
Fast (1 + ε)-Approximation Algorithms for Binary Matrix Factorization

Ameya Velingker 1 Maximilian Vötsch 2 David P. Woodruff 3 Samson Zhou 4

Abstract
We introduce efficient (1 + ε)-approximation
algorithms for the binary matrix factorization
(BMF) problem, where the inputs are a matrix
A ∈ {0, 1}n×d, a rank parameter k > 0, as
well as an accuracy parameter ε > 0, and the
goal is to approximate A as a product of low-
rank factors U ∈ {0, 1}n×k and V ∈ {0, 1}k×d.
Equivalently, we want to find U and V that min-
imize the Frobenius loss ∥UV − A∥2F . Be-
fore this work, the state-of-the-art for this prob-
lem was the approximation algorithm of Ku-
mar et al. [ICML 2019], which achieves a C-
approximation for some constant C ≥ 576.
We give the first (1 + ε)-approximation algo-
rithm using running time singly exponential in k,
where k is typically a small integer. Our tech-
niques generalize to other common variants of
the BMF problem, admitting bicriteria (1 + ε)-
approximation algorithms for Lp loss functions
and the setting where matrix operations are per-
formed in F2. Our approach can be implemented
in standard big data models, such as the stream-
ing or distributed models.

1. Introduction
Low-rank approximation is a fundamental tool for factor
analysis. The goal is to decompose several observed vari-
ables stored in the matrix A ∈ Rn×d into a combination of
k unobserved and uncorrelated variables called factors, rep-
resented by the matrices U ∈ Rn×k and V ∈ Rk×d. In par-
ticular, we want to solve the problem minU,V ∥UV −A∥.
Identifying the factors can often decrease the number of
relevant features in an observation and thus significantly

1Google Research, Mountain View, USA 2Doctoral School
Computer Science DoCS and Faculty of Computer Science, Uni-
versity of Vienna, Austria 3Carnegie Mellon University, Pitts-
burgh, USA, and Google, Pittsburgh, USA 4UC Berkeley and
Rice University, USA. Correspondence to: Samson Zhou <sam-
sonzhou@gmail.com>, Maximilian Vötsch <max@voets.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

improve interpretability. Another benefit is that low-rank
matrices allow us to approximate the matrix A with its fac-
tors U and V using only (n + d)k parameters rather than
the nd parameters needed to represent A. Moreover, for
a vector x ∈ Rd, we can approximate the matrix-vector
multiplication Ax ≈ UVx in time (n + d)k, while com-
puting Ax requires nd time. These benefits make low-rank
approximation one of the most widely used tools in ma-
chine learning, recommender systems, data science, statis-
tics, computer vision, and natural language processing. In
many of these applications, discrete or categorical datasets
are typical. In this case, restricting the underlying factors
to a discrete domain for interpretability often makes sense.

For example, (Kumar et al., 2019) observed that nearly half
of the data sets in the UCI repository (Dua & Graff, 2017)
are categorical and thus can be represented as binary ma-
trices, possibly using multiple binary variables to represent
each category.

In the binary matrix factorization (BMF) problem, the input
matrix A ∈ {0, 1}n×d is binary. Additionally, we are given
an integer range parameter k, with 0 < k ≪ n, d. The goal
is to approximate A by the factors U ∈ {0, 1}n×k and V ∈
{0, 1}k×d such that A ≈ UV. The BMF problem restricts
the general low-rank approximation problem to a discrete
space, making finding good factors more challenging.

1.1. Our Contributions

We present (1+ε)-approximation algorithms for the binary
low-rank matrix factorization problem for several standard
loss functions used in the general low-rank approximation
problem. Table 1 summarizes our results.

Binary matrix factorization. We first consider the mini-
mization of the Frobenius norm, defined by ∥A−UV∥2F =∑

i∈[n]

∑
j∈d |Ai,j − (UV)i,j |2, where [n] := {1, . . . , n}

and Ai,j denotes the entry in the i-th row and the j-th col-
umn of A. Intuitively, we can view this as finding a least-
squares approximation of A.

We introduce the first (1 + ε)-approximation algorithm for
BMF that runs in singly exponential time. That is, we
present an algorithm that, for any ε > 0, returns U′ ∈
{0, 1}n×k,V′ ∈ {0, 1}k×d with ∥A − U′V′∥2F ≤ (1 +
ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥A−UV∥2F . For ε ∈ (0, 1),

1

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Reference Approximation Running Time Other

(Kumar et al., 2019) C ≥ 576 2Õ(k
2) poly(n, d) Frobenius loss

(Fomin et al., 2020) 1 + ε 2
2O(k)

ε2
log2 1

ε poly(n, d) Frobenius loss

Here 1 + ε 2Õ(k
2/ε4) poly(n, d) Frobenius loss

(Kumar et al., 2019) C ≥ 1222p−2 + 2p−1 2poly(k) poly(n, d) Lp loss, p ≥ 1

Here 1 + ε 2poly(k/ε) poly(n, d) Lp loss, p ≥ 1, bicriteria

(Fomin et al., 2020) 1 + ε 2
2O(k)

ε2
log2 1

ε poly(n, d) Binary field

(Ban et al., 2019a) 1 + ε 2
2O(k)

ε2
log 1

ε poly(n, d) Binary field
(Kumar et al., 2019) C ≥ 40001 2poly(k) poly(n, d) Binary field, bicriteria

Here 1 + ε 2poly(k/ε) poly(n, d) Binary field, bicriteria

Table 1. Summary of related work on binary matrix factorization

our algorithm uses 2Õ(k
2/ε4) poly(n, d) running time and

for ε ≥ 1, our algorithm uses 2Õ(k
2) poly(n, d) running

time, where poly(n, d) denotes a polynomial in n and d.

By comparison, (Kumar et al., 2019) gave a C-
approximation algorithm for the BMF problem also us-
ing running time 2Õ(k

2) poly(n, d), but for some constant
C ≥ 576. Though they did not attempt to optimize for
C, their proofs employ multiple triangle inequalities that
present a constant lower bound of at least 2 on C. See Sec-
tion 1.2 for a more thorough discussion of the limitations
of their approach. (Fomin et al., 2020) introduced a (1+ε)-
approximation algorithm for the BMF problem with rank-
k factors. However, their algorithm uses time doubly ex-

ponential in k, specifically 2
2O(k)

ε2
log2 1

ε poly(n, d), which
(Ban et al., 2019a) later improved to doubly exponential

running time 2
2O(k)

ε2
log 1

ε poly(n, d), while also showing
that time 2k

Ω(1)

is necessary even for constant-factor ap-
proximation, under the Small Set Expansion Hypothesis
and the Exponential Time Hypothesis.

BMF with Lp loss. We also consider the more general
problem of minimizing the Lp loss for a given p, defined
as the optimization problem of minimizing ∥A−UV∥pp =∑

i∈[n]

∑
j∈d |Ai,j − (UV)i,j |p. Of particular interest is

the case p = 1, which is a form of robust principal com-
ponent analysis, and which has been proposed as an al-
ternative to Frobenius norm low-rank approximation that
is more robust to outliers, i.e., values that are far away
from the majority of the data points (Ke & Kanade, 2003;
2005; Kwak, 2008; Zheng et al., 2012; Brooks et al., 2013;
Markopoulos et al., 2014; Song et al., 2017; Park & Klab-
jan, 2018; Ban et al., 2019a; Mahankali & Woodruff, 2021).
On the other hand, for p > 2, low-rank approximation with
Lp error places an increasingly higher priority on outliers,
i.e., the larger entries of UV.

We present the first (1 + ε)-approximation algorithm for

BMF that runs in singly exponential time, albeit at the cost
of incurring logarithmic increases in the rank k, making
it a bicriteria algorithm. Specifically, for any ε > 0, our
algorithm returns U′ ∈ {0, 1}n×k′

,V′ ∈ {0, 1}k′×d with

∥A−U′V′∥pp ≤ (1+ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥A−UV∥pp,

where k′ = O
(

k log2 n
ε2

)
. For ε ∈ (0, 1), our algorithm

uses 2poly(k/ε) poly(n, d) running time and for ε ≥ 1, our
algorithm uses 2poly(k) poly(n, d) running time.

Previous work (Kumar et al., 2019) gave a C-
approximation algorithm for this problem, using singly ex-
ponential running time 2poly(k) poly(n, d), without incur-
ring a bicriteria loss in the rank k. However, their con-
stant C ≥ 1222p−2 + 2p−1 is large and depends on p.
Again, their use of multiple triangle inequalities in their
argument bars this approach from achieving a (1 + ε)-
approximation. To our knowledge, no prior works achieved
(1 + ε)-approximation to BMF with Lp loss in singly ex-
ponential time.

BMF on binary fields. Finally, we consider the case
where all arithmetic operations are performed modulo two,
i.e., in the finite field F2. Specifically, the (i, j)-th entry
of UV is the inner product ⟨Ui,V

(j)⟩ of the i-th row of
U and the j-th column of V, taken over F2. This model
has been frequently used for dimensionality reduction for
high-dimensional data with binary attributes (Koyutürk &
Grama, 2003; Shen et al., 2009; Jiang et al., 2014; Dan
et al., 2018) and independent component analysis, espe-
cially in the context of signal processing (Yeredor, 2011;
Gutch et al., 2012; Painsky et al., 2015; 2018). This
problem is also known as bipartite clique cover, the dis-
crete basis problem, or minimal noise role mining and has
been well-studied in applications to association rule min-
ing, database tiling, and topic modeling (Seppänen et al.,
2003; Singliar & Hauskrecht, 2006; Vaidya et al., 2007;

2

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Miettinen et al., 2008; Belohlávek & Vychodil, 2010; Lu
et al., 2012; Chandran et al., 2016; Chen et al., 2022).

We introduce the first bicriteria (1 + ε)-approximation al-
gorithm for the BMF problem on binary fields that runs in
singly exponential time. Specifically, for any ε > 0, our
algorithm returns U′ ∈ {0, 1}n×k′

,V′ ∈ {0, 1}k′×d with

∥A−U′V′∥pp ≤ (1+ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥A−UV∥pp,

where k′ = O
(

k logn
ε

)
and all arithmetic operations are

performed in F2. For ε ∈ (0, 1), our algorithm has running
time 2poly(k/ε) poly(n, d) and for ε ≥ 1, our algorithm has
running time 2poly(k) poly(n, d).

By comparison, (Kumar et al., 2019) gave a bicriteria C-
approximation algorithm for the BMF problem on binary
fields with running time 2poly(k) poly(n, d), for some con-
stant C ≥ 40001. Even though their algorithm also gives a
bicriteria guarantee, their approach, once again, inherently
cannot achieve (1 + ε)-approximation. On the other hand,
(Fomin et al., 2020) achieved a (1+ε)-approximation with-
out a bicriteria guarantee, but their algorithm uses doubly

exponential running time 2
2O(k)

ε2
log2 1

ε poly(n, d), which
(Ban et al., 2019a) later improved to doubly exponential

running time 2
2O(k)

ε2
log 1

ε poly(n, d), while also showing
that running time doubly exponential in k is necessary for
(1 + ε)-approximation on F2.

