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A Further Experimental Details1

A.1 Capsule-based Bounding Volume Method for a Panda Robot Arm2

We construct capsule-shaped collision primitives for a Panda robot arm as a baseline collision dis-3

tance estimation method (see Figure 1). Our approach follows a similar methodology to [1], which4

formulates an optimization problem as follows:5

min
ai,bi,ri

||ai − bi||πr2i +
4

3
πr3i (1)

s.t. dist(p, aibi) ≤ ri, for all p ∈ Mi (2)

Here, i denotes the link index of the Panda robot arm, Mi represents the vertices of the ith link6

mesh, and ai, bi, and ri refer to the two endpoints and the radius of a capsule, respectively, and aibi7

represents the line segment connecting the two endpoints. This formulation results in the creation8

of minimal volume capsules that encapsulate all vertices of the link meshes. The collision distance9

of the multi-arm robot systems can be estimated through the minimum distance calculation between10

capsules.11

Figure 1: Illustrations of the Panda robot arm with capsule-shape collision primitives.

A.2 The Collision-free Guaranteed Threshold12

The collision-free guaranteed threshold ϵsafe refers to a predefined distance value that is established13

in collision distance estimation methods. This threshold is set to ensure that during testing or actual14

operation, the estimated collision distance remains above this threshold for all valid configurations15

or movements of the robot system. In other words, if the estimated collision distance between the16

robot and any obstacles remains above the collision-free guaranteed threshold (d̂col(q) > ϵsafe), it is17

considered safe and collision-free. In our experiments, we set the collision-free guaranteed threshold18

to the least conservative value that allows us to classify all collision configurations in the test dataset19

as collisions. These thresholds are then utilized for measuring the Safe-FPR.20
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Table 1: The Collision-free Guaranteed Thresholds

Two arms Three arms Four arms
Capsule 0.0 0.0 0.0
JointNN 0.2111 0.2015 0.2231
PosNN 0.1141 0.1189 0.1756
jointNERF 0.1661 0.1734 0.2001
ClearanceNet 0.2840 0.3713 0.4944
DiffCo -1.2789 -1.4672 -0.9535
PairwiseNet 0.0150 0.0152 0.0184

A.3 Hyperparameters21

Table 2 shows hyperparameters employed in our experiments.22

Table 2: Hyperparameters

hyperparameter value
batch size, learning rate, epoch for PairwiseNet 1000, 1e-3, 2000
batch size, learning rate, epoch for ClearanceNet 191, 1.75e-4, 400
batch size, learning rate, epoch for other NN baselines 10000, 1e-3, 10000
k for k-nearest neighbor of EdgeConv layers 5
# of points in the point cloud data of an shape element 100
hidden nodes of EdgeConv layers 64

B Additional Experimental Results23

B.1 Inference Time of PairwiseNet24

PairwiseNet has an efficient inference strategy that infers solely the regressor network without the25

need to path through the encoder, which contains complex EdgeConv layers. Additionally, the batch26

calculation capability of the neural network structure further enhances the efficiency of PairwiseNet27

when estimating the global collision distance, even with a large number of element pairs in the28

system. Table 3 provides the inference time of PairwiseNet for different environments. Notably,29

even with an increase in the number of element pairs to 384 in a four-arm system, PairwiseNet30

maintains a reasonably efficient inference time of 0.542 ms on CPU and 0.347 ms on GPU. These31

inference times highlight the ability of PairwiseNet to deliver fast collision distance estimation,32

ensuring practicality and real-time applicability in various robotic environments.33

Table 3: Inference time of PairwiseNet

Env. Two arms Three arms Four arms One arm with obstacles
# of element pairs 64 192 384 145

Inference time (CPU) (ms) 0.201 0.323 0.542 0.331
Inference time (GPU) (ms) 0.235 0.284 0.347 0.257

B.2 Collision-free Path Planning with PairwiseNet34

The collision-free trajectory used in our experiments is the outcome of path planning process uti-35

lizing the trained PairwiseNet model. Similar to the approaches presented in [2, 3], the trajectory36
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planning process can be formulated as the following optimization problem:37

min
τ

∫ T

0

τ̇(t)dt (3)

s.t. d̂col(τ(t)) > ϵ, t ∈ [0, T ] (4)
τ(0) = qstart (5)
τ(T ) = qend. (6)

where τ represents the trajectory in the joint configuration space, τ(t) ∈ RNdof , and qstart and qend are38

the start and end joint configurations, respectively, and ϵ is the collision-free guaranteed threshold of39

PairwiseNet. Auto-differentiation and the Adam optimizer in PyTorch [4] are employed for the op-40

timization process. To enhance computational efficiency and trajectory smoothness, we utilize cubic41

spline parameterization for the trajectory function τ(t). Additionally, the supplementary materials42

include a video file showcasing another example of path planning with PairwiseNet.43
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