude in Table 1, federated learning and unlearnable
examples are designed for the protection of training data from being
seen and being used for unauthorized model training, respectively.
These two techniques cannot be adopted to protect test images
after the model deployment. Unlike FL and UEs, deformation-based,
homomorphic encryption-based, encoding-based, and our image
hiding-based methods can be used for safeguarding test images
against attacks. Different from existing privacy protection methods
for client-server MIA, we conceal medical images within natural
images and directly perform MIA in the steganographic domain of
the concealed images. This is less likely to attract the attention of
attackers.

2 MINOR LIMITATIONS
In our main manuscript, we discuss the necessity of further improv-
ing imperceptibility and MIA performance. Here, we present some
minor issues that we can deal with in the feature.

(1) Multi-class segmentation. Although our method supports
multi-classification, it is currently limited to supporting only three-
channel image hiding and extraction. This limitation stems from
our framework’s design, which only allows the hiding and recovery
of three-channel images.

(2) Robustness against steganalysis. The ability to resist steganaly-
sis is another concern. Existing DIH (Deep Image Hiding) methods
are somewhat vulnerable to steganalysis. If an insider were to leak
our pipeline, it would be challenging to defend against attackers
using steganography to extract patient images. We can use some
encryption to enhance our DIH process.

3 MORE IMPLEMENTATION DETAILS
CompetingMethods. For competingmedical image segmentation
methods, we either adopt the official hyperparameters or assign a
set of better ones. For deep image hiding (DIH) models, i.e., HiNet,
HiDDeN, and DeepStega, we utilize their pretrained weights to start

the training. For all compared covert MIA methods, the training
methodology is similar to HideMIA: first, the DIH network is frozen,
and the MIA network is trained using the total loss L𝑡𝑜𝑡𝑎𝑙 from
Eq. (8), followed by joint fine-tuning of the DIH and MIA networks
using L𝑡𝑜𝑡𝑎𝑙 . Note that the original version of HiDDeN [12] is
not designed for image hiding but rather for concealing binary
information within images. We employ a reimplemented version
1 of HiDDeN from PUSNet [4], used for image hiding. Since the
official Github repository of DeepStega lacks pretrained weights,
we utilize weights reproduced by others 2, which exhibit similar
performance to the officially claimed metrics.
HideMIA. In AsyWA, due to limited computational resources, we
downsample the size of the feature maps to 1/2 using adaptive
average pooling and reduce the number of channels by half using
1× 1 convolution before inputting them into AsyWA. Subsequently,
we apply interpolation and 1 × 1 convolution to upsample the
features outputted by AsyWA to match the size of the input features.
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Table 1: Characteristics for privacy-enhancing techniques for MIA. “FL” and “UEs” are short for federated learning and
unlearnable examples. Others are privacy-enhancing server-client frameworks for MIA.

Characteristics FL UEs Deformation-based HE-based Encoding-based Our HideMIA

Protected subjects
Data sharing during training ✓ ✕ ✕ ✕ ✕ ✕

Unauthorized model training ✕ ✓ ✕ ✕ ✕ ✕

Testing data after Deployment ✕ ✕ ✓ ✓ ✓ ✓

Exposing transmitted images as medical images - - ✓ ✕ ✕ ✕

Degree of normal distribution modification - - Medium High High Low
Time complexity - - Low High Low Low

Difficulty in arousing attackers’ suspiction - - Medium High High Low

Table 2: Details of each MIA dataset.

Name Modality Subject Type Number of Images Number of Classes

BUSI Ultrasound Breast Segmentation 612 2
Kvasir-SEG Endoscope Intestine Segmentation 1,000 2
ChildDental X-ray Teeth Segmentation 1,510 2
SIPaKMed Microscope Cell Classification 4,049 5

DermaMNIST Dermatoscope Skin Classification 10,015 7
ChestCT CT Lung Classification 1,000 4
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Figure 1: Visual comparisons for different DIH networks (𝒙𝑠𝑡𝑒𝑔𝑎)
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Figure 2: Visual comparisons for different DIH networks (𝒙𝑠𝑡𝑒𝑔𝑎)
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