Applications to big data models. We remark that our al-
gorithms are conducive to big data models. Specifically,
our algorithmic ideas facilitate a two-pass algorithm in the
streaming model, where either the rows or the columns
of the input matrix arrive sequentially, and the goal is to
perform binary low-rank approximation while using space
sublinear in the size of the input matrix. Similarly, our ap-
proach can be used to achieve a two-round protocol in the
distributed model, where either the rows or the columns of
the input matrix are partitioned among several players, and
the goal is to perform binary low-rank approximation while
using total communication sublinear in the size of the input
matrix. See Section F for a formal description of the prob-
lem settings and additional details.

1.2. Overview of Our Techniques

This section briefly overviews our approaches to achieving
(1+ε)-approximation to the BMF problem. Alongside our
techniques, we discuss why prior approaches for BMF fail
to achieve (1 + ε)-approximation.

The BMF problem under the Frobenius norm is stated
as follows: Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d

be optimal low-rank factors, so that ∥U∗V∗ − A∥2F =
minU∈{0,1}n×k,V∈{0,1}k×d ∥UV − A∥2F . Our approach

relies on the sketch-and-solve paradigm, and we ask of our
sketch matrix S that it is an affine embedding, that is, given
U∗ and A, for all V ∈ {0, 1}k×d,(1− ε)∥U∗V−A∥2F ≤
∥SU∗V−SA∥2F ≤ (1+ε)∥U∗V−A∥2F . If S is an affine
embedding, we obtain a (1 + ε)-approximation by solving
for the minimizer V∗ in the sketched space. That is, given
S and U∗, instead of solving the above for V∗, it suffices
to solve argminV∈{0,1}k×d ∥SU∗V − SA∥2F .

Guessing the sketch matrix S. A general approach
taken by (Razenshteyn et al., 2016; Kumar et al., 2019; Ban
et al., 2019b) for various low-rank approximation problems
is first to choose S in a way so that there are not too many
possibilities for the matrices SU∗ and SA and then find the
minimizer V∗ for all guesses of SU∗ and SA. Note that
this approach is delicate because it depends on the choice
of the sketch matrix S. For example, if we chose S to be
a dense matrix with random Gaussian entries, then since
there are 2nk possibilities for the matrix U∗ ∈ {0, 1}n×k,
we cannot enumerate the possible matrices SU∗. Prior
work (Razenshteyn et al., 2016; Kumar et al., 2019; Ban
et al., 2019b) made the key observation that if A (and thus
U∗) has a small number of unique rows, then a matrix S
that samples a small number of rows of A has only a small
number of possibilities for SA.

To ensure that A has a small number of unique rows for
the BMF problem, (Kumar et al., 2019) first find a 2k-
means clustering solution Ã for the rows of A. Instead
of solving the problem on A, they then solve BMF on the
matrix Ã, where each row is replaced by the center the
point is assigned to, yielding at most 2k unique rows. Fi-
nally, they note that ∥U∗V∗−A∥2F is at least the 2k-means
cost, as U∗V∗ has at most 2k unique rows. Now that Ã
has 2k unique rows, they can make all possible guesses
for both SU∗ and SÃ in time 2Õ(k

2). By using an algo-
rithm of (Kanungo et al., 2004) that achieves roughly a 9-
approximation to k-means clustering, (Kumar et al., 2019)
ultimately obtain a C-approximation to the BMF problem,
for some C ≥ 576.

Shortcomings of previous work for (1 + ε)-
approximation. While (Kumar et al., 2019) do not
optimize for C, their approach fundamentally cannot
achieve (1 + ε)-approximation for BMF for the fol-
lowing reasons. First, they use a k-means clustering
subroutine (Kanungo et al., 2004), (achieving roughly a
9-approximation) which due to hardness-of-approximation
results (Cohen-Addad & Karthik C. S., 2019; Lee et al.,
2017) can never achieve (1 + ε)-approximation, as
there cannot exist a 1.07-approximation algorithm for
k-means clustering unless P=NP. Moreover, even if a
(1 + ε)-approximate k-means clustering could be found,
there is no guarantee that the cluster centers obtained

3

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

by this algorithm are binary. That is, while UV has a
specific form induced by the requirement that each factor
must be binary, a solution to k-means clustering offers
no such guarantee and may return Steiner points. Finally,
(Kumar et al., 2019) achieves a matrix S that roughly
preserves SU∗ and SA. By generalizations of the triangle
inequality, one can show that ∥SU∗V∗ − SA∥2F preserves
a constant factor approximation to ∥U∗V∗−A∥2F , but not
necessarily a (1 + ε)-approximation.

Another related work, (Fomin et al., 2020), reduces in-
stances of BMF to constrained k-means clustering in-
stances, where the constraints demand that the selected
centers are linear combinations of binary vectors. The core
part of their work is to design a sampling-based algorithm
for solving binary-constrained clustering instances, and the
result on BMF is a corollary. Constrained clustering is a
harder problem than BMF with Frobenius loss, so it is un-
clear how one might improve the doubly exponential run-
ning time using this approach.

Our approach: computing a strong coreset. We first
reduce the number of unique rows in A by computing a
strong coreset Ã for A. The strong coreset has the property
that for any choices of U ∈ {0, 1}n×k and V ∈ {0, 1}k×d,
there exists X ∈ {0, 1}n×k such that (1−ε)∥UV−A∥2F ≤
∥XV − Ã∥2F ≤ (1 + ε)∥UV − A∥2F . Therefore, we
first solve the low-rank approximation problem on Ã. Cru-
cially, we choose Ã to have 2poly(k/ε) unique rows so
then for a matrix S that samples poly(k/ε) rows, there are
2poly(k/ε) possibilities for SÃ, so we can make all possible
guesses for both SU∗ and SÃ. Unfortunately, we still have
the problem that ∥SU∗V∗ − SÃ∥2F does not even neces-
sarily give a (1 + ε)-approximation to ∥U∗V∗ − Ã∥2F .

Binary matrix factorization. To that end, we show that
when S is a leverage score sampling matrix, then S also
satisfies an approximate matrix multiplication property.
Therefore S can effectively be used for an affine embed-
ding. That is, the minimizer to ∥SU∗V∗ − SÃ∥2F pro-
duces a (1 + ε)-approximation to the cost of the opti-
mal factors ∥U∗V∗ − Ã∥2F . Thus, we can then solve
V′ = argminV∈{0,1}k×d ∥SU∗V − SÃ∥2F and U′ =

argminU∈{0,1}n×k ∥UV′ − A∥2F , where the latter opti-
mization problem can be solved by iteratively optimizing
over each row so that the total computation time isO

(
2kn

)
rather than 2kn.

BMF on binary fields. We again form the matrix Ã by
taking a strong coreset of A, constructed using an algo-
rithm that gives integer weights wi to each point, and then
duplicating the rows to form Ã. That is, if the i-th row
Ai of A is sampled with weight wi in the coreset, then Ã
will contain wi repetitions of row Ai. We want to use the

same approach for binary fields to make guesses for SU∗

and SÃ. However, it is no longer true that S will provide
an affine embedding over F2, in part because the subspace
embedding property of S computes leverage scores of each
row of U∗ and A with respect to general integers. Hence,
we require a different approach for matrix operations over
F2.

Instead, we group the rows of Ã by their number of repe-
titions, so that group Gj consists of the rows of Ã that are
repeated [(1+ε)j , (1+ε)j+1) times. That is, if Ai appears
wi times in Ã, then it appears a single time in group Gj for
j = ⌊logwi⌋. We then perform entrywise L0 low-rank ap-
proximation over F2 for each of the groups Gj , which gives

low-rank factors U(j) and V(j). We then compute Ũ(j) by
duplicating rows appropriately so that if Ai is in Gj , then
we place the row of U(j) corresponding to Ai into the i-th
row of Ũ(j), for all i ∈ [n]. Otherwise if Ai is not in Gj ,

then we set the i-th row of Ũ(j) to be the all zeros row. We
compute V(j) by padding accordingly and then collect

Ũ =
[
Ũ(0)| . . . |Ũ(ℓ)

]
, Ṽ← Ṽ(0) ◦ . . . ◦ Ṽ(i),

where
[
Ũ(0)| . . . |Ũ(ℓ)

]
denotes horizontal concatenation

of matrices and Ṽ(0) ◦ . . . ◦ Ṽ(i) denotes vertical concate-
nation (stacking) of matrices, to achieve bicriteria low-rank
approximations Ũ and Ṽ to Ã. Finally, to achieve bicrite-
ria factors U′ and V′ to A, we ensure that U′ achieves the
same block structure as Ũ.

BMF with Lp loss. We would again like to use the same
approach as our (1+ ε)-approximation algorithm for BMF
with Frobenius loss. We note that a coreset construction for
clustering under Lp metrics rather than Euclidean distance
is known, which we can use to construct Ã. However, the
challenge is that no known sampling matrix S guarantees
an affine embedding. One might hope that recent results on
active Lp regression (Chen & Price, 2019; Parulekar et al.,
2021; Musco et al., 2022; Meyer et al., 2022; 2023) can
provide such a tool. Unfortunately, adapting these tech-
niques still requires taking a union bound over a number of
columns, which would result in the sampling matrix having
too many rows for our desired running time.

Instead, we invoke the coreset construction on the rows and
the columns so that Ã has a small number of distinct rows
and columns. We again partition the rows of Ã into groups
based on their frequency, but now we further partition the
groups based on the frequency of the columns. Thus, it
remains to solve BMF with Lp loss on the partition, each
part of which has a small number of rows and columns.
Since the contribution of each row towards the overall loss
is small (because there is a small number of columns), we

4

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

show that there exists a matrix that samples poly(k/ε) rows
of each partition that finally achieves the desired affine em-
bedding. Therefore, we can solve the problem on each par-
tition, pad the factors accordingly, and build the bicriteria
factors as in the binary field case.

1.3. Motivation and Applications

This section gives a brief overview of related works and
applications of BMF. For a more thorough discussion, in-
cluding related works, please see Section A

Low-rank approximation is a fundamental and well-studied
problem in machine learning and data science. See
the surveys (Kannan & Vempala, 2009; Mahoney, 2011;
Woodruff, 2014). For real matrices and Frobenius norm
loss, low-rank approximation can be ideally solved using
the SVD. However, no optimal polynomial time algorithm
exists for binary matrices unless P = NP (Ban et al.,
2019a).

Binary matrix factorization finds applications in graph par-
titioning (Chandran et al., 2016), where it is related to
the bipartite clique partition problem(Orlin, 1977; Fleis-
chner et al., 2009; Chalermsook et al., 2014; Neumann,
2018), low-density parity-check codes (Ravanbakhsh et al.,
2016), and optimizing passive OLED displays (Kumar
et al., 2019). As previously noted, many real-world
datasets are binary or categorical (Kumar et al., 2019).
Hence, BMF on binary fields has been studied in the con-
text of dimensionality reduction on high-dimension bi-
nary datasets (Koyutürk & Grama, 2003), gene expres-
sion (Zhang et al., 2007), and pattern mining binary
data (Shen et al., 2009). To this end, many heuristics
have been developed for this problem (Koyutürk & Grama,
2003; Shen et al., 2009; Fu et al., 2010; Jiang et al., 2014),
due to its NP-hardness (Gillis & Vavasis, 2018; Dan et al.,
2018).

By using an Lp loss function instead of the Frobenius loss,
the sensitivity of a BMF algorithm to outliers can be con-
trolled, with p > 2 increasing the sensitivity, and p = 1
corresponding to robust PCA, which is less sensitive to out-
liers. (Ke & Kanade, 2003; 2005; Kwak, 2008; Zheng et al.,
2012; Brooks et al., 2013; Markopoulos et al., 2014; Song
et al., 2017; Park & Klabjan, 2018; Ban et al., 2019a; Ma-
hankali & Woodruff, 2021). Additionally, the p = 1 regime
finds application in graph theory, where it solves the prob-
lem of optimally covering a graph G with k bicliques (Ku-
mar et al., 2019).

2. Binary Low-Rank Approximation
In this section, we present a (1 + ε)-approximation al-
gorithm for binary low-rank approximation with Frobe-
nius norm loss, where the goal is to find matrices U ∈

{0, 1}n×k and V ∈ {0, 1}k×d to minimize ∥UV −
A∥2F . Suppose optimal low-rank factors are U∗ ∈
{0, 1}n×k and V∗ ∈ {0, 1}k×d, so that ∥U∗V∗ −
A∥2F = minU∈{0,1}n×k,V∈{0,1}k×d ∥UV − A∥2F . Ob-
serve that if we knew matrices SU∗ and SA so that for
all V ∈ {0, 1}k×d, (1 − ε)∥U∗V − A∥2F ≤ ∥SU∗V −
SA∥2F ≤ (1 + ε)∥U∗V − A∥2F , then we could find a
(1+ε)-approximate solution for V∗ by solving the problem
argminV∈{0,1}k×d ∥SU∗V − SA∥2F instead.

We want to make guesses for the matrices SU∗ and SA,
but we must ensure there are not too many possibilities
for these matrices. For example, if we chose S to be
a dense matrix with random Gaussian entries, then SU∗

could have too many possibilities because, without addi-
tional information, there are 2nk possibilities for the matrix
U∗ ∈ {0, 1}n×k. Instead, we choose S to be a leverage
score sampling matrix, which samples rows from U∗ and
A. Since each row of U∗ has dimension k, there are at most
2k distinct possibilities for each row of U∗. On the other
hand, A ∈ {0, 1}n×d may have 2d distinct possibilities for
the rows of A, which is too many to guess.

Thus we first reduce the number of unique rows in A by
computing a strong coreset Ã for A. The strong coreset
has the property that for any choices of U ∈ {0, 1}n×k and
V ∈ {0, 1}k×d, there exists X ∈ {0, 1}n×k such that

(1−ε)∥UV−A∥2F ≤ ∥XV−Ã∥2F ≤ (1+ε)∥UV−A∥2F .
Therefore, we first solve the low-rank approximation prob-
lem on Ã. Crucially, Ã has 2poly(k/ε) unique rows so
then for a matrix S that samples poly(k/ε) rows, there
are

(
2poly(k/ε)

poly(k/ε)

)
= 2poly(k/ε) possible choices of SÃ, so

we can enumerate all of them for both SU∗ and SÃ. We
can then solve V′ = argminV∈{0,1}k×d ∥SU∗V − SÃ∥2F
and U′ = argminU∈{0,1}n×k ∥UV′−A∥2F , where the lat-
ter optimization problem can be solved by iteratively opti-
mizing over each row so that the total computation time is
O
(
2kn

)
rather than 2kn. We give the full algorithm in Al-

gorithm 2 and the subroutine for optimizing with respect to
Ã in Algorithm 1. We give the subroutines for solving for
V′ and U′ in Algorithm 6 and Algorithm 7, respectively.
Lemma 2.1. Suppose ε < 1

10 . Then with probability at
least 0.97, the output of Algorithm 1 satisfies ∥U′V′ −
Ã∥2F ≤ (1 + 6ε)∥U∗V∗ − Ã∥2F . Moreover, Algo-
rithm 1 uses 2O(m

2+m log t) poly(N, d) running time for

m = O
(

k log k
ε2

)
.

For a set X of n points in Rd weighted by a function w,
the k-means clustering cost of X with respect to a set S
of k centers is defined as Cost(X,S,w) :=

∑
x∈X w(x) ·

mins∈S ∥x− s∥22. When the weights w are uniformly unit
across all points in X , we simply write Cost(X,S) =
Cost(X,S,w).

5

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Algorithm 1 Low-rank approximation for matrix Ã with t
distinct rows

Input: Ã ∈ {0, 1}N×d with at most t distinct rows, rank
parameter k, accuracy parameter ε > 0

Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfy-
ing the property that ∥U′V′ − A∥2F ≤ (1 +

ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV − Ã∥2F
1: V ← ∅
2: for each guess of SU∗ and SÃ, where S is a lever-

age score sampling matrix with m = O
(

k log k
ε2

)
rows

with weights that are powers of two up to poly(N) do
3: V ← V ∪ argminV∈{0,1}k×d ∥SU∗V − SÃ∥2F

▷Algorithm 6
4: end for
5: for each V ∈ V do
6: Let UV = argminU∈{0,1}N×k ∥UV − Ã∥2F

▷Algorithm 7
7: end for
8: V′ ← argminV∈{0,1}k×d ∥SUVV − SÃ∥2F
9: U′ ← UV′

10: Return (U′,V′)

We recall the following construction for a strong ε-coreset
for k-means clustering.

Theorem 2.2 (Theorem 36 in (Feldman et al., 2020)). Let
X ⊂ Rd be a subset of n points, ε ∈ (0, 1) be an ac-

curacy parameter, and let t = O
(

k3 log2 k
ε4

)
. There ex-

ists an algorithm that uses O
(
nd2 + n2d+ nkd

ε2 + nk2

ε2

)
time and outputs a set of t weighted points that is a strong
ε-coreset for k-means clustering with probability at least
0.99. Moreover, each point has an integer weight at most
poly(n).

By analyzing correctness and the running time of Algo-
rithm 2, we have:

Theorem 2.3. There exists an algorithm that uses
2Õ(k

2/ε4) poly(n, d) running time and with probability at
least 2

3 , outputs U′ ∈ {0, 1}n×k and V′ ∈ {0, 1}k×d such
that

∥U′V′−A∥2F ≤ (1+ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV−A∥2F .

3. F2 Low-Rank Approximation
In this section, we present a (1 + ε)-approximation algo-
rithm for binary low-rank approximation on F2, where the
goal is to find matrices U ∈ {0, 1}n×k and V ∈ {0, 1}k×d

to minimize the Frobenius norm loss ∥UV−A∥2F , but now
all operations are performed in F2. We would like to use
the same approach as in Section 2. That is, to make guesses

Algorithm 2 Low-rank approximation for matrix A

Input: A ∈ {0, 1}n×d, rank parameter k, accuracy pa-
rameter ε > 0

Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfy-
ing the property that ∥U′V′ − A∥2F ≤ (1 +
ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV −A∥2F

1: t← O
(

23kk2

ε4

)
▷Theorem 2.2 for 2k-means

clustering
2: Compute a strong coreset C for 2k-means clustering of

A, with size t and total weight N = poly(n)

3: Let Ã ∈ {0, 1}N×d be the matrix representation of C,
where weighted points are duplicated appropriately

4: Let (Ũ, Ṽ) be the output of Algorithm 1 on input Ã
5: U′ ← argminU∈{0,1}n×k ∥UṼ − A∥2F , V′ ← Ṽ

▷Algorithm 7
6: Return (U′,V′)

for the matrices SU∗ and SA while ensuring there are not
too many possibilities for these matrices. For matrix op-
erations over general integers, we chose S as a leverage
score sampling matrix that samples rows from U∗ and A.
We then used the approximate matrix multiplication prop-
erty in Lemma C.1 and the subspace embedding property
in Theorem C.2 to show that S provides an affine embed-
ding in Theorem C.3 over general integers. However, it no
longer necessarily seems true that S will provide an affine
embedding over F2, in part because the subspace embed-
ding property of S computes leverage scores of each row
of U∗ and A with respect to general integers. Thus we re-
quire an alternate approach for matrix operations over F2.

Instead, we form the matrix Ã by taking a strong coreset of
A and then duplicating the rows according to their weight
wi to form Ã. That is, if the i-th row Ai of A is sampled
with weight wi in the coreset, then Ã will contain wi rep-
etitions of the row Ai, where we note that wi is an integer.
We then group the rows of Ã by wi,so that Gj consists of
the rows of Ã that are repeated [(1+ε)j , (1+ε)j+1) times.
Thus if Ai appears wi times in Ã, then it appears a single
time in group Gj for j = ⌊logwi⌋.

We perform entrywise L0 low-rank approximation over F2

for each of the groups Gj , which gives low-rank factors

U(j) and V(j). We then compute Ũ(j) ∈ Rn×d from U(j)

by the following procedure. If Ai is in Gj , then we place
the row of U(j) corresponding to Ai into the i-th row of
Ũ(j), for all i ∈ [n]. Note that the row of U(j) corre-
sponding to Ai may not be the i-th row of U(j), e.g., since
Ai will appear only once in Gj even though it appears
wi ∈ [(1 + ε)j , (1 + ε)j+1) times in A. Otherwise if Ai

is not in Gj , then we set the i-th row of Ũ(j) to be the all
zeros row. We then achieve V(j) by padding accordingly.

6

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Finally, we collect

Ũ =
[
Ũ(0)| . . . |Ũ(ℓ)

]
, Ṽ← Ṽ(0) ◦ . . . ◦ Ṽ(i)

to achieve bicriteria low-rank approximations Ũ and Ṽ to
Ã. Finally, to achieve bicriteria low-rank approximations
U′ and V′ to A, we require that U′ achieves the same
block structure as Ũ. We describe this subroutine in Al-
gorithm 8 and we give the full low-rank approximation bi-
criteria algorithm in Algorithm 3.

We first recall the following subroutine to achieve entry-
wise L0 low-rank approximation over F2. Note that for
matrix operations over F2, we have that the entrywise L0

norm is the same as the entrywise Lp norm for all p.
Lemma 3.1 (Theorem 3 in (Ban et al., 2019a)). For ε ∈
(0, 1), there exists a (1 + ε)-approximation algorithm to
entrywise L0 rank-k approximation over F2 running in d ·
npoly(k/ε) time.

Algorithm 3 Bicriteria low-rank approximation on F2 for
matrix A

Input: A ∈ {0, 1}n×d, rank parameter k, accuracy pa-
rameter ε > 0

Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfy-
ing the property that ∥U′V′ − A∥2F ≤ (1 +
ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV −A∥2F , where all
matrix operations are performed in F2

1: ℓ ← O
(

logn
ε

)
, t ← O

(
(2kℓ)3k2

ε4

)
, k′ ← ℓk

▷Theorem 2.2 for 2k-means clustering
2: Compute a strong coreset C for 2k-means clustering of

A, with size t and total weight N = poly(n)

3: Let Ã ∈ {0, 1}N×d be the matrix representation of C,
where weighted points are duplicated appropriately

4: For i ∈ [ℓ], let G(i) be the group of rows (removing
multiplicity) of Ã with frequency [(1+ε)i, (1+ε)i+1)

5: Let (Ũ(i), Ṽ(i)) be the output of Lemma 3.1 on input
G(i), padded to Rn×k and Rk×d, respectively

6: Ṽ← Ṽ(0) ◦ . . . ◦ Ṽ(ℓ)

7: Use Algorithm 8 with Ṽ(0), . . . , Ṽ(ℓ) and A to find
U′, V′ ← Ṽ

8: Return (U′,V′)

By analyzing the correctness and running time of Algo-
rithm 3, we have:
Theorem 3.2. There exists an algorithm that uses
2poly(k/ε) poly(n, d) running time and with probability at
least 2

3 , outputs U′ ∈ {0, 1}n×k′
and V′ ∈ {0, 1}k′×d

such that

∥U′V′−A∥2F ≤ (1+ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV−A∥2F ,

where k′ = O
(

k log k
ε

)
.

4. Lp Low-Rank Approximation
In this section, we present a (1 + ε)-approximation al-
gorithm for binary low-rank approximation with Lp loss,
where the goal is to find matrices U ∈ {0, 1}n×k and
V ∈ {0, 1}k×d to minimize ∥UV −A∥pp. We would like
to use the same approach as in Section 2, where we first
compute a weighted matrix Ã from a strong coreset for A,
and then we make guesses for the matrices SU∗ and SA
and solve for minV∈{0,1}k×d ∥SU∗V − SA∥2F while en-
suring there are not too many possibilities for the matrices
SU∗ and SA. Thus to adapt this approach to Lp loss, we
first require the following strong coreset construction for
discrete metrics:

Theorem 4.1 (Theorem 1 in (Cohen-Addad et al., 2021)).
Let X ⊂ Rd be a subset of n points, ε ∈ (0, 1) be an
accuracy parameter, p ≥ 1 be a constant, and let

t = O
(
min(ε−2 + ε−p, kε−2) · k log n

)
.

There exists an algorithm that uses poly(n, d, k) running
time and outputs a set of t weighted points that is a strong
ε-coreset for k-clustering on discrete Lp metrics with prob-
ability at least 0.99. Moreover, each point has an integer
weight at most poly(n).

We crucially require the affine embedding property that
(1 − ε)∥U∗V − A∥2F ≤ ∥SU∗V − SA∥2F ≤ (1 +
ε)∥U∗V − A∥2F , for all V ∈ {0, 1}k×d. Unfortunately,
whether an efficient sampling-based affine embedding ex-
ists for Lp loss is not known.

Algorithm 4 Low-rank approximation for matrix Ã with t
distinct rows and t′ distinct columns

Input: Ã ∈ {0, 1}N×D with at most t distinct rows and r
distinct columns

Output: U′,V′ with ∥UV − Ã∥p ≤ (1 +

ε)minU∈{0,1}N×k,V∈{0,1}k×D ∥UV − Ã∥p
1: V ← ∅
2: for each guess of SU∗ and SA, where S is a L0

sampling matrix with m = O
(

kp+1

ε2 log r
)

rows with
weights that are powers of two up to poly(N) do

3: V ← V ∪ argminV∈{0,1}k×D ∥SU∗V − SA∥pp
▷Algorithm 6

4: end for
5: for each V ∈ V do
6: Let UV = argminU∈{0,1}N×k ∥UV − A∥pp

▷Algorithm 7
7: end for
8: V′ ← argminV∈{0,1}k×d ∥SUVV − SA∥pp
9: U′ ← UV′

10: Return (U′,V′)

We first justify the correctness of Algorithm 5.

7

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Algorithm 5 Bicriteria low-rank approximation with Lp

loss for matrix A

Input: A ∈ {0, 1}n×d, rank parameter k, accuracy pa-
rameter ε > 0

Output: U′ ∈ {0, 1}n×k,V′ ∈ {0, 1}k×d satisfy-
ing the property that ∥U′V′ − A∥pp ≤ (1 +
ε)minU∈{0,1}n×k,V∈{0,1}k×d ∥UV −A∥pp

1: t ← O
(
min(ε−2 + ε−p, kε−2) · k log n

)
▷Theorem 4.1

2: ℓ← O
(

logn
ε

)
, k′ ← ℓk

3: Compute a strong coreset C for 2k-means clustering of
A, with t rows, with weights N = poly(n)

4: Compute a strong coreset C ′ for 2k-means clustering
of C, with t rows and columns, with weights N,D =
poly(n)

5: Let Ã ∈ {0, 1}N×D be the matrix representation of C,
where weighted points are duplicated appropriately

6: For i ∈ [ℓ], let G(i) be the group of rows (removing
multiplicity) of Ã with frequency [(1+ε)i, (1+ε)i+1)

7: For i, j ∈ [ℓ], let G(i,j) be the group of columns (re-
moving multiplicity) of G(i,j) with frequency [(1 +
ε)j , (1 + ε)j+1)

8: Compute the low-rank minimizers (Ũ(i,j), Ṽ(i,j)) on
input G(i,j) using Algorithm 4, padded to Rn×k and
Rk×D, respectively

9: Ũ ←
[
Ũ(0,0)|Ũ(1,0)| . . . |Ũ(ℓ,ℓ)

]
, Ṽ ← Ṽ(0,0) ◦

Ṽ(1,0) . . . ◦ Ṽ(ℓ,ℓ)

10: Use Algorithm 9 with Ũ(0,0), Ũ(1,0) . . . , Ũ(ℓ,ℓ) and C
to find V′

11: Use V′ and A to find U′, i.e., Algorithm 7 with di-
mension k′ and Lp loss

12: Return (U′,V′)

Lemma 4.2. With probability at least 0.95, Algorithm 5
returns U′,V′ such that

∥U′V′−A∥pp ≤ (1+ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV−A∥pp.

We then analyze the running time of Algorithm 5.

Lemma 4.3. For any constant p ≥ 1, Algorithm 5 uses
2poly(k/ε) poly(n, d) running time.

By Lemma 4.2 and Lemma 4.3, we thus have:

Theorem 4.4. For any constant p ≥ 1, there exists an al-
gorithm that uses 2poly(k/ε) poly(n, d) running time and
with probability at least 2

3 , outputs U′ ∈ {0, 1}n×k′
and

V′ ∈ {0, 1}k′×d such that k′ = O
(

k log2 k
ε2

)
and

∥U′V′−A∥pp ≤ (1+ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV−A∥pp.

5. Experiments
In this section, we evaluate the practical use of our algo-
rithmic ideas against existing algorithms. Running our full
algorithm for BMF is too expensive, even for small k, so
our algorithm is based on the idea of partially executing
an algorithm with strong theoretical guarantees of (Kumar
et al., 2019). Indeed, by simply performing k-means clus-
tering, they obtained a simple algorithm that outperformed
more sophisticated heuristics in practice.

We perform two main types of experiments, first comparing
the algorithm presented in the next section against existing
baselines and then showing the feasibility of using core-
sets in the BMF setting. For a thorough discussion of our
experimental results see Section G.

Baseline and algorithm. We compare several algorithms
for binary matrix factorization that have implementations
available online, namely (Zhang et al., 2007), which has
been implemented in the NIMFA library (Zitnik & Zupan,
2012), the message passing algorithm (Ravanbakhsh et al.,
2016), as well as our implementation of the algorithm used
in the experiments of (Kumar et al., 2019). We refer to
these algorithms as Zh, MP, and kBMF. We choose the de-
fault parameters provided by the implementations and per-
form matrix operations in the setting specified by the al-
gorithm. We limit the maximum number of iterations so a
running time of 20 seconds is not exceeded.

Motivated by (Kumar et al., 2019), we build upon the idea
of finding a k-means clustering solution as a first approx-
imation and mapping the Steiner points to their closest
neighbors in A, giving us a matrix V of k binary points,
and a matrix U of assignments of the points of A to their
nearest neighbors. This solution restricts U to have a sin-
gle non-zero entry per row. Instead of outputting this U
as (Kumar et al., 2019) do, we solve the minimization prob-
lem minU∈{0,1}n×k ∥UV−A∥2F exactly at a cost of 2k per
row, which is affordable for small k. For a qualitative ex-
ample of how this step can improve the solution quality, see
Figure 1. We call this algorithm kBMF+.

Using k-means as the initial step in this manner is well-
motivated by the theoretical and experimental results
of (Kumar et al., 2019), but does not guarantee a (1 + ε)-
approximation, which we are not guaranteed as we do not
run our full algorithm, to begin with.

We implemented our algorithm and the one of (Kumar
et al., 2019) in Python. For solving k-means, we used
the implementation of Lloyd’s algorithm provided by the
scikit-learn library (Pedregosa et al., 2011). All ex-
periments were performed on a Linux notebook with a 3.9
GHz 12th generation Intel Core i7 six-core processor with
32 GiB of RAM.

8

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

0 10

0

10

20

30

40

Congress

0 10

0

10

20

30

40

kBMF Approximation

0 10

0

10

20

30

40

kBMF+ Approximation

0 10

0

10

20

30

40

0 10

0

10

20

30

40

Figure 1. A demonstration of the improved approximation of our
algorithm over the algorithm used in the experiments of (Kumar
et al., 2019). In the first column, we show the first 50 rows of the
congress data set, where purple indicates 0 and yellow indicates
1. The next columns show the approximation of (Kumar et al.,
2019), and our algorithm’s approximation, both with k = 10.
The second row shows entries in which the approximations differ
from the original dataset in yellow. Our experiments found that
the number of wrongly reconstructed entries almost halved from
the kBMF to the kBMF+ algorithm on this dataset for k = 10.

Datasets. We use both real and synthetic data for our ex-
periments. We choose two datasets from the UCI Machine
Learning Repository (Dua & Graff, 2017), namely the vot-
ing record of the 98th Congress, consisting of 435 rows of
16 binary features representing each congressperson’s vote
on one of 16 bills, and the Thyroid dataset 1, of 9371 pa-
tient data comprising 31 features. We restricted ourselves
to only binary features, leaving us with 21 columns. Fi-
nally, we use the ORL dataset of faces, which we binarize
using a threshold of 0.33, as in (Kumar et al., 2019).

For our synthetic data, we generate random matrices, where
each entry is set to be 1 independently with probability
p, at two different sparsity levels of p ∈ {0.1, 0.5}. Ad-
ditionally, we generate low-rank matrices by generating
U ∈ {0, 1}n×k and V ∈ {0, 1}k×d and multiplying them
together in F2. We generate U and V at different sparsity
levels of 0.5 and 0.1, for k ∈ {5, 10, 15}. Finally, we also
use these matrices with added noise, where after multiply-
ing, each bit is flipped with probability pe ∈ {0.01, 0.001}.

We generate 25 matrices of size 250 × 50 for each config-
uration. These classes are named, in order of introduction:
Full, Low-Rank, and Noisy.

Limitations. We opted to use only binary datasets, thus
limiting the available datasets for our experiments. Be-
cause of this, our largest dataset’s size is less than 10000.
Our algorithms are practical for these sizes and the param-
eters k we have chosen. Investigating the feasibility of al-

1https://www.kaggle.com/datasets/
emmanuelfwerr/thyroid-disease-data

Error [Frobenius norm] Time [ms]
Alg kBMF kBMF+ MP Zh kBMF kBMF+ MP Zh

Dataset k

Low-Rank 2 75.8 72.2 71.1 71.7 13.4 15.5 281.2 11.5
r = 10 3 74.3 69.6 69.1 69.0 15.8 20.0 308.0 11.7
p = 0.5 5 72.0 64.7 66.1 64.8 20.9 19.7 345.5 13.6

10 68.2 28.4 60.2 57.9 16.2 51.4 477.8 17.3
15 65.6 0.8 56.0 52.9 19.3 245.2 659.6 21.3

Low-Rank 2 30.8 30.5 27.6 28.5 10.0 14.3 213.4 5.7
r = 10 3 28.5 28.1 25.2 25.5 11.1 13.3 248.5 11.5
p = 0.1 5 24.7 23.2 20.4 19.9 13.1 18.7 292.0 13.4

10 18.3 10.2 7.6 8.8 16.4 76.2 434.6 16.9
15 15.2 2.5 4.7 5.4 14.8 261.3 638.8 22.1

Table 2. The average running time and error for different Binary
Matrix Factorization algorithms on synthetic datasets. Each row’s
minimum Frobenius norm error is marked in bold.

gorithms for binary matrix factorization for large datasets
may be an interesting direction for future research.

Discussion. Our experiments found that the algorithm
kBMF+ outperforms other algorithms for the BMF prob-
lem on dense synthetic data. Additionally, we found that
it is competitive for sparse synthetic data and real datasets.
One inherent benefit of the kBMF and kBMF+ algorithms
is that they are very easily adapted to different norms and
matrix products, as the clustering step, nearest neighbor
search, and enumeration steps are all easily adapted to the
setting we want. A benefit is that the factors are guaranteed
to be either 0 or 1, which is not true for Zhang’s heuris-
tic, which does not always converge. None of the existing
heuristics consider minimization of Lp norms, so we omit-
ted experimental data for this setting. Still, we note here
that the results are qualitatively similar, with our algorithm
performing best on dense matrices and the heuristics per-
forming well on sparse data.

Conclusion. We introduced the first (1 + ε)-
approximation algorithms for binary matrix factorization
with a singly exponential dependence on k. We optimized
the Frobenius loss, finite fields, and Lp loss. Our algo-
rithms work naturally in big data models. Our experiments
demonstrate the practicality of our algorithms, particularly
for dense low-rank datasets. We leave open the question
of (1 + ε)-approximation algorithms for Lp loss without
bicriteria requirements.

Acknowledgments
M. Vötsch: This project has received
funding from the European Research
Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(Grant agreement No. 101019564 “The Design of Mod-
ern Fully Dynamic Data Structures (MoDynStruct)”. D.
Woodruff: Work done while the author was at Google Re-
search.

9

https://www.kaggle.com/datasets/emmanuelfwerr/thyroid-disease-data
https://www.kaggle.com/datasets/emmanuelfwerr/thyroid-disease-data

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

References
Bachem, O., Lucic, M., and Krause, A. Practical core-

set constructions for machine learning. arXiv preprint
arXiv:1703.06476, 2017. 25

Bachem, O., Lucic, M., and Krause, A. Scalable k-means
clustering via lightweight coresets. In Proceedings of the
24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pp. 1119–1127, 2018.
25

Ban, F., Bhattiprolu, V., Bringmann, K., Kolev, P., Lee, E.,
and Woodruff, D. P. A PTAS for ℓp-low rank approx-
imation. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pp.
747–766, 2019a. 2, 3, 5, 7, 13, 14

Ban, F., Woodruff, D. P., and Zhang, Q. R. Regular-
ized weighted low rank approximation. In Advances
in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems,
NeurIPS, pp. 4061–4071, 2019b. 3, 13

Belohlávek, R. and Vychodil, V. Discovery of optimal fac-
tors in binary data via a novel method of matrix decom-
position. J. Comput. Syst. Sci., 76(1):3–20, 2010. 3

Braverman, V., Feldman, D., Lang, H., Statman, A., and
Zhou, S. Efficient coreset constructions via sensitivity
sampling. In Asian Conference on Machine Learning,
ACML, pp. 948–963, 2021. 25

Bringmann, K., Kolev, P., and Woodruff, D. P. Approx-
imation algorithms for l0-low rank approximation. In
Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing
Systems, pp. 6648–6659, 2017. 13

Brooks, J. P., Dulá, J. H., and Boone, E. L. A pure l1-norm
principal component analysis. Computational statistics
& data analysis, 61:83–98, 2013. 2, 5, 14

Chalermsook, P., Heydrich, S., Holm, E., and Karrenbauer,
A. Nearly tight approximability results for minimum bi-
clique cover and partition. In Algorithms - ESA 2014
- 22th Annual European Symposium, Proceedings, vol-
ume 8737, pp. 235–246, 2014. 5, 13

Chandran, L. S., Issac, D., and Karrenbauer, A. On the pa-
rameterized complexity of biclique cover and partition.
In 11th International Symposium on Parameterized and
Exact Computation, IPEC, pp. 11:1–11:13, 2016. 3, 5,
13, 14

Chen, S., Song, Z., Tao, R., and Zhang, R. Symmetric
sparse boolean matrix factorization and applications. In
13th Innovations in Theoretical Computer Science Con-
ference, ITCS, pp. 46:1–46:25, 2022. 3, 13

Chen, X. and Price, E. Active regression via linear-
sample sparsification. In Conference on Learning The-
ory, COLT, pp. 663–695, 2019. 4

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-
tion and regression in input sparsity time. In Symposium
on Theory of Computing Conference, STOC, pp. 81–90,
2013. 15, 16

Cohen-Addad, V. and Karthik C. S. Inapproximability of
clustering in lp metrics. In 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, pp. 519–
539, 2019. 3

Cohen-Addad, V., Saulpic, D., and Schwiegelshohn, C. A
new coreset framework for clustering. In STOC ’21:
53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 169–182. ACM, 2021. 7

Dan, C., Hansen, K. A., Jiang, H., Wang, L., and Zhou,
Y. Low rank approximation of binary matrices: Col-
umn subset selection and generalizations. In 43rd In-
ternational Symposium on Mathematical Foundations of
Computer Science, MFCS, pp. 41:1–41:16, 2018. 2, 5,
13

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sub-
space sampling and relative-error matrix approximation:
Column-based methods. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and
Techniques, 9th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Prob-
lems, APPROX and 10th International Workshop on
Randomization and Computation, RANDOM, Proceed-
ings, pp. 316–326, 2006a. 15

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sub-
space sampling and relative-error matrix approximation:
Column-row-based methods. In Algorithms - ESA 2006,
14th Annual European Symposium, Proceedings, pp.
304–314, 2006b. 15

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.
1, 9

Feldman, D., Schmidt, M., and Sohler, C. Turning big data
into tiny data: Constant-size coresets for k-means, pca,
and projective clustering. SIAM J. Comput., 49(3):601–
657, 2020. 6

Fleischner, H., Mujuni, E., Paulusma, D., and Szeider, S.
Covering graphs with few complete bipartite subgraphs.
Theor. Comput. Sci., 410(21-23):2045–2053, 2009. 5, 13

Fomin, F. V., Golovach, P. A., Lokshtanov, D., Panolan, F.,
and Saurabh, S. Approximation schemes for low-rank
binary matrix approximation problems. ACM Trans. Al-
gorithms, 16(1):12:1–12:39, 2020. 2, 3, 4, 13

10

http://archive.ics.uci.edu/ml

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Fu, Y., Jiang, N., and Sun, H. Binary matrix factoriza-
tion and consensus algorithms. In 2010 International
Conference on Electrical and Control Engineering, pp.
4563–4567. IEEE, 2010. 5, 13

Gillis, N. and Vavasis, S. A. On the complexity of ro-
bust PCA and ℓ1-norm low-rank matrix approximation.
Math. Oper. Res., 43(4):1072–1084, 2018. 5, 13

Gutch, H. W., Gruber, P., Yeredor, A., and Theis, F. J. ICA
over finite fields - separability and algorithms. Signal
Process., 92(8):1796–1808, 2012. 2

Jiang, P., Peng, J., Heath, M., and Yang, R. A clustering
approach to constrained binary matrix factorization. In
Data Mining and Knowledge Discovery for Big Data,
pp. 281–303. Springer, 2014. 2, 5, 13

Kannan, R. and Vempala, S. S. Spectral algorithms. Found.
Trends Theor. Comput. Sci., 4(3-4):157–288, 2009. 5, 13

Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko,
C. D., Silverman, R., and Wu, A. Y. A local search ap-
proximation algorithm for k-means clustering. Comput.
Geom., 28(2-3):89–112, 2004. 3

Ke, Q. and Kanade, T. Robust subspace computation using
l1 norm, 2003. 2, 5, 14

Ke, Q. and Kanade, T. Robust l1 norm factorization in
the presence of outliers and missing data by alterna-
tive convex programming. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 739–746, 2005. 2, 5, 14

Koyutürk, M. and Grama, A. PROXIMUS: a framework
for analyzing very high dimensional discrete-attributed
datasets. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 147–156, 2003. 2, 5, 13

Kumar, R., Panigrahy, R., Rahimi, A., and Woodruff, D. P.
Faster algorithms for binary matrix factorization. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML, pp. 3551–3559, 2019. 1, 2, 3, 4,
5, 8, 9, 13, 14, 23

Kwak, N. Principal component analysis based on l1-norm
maximization. IEEE transactions on pattern analysis
and machine intelligence, 30(9):1672–1680, 2008. 2, 5,
14

Lee, E., Schmidt, M., and Wright, J. Improved and simpli-
fied inapproximability for k-means. Inf. Process. Lett.,
120:40–43, 2017. 3

Lu, H., Vaidya, J., Atluri, V., and Hong, Y. Constraint-
aware role mining via extended boolean matrix decom-
position. IEEE Trans. Dependable Secur. Comput., 9(5):
655–669, 2012. 3

Magdon-Ismail, M. Row sampling for matrix algo-
rithms via a non-commutative bernstein bound. CoRR,
abs/1008.0587, 2010. 15

Mahankali, A. V. and Woodruff, D. P. Optimal ℓ1 column
subset selection and a fast PTAS for low rank approxima-
tion. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms, SODA, pp. 560–578, 2021. 2, 5,
13, 14

Mahoney, M. W. Randomized algorithms for matrices and
data. Found. Trends Mach. Learn., 3(2):123–224, 2011.
5, 13

Markopoulos, P. P., Karystinos, G. N., and Pados, D. A.
Optimal algorithms for l1-subspace signal processing.
IEEE Trans. Signal Process., 62(19):5046–5058, 2014.
2, 5, 14

Meyer, R. A., Musco, C., Musco, C., Woodruff, D. P., and
Zhou, S. Fast regression for structured inputs. In The
Tenth International Conference on Learning Represen-
tations, ICLR, 2022. 4

Meyer, R. A., Musco, C., Musco, C., Woodruff, D. P., and
Zhou, S. Near-linear sample complexity for lp polyno-
mial regression. In Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA, pp. 3959–
4025, 2023. 4

Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., and
Mannila, H. The discrete basis problem. IEEE transac-
tions on knowledge and data engineering, 20(10):1348–
1362, 2008. 3

Musco, C., Musco, C., Woodruff, D. P., and Yasuda, T. Ac-
tive linear regression for ℓp norms and beyond. In 63rd
IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pp. 744–753, 2022. 4

Neumann, S. Bipartite stochastic block models with tiny
clusters. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information
Processing Systems, NeurIPS, pp. 3871–3881, 2018. 5,
13

Orlin, J. Contentment in graph theory: covering graphs
with cliques. Indagationes Mathematicae (Proceedings),
80(5):406–424, 1977. 5, 13

Painsky, A., Rosset, S., and Feder, M. Generalized inde-
pendent component analysis over finite alphabets. IEEE
Transactions on Information Theory, 62(2):1038–1053,
2015. 2

Painsky, A., Rosset, S., and Feder, M. Linear independent
component analysis over finite fields: Algorithms and
bounds. IEEE Transactions on Signal Processing, 66
(22):5875–5886, 2018. 2

11

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Park, Y. W. and Klabjan, D. Three iteratively reweighted
least squares algorithms for l1-norm principal compo-
nent analysis. Knowledge and Information Systems, 54
(3):541–565, 2018. 2, 5, 14

Parulekar, A., Parulekar, A., and Price, E. L1 regres-
sion with lewis weights subsampling. In Approximation,
Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, APPROX/RANDOM, pp. 49:1–
49:21, 2021. 4

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011. 8

Ravanbakhsh, S., Póczos, B., and Greiner, R. Boolean
matrix factorization and noisy completion via message
passing. In Proceedings of the 33nd International
Conference on Machine Learning, ICML, pp. 945–954,
2016. 5, 8, 13

Razenshteyn, I. P., Song, Z., and Woodruff, D. P. Weighted
low rank approximations with provable guarantees. In
Proceedings of the 48th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC, pp. 250–263,
2016. 3, 13

Seppänen, J. K., Bingham, E., and Mannila, H. A simple
algorithm for topic identification in 0-1 data. In Knowl-
edge Discovery in Databases: PKDD 2003, 7th Euro-
pean Conference on Principles and Practice of Knowl-
edge Discovery in Databases, Proceedings, pp. 423–
434, 2003. 2

Shen, B., Ji, S., and Ye, J. Mining discrete patterns via
binary matrix factorization. In Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 757–766, 2009. 2, 5, 13

Singliar, T. and Hauskrecht, M. Noisy-or component anal-
ysis and its application to link analysis. J. Mach. Learn.
Res., 7:2189–2213, 2006. 2

Song, Z., Woodruff, D. P., and Zhong, P. Low rank ap-
proximation with entrywise ℓ1-norm error. In Hatami,
H., McKenzie, P., and King, V. (eds.), Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, pp. 688–701, 2017. 2, 5, 13, 14

Vaidya, J., Atluri, V., and Guo, Q. The role mining prob-
lem: finding a minimal descriptive set of roles. In Pro-
ceedings of the 12th ACM symposium on Access control
models and technologies, pp. 175–184, 2007. 2

Woodruff, D. P. Sketching as a tool for numerical linear
algebra. Found. Trends Theor. Comput. Sci., 10(1-2):1–
157, 2014. 5, 13, 15

Yeredor, A. Independent component analysis over galois
fields of prime order. IEEE Trans. Inf. Theory, 57(8):
5342–5359, 2011. 2

Zhang, Z., Li, T., Ding, C., and Zhang, X. Binary matrix
factorization with applications. In Seventh IEEE inter-
national conference on data mining (ICDM 2007), pp.
391–400. IEEE, 2007. 5, 8

Zheng, Y., Liu, G., Sugimoto, S., Yan, S., and Okutomi,
M. Practical low-rank matrix approximation under ro-
bust l1-norm. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1410–1417, 2012.
2, 5, 14

Zitnik, M. and Zupan, B. Nimfa: A python library for non-
negative matrix factorization. Journal of Machine Learn-
ing Research, 13:849–853, 2012. 8

12

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

A. Motivation and Related Work
Low-rank approximation is one of the fundamental problems of machine learning and data science. Therefore, it has
received extensive attention, e.g., see the surveys (Kannan & Vempala, 2009; Mahoney, 2011; Woodruff, 2014). When
the underlying loss function is the Frobenius norm, the low-rank approximation problem can be optimally solved via the
singular value decomposition (SVD). However, when we restrict both the observed input A and the factors U,V to binary
matrices, the SVD no longer guarantees optimal factors. In fact, many restricted variants of low-rank approximation are
NP-hard (Razenshteyn et al., 2016; Song et al., 2017; Kumar et al., 2019; Ban et al., 2019a;b; Fomin et al., 2020; Mahankali
& Woodruff, 2021).

Motivation and background for BMF. The BMF problem has applications to graph partitioning (Chandran et al., 2016),
low-density parity-check codes (Ravanbakhsh et al., 2016), and optimizing passive organic LED (OLED) displays (Kumar
et al., 2019). Observe that we can use A to encode the incidence matrix of the bipartite graph with n vertices on the left
side of the bipartition and d vertices on the right side so that Ai,j = 1 if and only if there exists an edge connecting the
i-th vertex on the left side with the j-th vertex on the right side. Then UV can be written as the sum of k rank-1 matrices,
each encoding a different bipartite clique of the graph, i.e., a subset of vertices on the left and a subset of vertices on the
right such that there exists an edge between every vertex on the left and every vertex on the right. It then follows that the
BMF problem solves the bipartite clique partition problem (Orlin, 1977; Fleischner et al., 2009; Chalermsook et al., 2014;
Neumann, 2018), in which the goal is to find the smallest integer k such that the graph can be represented as a union of k
bipartite cliques.

(Kumar et al., 2019) also present the following motivation for the BMF problem to improve the performance of passive
OLED displays, which rapidly and sequentially illuminate rows of lights to render an image in a manner so that the human
eye integrates this sequence of lights into a complete image. However, (Kumar et al., 2019) observed that passive OLED
displays could illuminate many rows simultaneously, provided the image being shown is a rank-1 matrix and that the
apparent brightness of an image is inversely proportional to the rank of the decomposition. Thus (Kumar et al., 2019) notes
that BMF can be used to not only find a low-rank decomposition that illuminates pixels in a way that seems brighter to the
viewer but also achieves binary restrictions on the decomposition in order to use simple and inexpensive voltage drivers on
the rows and columns, rather than a more expensive bank of video-rate digital to analog-to-digital converters.

BMF with Frobenius loss. (Kumar et al., 2019) first gave a constant factor approximation algorithm for the BMF
problem using running time 2Õ(k

2) poly(n, d), i.e., singly exponential time. (Fomin et al., 2020) introduced a (1 + ε)-
approximation to the BMF problem with rank-k factors, but their algorithm uses doubly exponential time, specifically

running time 2
2O(k)

ε2
log2 1

ε poly(n, d), which was later improved to doubly exponential running time 2
2O(k)

ε2
log 1

ε poly(n, d)

by (Ban et al., 2019a), who also showed that 2k
Ω(1)

running time is necessary even for constant-factor approximation,
under the Small Set Expansion Hypothesis and the Exponential Time Hypothesis. By introducing sparsity constraints on
the rows of U and V, (Chen et al., 2022) provide an alternate parametrization of the running time, though, at the cost of
running time quasipolynomial in n and d.

BMF on binary fields. Binary matrix factorization is particularly suited for datasets involving binary data. Thus,
the problem is well-motivated for binary fields when performing dimensionality reduction on high-dimensional
datasets (Koyutürk & Grama, 2003). To this end, many heuristics have been developed for this problem (Koyutürk &
Grama, 2003; Shen et al., 2009; Fu et al., 2010; Jiang et al., 2014), due to its NP-hardness (Gillis & Vavasis, 2018; Dan
et al., 2018).

For the special case of k = 1, (Shen et al., 2009) first gave a 2-approximation algorithm that uses polynomial time through a
relaxation of integer linear programming. Subsequently, (Jiang et al., 2014) produced a simpler approach, and (Bringmann
et al., 2017) introduced a sublinear time algorithm. For general k, (Kumar et al., 2019) gave a constant factor approximation
algorithm using running time 2poly(k) poly(n, d), i.e., singly exponential time, at the expense of a bicriteria solution, i.e.,
factors with rank k′ = O (k log n). (Fomin et al., 2020) introduced a (1 + ε)-approximation to the BMF problem with

rank-k factors, but their algorithm uses doubly exponential time, specifically running time 2
2O(k)

ε2
log2 1

ε poly(n, d), which

was later improved to doubly exponential running time 2
2O(k)

ε2
log 1

ε poly(n, d) by (Ban et al., 2019a), who also showed that
doubly exponential running time is necessary for (1+ε)-approximation without bicriteria relaxation under the Exponential
Time Hypothesis.

13

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

BMF with Lp loss. Using more general Lp loss functions can result in drastically different behaviors of the optimal low-
rank factors for the BMF problem. For example, the low-rank factors for p > 2 are penalized more when the corresponding
entries of UV are large, and thus may choose to prioritize a larger number of small entries that do not match A rather than
a single large entry. On the other hand, p = 1 corresponds to robust principal component analysis, which yields factors
that are more robust to outliers in the data (Ke & Kanade, 2003; 2005; Kwak, 2008; Zheng et al., 2012; Brooks et al., 2013;
Markopoulos et al., 2014; Song et al., 2017; Park & Klabjan, 2018; Ban et al., 2019a; Mahankali & Woodruff, 2021). The
first approximation algorithm with provable guarantees for L1 low-rank approximation on the reals was given by (Song
et al., 2017). They achieved poly(k) · log d-approximation in roughly O (nd) time. For constant k, (Song et al., 2017)
further achieved constant-factor approximation in polynomial time.

When we restrict the inputs and factors to be binary, (Kumar et al., 2019) observed that p = 1 corresponds to minimizing
the number of edges in the symmetric difference between an unweighted bipartite graph G and its approximation H , which
is the multiset union of k bicliques. Here we represent the graph G with n and d vertices on the bipartition’s left- and
right-hand side, respectively, through its edge incidence matrix A. Similarly, we have Ui,j = 1 if and only if the i-th
vertex on the left bipartition is in the j-th biclique and Vi,j = 1 if and only if the j-th vertex on the right bipartition is in
the i-th biclique. Then we have ∥UV −A∥1 = |E(G)△E(H)|. (Chandran et al., 2016) showed how to solve the exact
version of the problem, i.e., to recover U,V under the promise that A = UV, using 2O(k

2) poly(n, d) time. (Kumar
et al., 2019) recently gave the first constant-factor approximation algorithm for this problem, achieving a C-approximation
using 2poly(k) poly(n, d) time, for some constant C ≥ 1222p−2 + 2p−1.

B. Preliminaries
For an integer n > 0, we use [n] to denote the set {1, 2, . . . , n}. We use poly(n) to represent a fixed polynomial in n and
more generally, poly(n1, . . . , nk) to represent a fixed multivariate polynomial in n1, . . . , nk. For a function f(n1, . . . , nk),
we use Õ (f(n1, . . . , nk)) to denote f(n1, . . . , nk) · poly(log f(n1, . . . , nk)).

We generally use bold-font variables to denote matrices. For a matrix A ∈ Rn×d, we use Ai to denote the i-th row of A
and A(j) to denote the j-th column of A. We use Ai,j to denote the entry in the i-th row and j-th column of A. For p ≥ 1,
we write the entrywise Lp norm of A as

∥A∥p =

∑
i∈[n]

∑
j∈[d]

Ap
i,j

1/p

.

The Frobenius norm of A, denoted ∥A∥F is simply the entrywise L2 norm of A:

∥A∥F =

∑
i∈[n]

∑
j∈[d]

A2
i,j

1/2

.

The entrywise L0 norm of A is
∥A∥0 = |{(i, j) | i ∈ [n], j ∈ [d] : Ai,j ̸= 0}| .

We use ◦ to denote vertical stacking of matrices, so that

A(1) ◦ . . . ◦A(m) =

A(1)

...
A(m)

 .

One of the core ingredients for avoiding the triangle inequality and achieving (1 + ε)-approximation is our use of coresets
for k-means clustering:

Definition B.1 (Strong coreset). Given an accuracy parameter ε > 0 and a set X of n points in Rd, we say that a subset
C of X with weights w is a strong ε-coreset of X for the k-means clustering problem if for any set S of k points in Rd, we
have

(1− ε)Cost(X,S) ≤ Cost(C, S,w) ≤ (1 + ε)Cost(X,S).

14

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Many coreset construction exist in the literature, and the goal is to minimize |C|, the size of the coreset, while preserving
(1± ε)-approximate cost for all sets of k centers. If the points lie in Rd, we can find coresets of size Õ

(
poly(k, d, ϵ−1)

)
,

i.e., the size is independent of n.

Leverage scores. Finally, we recall the notion of a leverage score sampling matrix. For a matrix A ∈ Rn×d, the leverage
score of row ai with i ∈ [n] is defined as ai(A⊤A)−1a⊤i . We can use the leverage scores to generate a random leverage
score sampling matrix as follows:
Theorem B.2 (Leverage score sampling matrix). (Drineas et al., 2006a;b; Magdon-Ismail, 2010; Woodruff, 2014) Let
C > 1 be a universal constant and α > 1 be a parameter. Given a matrix A ∈ Rn×d, let ℓi be the leverage score of the
i-th row of A. Suppose pi ∈

[
min

(
1, Cℓi log k

ε2

)
,min

(
1, Cαℓi log k

ε2

)]
for all i ∈ [n].

For m := O
(

α
ε2 d log d

)
, let S ∈ Rm×n be generated so that each row of S randomly selects row j ∈ [n] with probability

proportional to pj and rescales the row by 1√
mpj

. Then with probability at least 0.99, we have that simultaneously for all

vectors x ∈ Rd,
(1− ε)∥Ax∥2 ≤ ∥SAx∥2 ≤ (1 + ε)∥Ax∥2.

The main point of Theorem B.2 is that given constant-factor approximations pi to the leverage scores ℓi, it suffices to
sample O (d log d) rows of A to achieve a constant-factor subspace embedding of A, and similar bounds can be achieved
for (1 + ε)-approximate subspace embeddings. Finally, we remark that S can be decomposed as the product of matrices
DT, where T ∈ Rm×n is a sparse matrix with a single one per row, denoting the selection of a row for the purposes of
leverage score sampling and D is the diagonal matrix with the corresponding scaling factor, i.e., the i-th diagonal entry of
D is set to 1√

mpj
if the j-th row of A is selected for the i-th sample.

C. Missing Proofs from Section 2
We first give the subroutines for solving for V′ and U′ in Algorithm 6 and Algorithm 7, respectively.
Algorithm 6 Algorithm for computing optimal V given U

Input: Ã ∈ {0, 1}N×d, U ∈ {0, 1}N×k

Output: V′ = argminV∈{0,1}k×d ∥UV − Ã∥F
1: for i = 1 to i = d do
2: Set V′(i) = argminV(i)∈{0,1}k×1 ∥UV(i) − Ã(i)∥2 ▷Enumerate over all 2k possible binary vectors
3: end for
4: Return V′ =

[
V′(1)| . . . |V′(d)]

Algorithm 7 Algorithm for computing optimal U given V

Input: Ã ∈ {0, 1}N×d, V ∈ {0, 1}k×d

Output: U′ = argminU∈{0,1}N×k ∥UV − Ã∥F
1: for i = 1 to i = N do
2: Set U′

i = argminUi∈{0,1}1×k ∥UiV − Ãi∥2 ▷Enumerate over all 2k possible binary vectors
3: end for
4: Return U′ = U′

1 ◦ . . . ◦U′
N

We recall that leverage score sampling matrices provide approximate matrix multiplication.
Lemma C.1 (Lemma 32 in (Clarkson & Woodruff, 2013)). Let U ∈ RN×k have orthonormal columns, Ã ∈ {0, 1}N×d,
and S ∈ Rm×N be a leverage score sampling matrix for U with m = O

(
1
ε2

)
rows. Then,

Pr
[
∥U⊤S⊤SÃ−U⊤Ã∥2F < ε2∥U∥2F ∥Ã∥2F

]
≥ 0.99.

We next recall that leverage score sampling matrices give subspace embeddings.
Theorem C.2 (Theorem 42 in (Clarkson & Woodruff, 2013)). For U ∈ RN×k, let S ∈ Rm×N be a leverage score
sampling matrix for U ∈ {0, 1}N×k with m = O

(
k log k

ε2

)
rows. Then with probability at least 0.99, we have for all

V ∈ Rk×d,
(1− ε)∥UV∥2F ≤ ∥SUV∥2F ≤ (1 + ε)∥UV∥2F .

15

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

We now recall that approximate matrix multiplication and leverage score sampling suffice to achieve an affine embedding.

Theorem C.3 (Theorem 39 in (Clarkson & Woodruff, 2013)). Let U ∈ RN×k have orthonormal columns. Let S be a
sampling matrix that satisfies Lemma C.1 with error parameter ε√

k
and also let S be a subspace embedding for U with

error parameter ε. Let V∗ = argminV ∥UV − Ã∥F and X = UV∗ − Ã. Then for all V ∈ Rk×d,

(1− 2ε)∥UV − Ã∥2F − ∥X∥2F ≤ ∥SUV − SÃ∥2F − ∥SX∥2F ≤ (1 + 2ε)∥UV − Ã∥2F − ∥X∥2F .

We first show that Algorithm 1 achieves a good approximation to the optimal low-rank factors for the coreset Ã.

Lemma C.4. Suppose ε < 1
10 . Then with probability at least 0.97, the output of Algorithm 1 satisfies

∥U′V′ − Ã∥2F ≤ (1 + 6ε)∥U∗V∗ − Ã∥2F .

Proof. Let V′′ = argminV∈{0,1}k×d ∥SU∗V − Ã∥2F and let U′′ = argminU∈{0,1}N×k ∥SUV′′ − Ã∥2F Since the algo-
rithm chooses U′ and V′ over U′′ and V′′, then

∥U′V′ − Ã∥2F ≤ ∥U′′V′′ − Ã∥2F .

Due to the optimality of U′′,
∥U′′V′′ − Ã∥2F ≤ ∥U∗V′′ − Ã∥2F .

Let X = U∗V∗ − Ã. Note that since U∗ has orthonormal columns, then by Lemma C.1, the leverage score sampling
matrix S achieves approximate matrix multiplication with probability at least 0.99. By Theorem C.2, the matrix S also is a
subspace embedding for U. Thus, S meets the criteria for applying Theorem C.3. Then for the correct guess DT of matrix
S corresponding to U∗ and conditioning on the correctness of S in Theorem C.3,

∥U∗V′′ − Ã∥2F ≤
1

1− 2ε
[∥SU∗V′′ − SÃ∥2F − ∥SX∥2F + ∥X∥2F .]

Due to the optimality of V′′,

1

1− 2ε
[∥SU∗V′′ − SÃ∥2F − ∥SX∥2F + ∥X∥2F] ≤

1

1− 2ε
[∥SU∗V∗ − SÃ∥2F − ∥SX∥2F + ∥X∥2F].

Then again conditioning on the correctness of S,

1

1− 2ε
[∥SU∗V∗ − SÃ∥2F − ∥SX∥2F + ∥X∥2F]

≤ 1

1− 2ε
[(1 + 2ε)∥U∗V∗ − Ã∥2F + ∥SX∥2F − ∥X∥2F − ∥SX∥2F + ∥X∥2F]

≤ (1 + 6ε)∥U∗V∗ − Ã∥2F ,

for sufficiently small ε, e.g., ε < 1
10 . Thus, putting things together, we have that conditioned on the correctness of S in

Theorem C.3,
∥U′V′ − Ã∥2F ≤ (1 + 6ε)∥U∗V∗ − Ã∥2F .

Since the approximate matrix multiplication property of Lemma C.1, the subspace embedding property of Theorem C.2,
and the affine embedding property of Theorem C.3 all fail with probability at most 0.01, then by a union bound, S succeeds
with probability at least 0.97.

We now analyze the running time of the subroutine Algorithm 1.

Lemma C.5. Algorithm 1 uses 2O(m
2+m log t) poly(N, d) running time for m = O

(
k log k

ε2

)
.

16

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Proof. There are at most
(
t
m

)
= 2O(m log t) distinct subsets of m = O

(
k log k

ε2

)
rows of Ã. Thus there are 2O(m log t) pos-

sible matrices T that selects m rows of Ã, for the purposes of leverage score sampling. Assuming the leverage score sam-
pling matrix does not sample any rows with leverage score less than 1

poly(N) , then there are O (logN)
m

= 2O(m log logN)

total guesses for the matrix D. Note that log n ≤ 2m implies that 2O(m log logN) ≤ 2O(m
2) while logN > 2m implies that

2O(m log logN) ≤ 2O(log
2 logN) ≤ N . Therefore, there are at most 2O(m

2+m log t)N total guesses for all combinations of
T and D, corresponding to all guesses of SÃ.

For each guess of S and SÃ, we also need to guess SU∗. Since U∗ ∈ {0, 1}N×k is binary and T samples m rows before
weighting each row with one of O (logN) possible weights, the number of total guesses for SU∗ is (2 · O (logN))mk.

Given guesses for SA and SU∗, we can then compute argminV∈{0,1}k×d ∥SU∗V − SA∥2F using O
(
2kd

)
time through

the subroutine Algorithm 6, which enumerates through all possible 2k binary vectors for each column. For a fixed V, we
can then compute UV = argminU∈{0,1}N×k ∥UV−A∥2F usingO

(
2kN

)
time through the subroutine Algorithm 7, which

enumerates through all possible 2k binary vectors for each row of UV. Therefore, the total running time of Algorithm 1 is
2O(m

2+m log t) poly(N, d).

From Lemma C.4 and Lemma C.5, we have:

Lemma 2.1. Suppose ε < 1
10 . Then with probability at least 0.97, the output of Algorithm 1 satisfies ∥U′V′ − Ã∥2F ≤

(1 + 6ε)∥U∗V∗ − Ã∥2F . Moreover, Algorithm 1 uses 2O(m
2+m log t) poly(N, d) running time for m = O

(
k log k

ε2

)
.

We now justify the correctness of Algorithm 2.

Lemma C.6. With probability at least 0.95, Algorithm 2 returns U′,V′ such that

∥U′V′ −A∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F .

Proof. Let M̃ be the indicator matrix that selects a row of ŨṼ = ŨV′ to match to each row of A, so that by the optimality
of U′,

∥U′V′ −A∥2F ≤ ∥M̃ŨṼ −A∥2F .

Note that any V is a set of k points in {0, 1}d and so each row Ui of U induces one of at most 2k possible points
UiV ∈ {0, 1}d. Hence ∥UV −A∥2F is the objective value of a constrained 2k-means clustering problem. Thus by the
choice of t in Theorem 2.2, we have that Ã is a strong coreset, so that

∥M̃ŨṼ −A∥2F ≤ (1 + ε)∥ŨṼ − Ã∥2F .

Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d such that

∥U∗V∗ −A∥2F = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F .

Let M∗ be the indicator matrix that selects a row of U∗V∗ to match to each row of Ã, so that by Lemma C.4,

(1 + ε)∥ŨṼ − Ã∥2F ≤ (1 + ε)2∥M∗U∗V∗ − Ã∥2F .

Then by the choice of t in Theorem 2.2, we have that

(1 + ε)2∥M∗U∗V∗ − Ã∥2F ≤ (1 + ε)3∥U∗V∗ −A∥2F .

The desired claim then follows from rescaling ε.

We now analyze the running time of Algorithm 2.

Lemma C.7. Algorithm 2 uses 2Õ(k
2/ε4) poly(n, d) running time.

17

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Proof. By Theorem 2.2, it follows that Algorithm 2 uses O
(
nd2 + n2d+ nkd

ε2 + nk2

ε2

)
time to compute Ã ∈

{0, 1}N×d with N = poly(n). By Lemma C.5, it follows that Algorithm 1 on input Ã thus uses running time
2O(m

2+m log t) poly(N, d) for m = O
(

k log k
ε2

)
and t = O

(
23kk2

ε4

)
. Finally, computing U′ via Algorithm 7 takes

O
(
2kn

)
time after enumerating through all possible 2k binary vectors for each row of U′. Therefore, the total running

time of Algorithm 2 is 2Õ
(

k2 log2 k

ε4

)
poly(n, d) = 2Õ(k

2/ε4) poly(n, d).

D. Missing Proofs from Section 3
We first give the standard enumeration subroutine in Algorithm 8.
Algorithm 8 Algorithm for computing optimal U given V(1), . . . ,V(ℓ)

Input: Ã ∈ {0, 1}N×d, V(1), . . . ,V(ℓ) ∈ {0, 1}k×d

Output: U′ = argminU∈{0,1}N×ℓk ∥UV − Ã∥F , where U is restricted to one nonzero block of k coordinates
1: for i = 1 to i = N do
2: Set (U′

i, j
′) = argminUi∈{0,1}1×k,j∈[ℓ] ∥UiV

(j) − Ãi∥2 ▷Enumerate over all 2k possible binary vectors, all ℓ
indices

3: Pad U′
i with length ℓk, as the j′-th block of k coordinates

4: end for
5: Return U′ = U′

1 ◦ . . . ◦U′
N

We first justify the correctness of Algorithm 3.

Lemma D.1. With probability at least 0.95, Algorithm 3 returns U′,V′ such that

∥U′V′ −A∥2F ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F ,

where all matrix operations are performed in F2.

Proof. Let Ũ ←
[
Ũ(0)| . . . |Ũ(ℓ)

]
in Algorithm 3. Let M̃ be the indicator matrix that selects a row of ŨṼ = ŨV′ to

match to each row of A, so that by the optimality of U′,

∥U′V′ −A∥2F ≤ ∥M̃ŨṼ −A∥2F .

Since V is a set of k points in {0, 1}d and each row Ui of U induces one of at most 2k possible points UiV ∈ {0, 1}d,
then ∥UV−A∥2F is the objective value of a constrained 2k-means clustering problem, even when all operations performed
are on F2. Similarly, V(j) is a set of k points in {0, 1}d for each j ∈ [ℓ]. Each row Ui of U induces one of at most 2k

possible points UiV
(j) ∈ {0, 1}d for a fixed j ∈ [ℓ], so that ∥UV′−A∥2F is the objective value of a constrained 2kℓ-means

clustering problem, even when all operations performed are on F2.

Hence by the choice of t in Theorem 2.2, it follows that Ã is a strong coreset, and so

∥M̃ŨṼ −A∥2F ≤ (1 + ε)∥ŨṼ − Ã∥2F .

We decompose the rows of Ã into G(0), . . . ,G(ℓ) for ℓ = O
(

logn
ε

)
. Let Gi be the corresponding indices in [n] so that

j ∈ Gi if and only if Ãj is nonzero in Gi. Then we have

∥ŨṼ − Ã∥2F =
∑
i∈[ℓ]

∑
j∈Gi

∥U′
jV

′ − Ãj∥2F .

Since each row in Gi is repeated a number of times in [(1 + ε)i, (1 + ε)i+1), then∑
j∈Gi

∥U′
jV

′ − Ãj∥2F ≤ (1 + ε)2 min
U(i)∈{0,1}n×k,V(i)∈{0,1}×k×d

∥U(i)V(i) −G(i)∥2F ,

18

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

where the first factor of (1+ε) is from the (1+ε)-approximation guarantee of U(i) and V(i) by Lemma 3.1 and the second
factor of (1 + ε) is from the number of each row in G(i) varying by at most a (1 + ε) factor. Therefore,

∥U′V′ −A∥2F ≤ (1 + ε)3
∑
i∈[ℓ]

min
U(i)∈{0,1}n×k,V(i)∈{0,1}k×d

∥U(i)V(i) −G(i)∥2F

≤ (1 + ε)3 min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV − Ã∥2F .

Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d such that

∥U∗V∗ −A∥2F = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥2F ,

where all operations are performed in F2. Let M∗ be the indicator matrix that selects a row of U∗V∗ to match to each row
of Ã, so that by Lemma C.4,

min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV − Ã∥2F ≤ (1 + ε)∥M∗U∗V∗ − Ã∥2F .

Then by the choice of t in Theorem 2.2 so that Ã is a strong coreset of A,

∥M∗U∗V∗ − Ã∥2F ≤ (1 + ε)∥U∗V∗ −A∥2F .

Therefore, we have
∥U′V′ −A∥2F ≤ (1 + ε)5∥U∗V∗ −A∥2F

and the desired claim then follows from rescaling ε.

We now analyze the running time of Algorithm 3.

Lemma D.2. Algorithm 3 uses 2poly(k/ε) poly(n, d) running time.

Proof. By Theorem 2.2, we have that Algorithm 3 uses O
(
nd2 + n2d+ nkd

ε2 + nk2

ε2

)
time to compute Ã ∈ {0, 1}N×d

with N = poly(n). By Lemma 3.1, it takes d·(2k)poly(k/eps) time to compute Ũ(i), Ṽ(i) for each i ∈ [ℓ] for ℓ = O
(

logn
ε

)
.

Hence, it takes 2poly(k/eps) poly(n, d) running time to compute Ũ and Ṽ. Finally, computing U′ via Algorithm 8 takes
O
(
2k

′
n
)

time after enumerating through all possible 2kℓ binary vectors for each row of U′. Therefore, the total running

time of Algorithm 2 is 2poly(k/ε) poly(n, d).

E. Missing Proofs from Section 4
We first give the standard subroutine for computing optimal U given V(1), . . . ,V(ℓ) in Algorithm 9.
Algorithm 9 Algorithm for computing optimal U given V(1), . . . ,V(ℓ)

Input: Ã ∈ {0, 1}N×d, V(1), . . . ,V(ℓ) ∈ {0, 1}k×d

Output: U′ = argminU∈{0,1}N×ℓk ∥UV − Ã∥pp, where U is restricted to one nonzero block of k coordinates
1: for i = 1 to i = N do
2: Set (U′

i, j
′) = argminUi∈{0,1}1×k,j∈[ℓ] ∥(UiV

(j) − Ãi∥pp ▷Enumerate over all 2k possible binary vectors, all ℓ
indices

3: Pad U′
i with length ℓk, as the j′-th block of k coordinates

4: end for
5: Return U′ = U′

1 ◦ . . . ◦U′
N

Lemma E.1. Given matrices A ∈ {0, 1}n×k and B ∈ {0, 1}n×r, there exists a matrix S ∈ Rm×n with m =

O
(

kp+1

ε2 log r
)

such that with probability at least 0.99, we have that simultaneously for all X ∈ {0, 1}k×r,

(1− ε)∥AX−B∥pp ≤ ∥SAX− SB∥pp ≤ (1 + ε)∥AX−B∥pp.

19

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Proof. Let M ∈ {0, 1, . . . , k}n×1 be an arbitrary matrix and let S be a set that contains the nonzero rows of M and has
cardinality that is a power of two. That is, |S| = 2i for some integer i ≥ 0. Let z be a random element of S, i.e., a random
non-zero row of M, so that we have

E
[
2i · ∥z∥pp

]
= ∥M∥pp.

Similarly, we have
Var(2i · ∥z∥pp) ≤ 2ikp ≤ 2kp∥M∥pp.

Hence if we repeat take the mean of O
(
kp

ε2

)
estimators, we have that with probability at least 0.99,

(1− ε)∥M∥pp ≤ ∥SM∥pp ≤ (1 + ε)∥M∥pp.

We can further improve the probability of success to 1 − δ for δ ∈ (0, 1) by repeating O
(
log 1

δ

)
times. By setting

M = Ax −B(i) for fixed A ∈ {0, 1}n×k, x ∈ {0, 1}k, and B ∈ {0, 1}n×r with i ∈ [r], we have that the sketch matrix
gives a (1 + ε)-approximation to ∥Ax−B(i)∥pp. The result then follows from setting δ = 1

2kr
, taking a union bound over

all x ∈ {0, 1}k, and then a union bound over all i ∈ [r].

We justify the correctness of Algorithm 5.

Lemma 4.2. With probability at least 0.95, Algorithm 5 returns U′,V′ such that

∥U′V′ −A∥pp ≤ (1 + ε) min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥pp.

Proof. Let M1 and M2 be the sampling and rescaling matrices used to acquire Ã ∈ RN×D, so that by the optimality of
U′,

∥U′V′ −A∥pp ≤ ∥M1ŨṼM2 −A∥pp.

Observe that V is a set of k points in {0, 1}d. Thus, each row Ui of U induces one of at most 2k possible points
UiV ∈ {0, 1}d. Hence, ∥UV −A∥pp is the objective value of a constrained 2k-clustering problem under the Lp metric.
Similarly, since V(j) is a set of k points in {0, 1}d for each j ∈ [ℓ], then each row Ui of U induces one of at most 2k

possible points UiV
(j) ∈ {0, 1}d for a fixed j ∈ [ℓ]. Therefore, ∥UV′ − A∥pp is the objective value of a constrained

2kℓ-clustering problem under the Lp metric.

By the choice of t in Theorem 4.1, Ã is a strong coreset, and so

∥M1ŨṼM2 −A∥2F ≤ (1 + ε)∥ŨṼ − Ã∥2F .

We decompose the rows of Ã into groups G(0), . . . ,G(ℓ) for ℓ = O
(

logn
ε

)
. For each group G(i), we decompose the

columns of G(i) into groups G(i,0), . . . ,G(i,ℓ) for ℓ = O
(

logn
ε

)
. Let Gi be the indices in [n] corresponding to the rows

in G(i) and let Gi,j be the indices in [n] corresponding to the columns in G(i,j). Then

∥ŨṼ − Ã∥pp =
∑
i∈[ℓ]

∑
a∈Gi

∑
j∈[ℓ]

∑
b∈Gi,j

∣∣∣(U′V′)a,b − Ãa,b

∣∣∣p .
Since each row in Gi is repeated a number of times in [(1 + ε)i, (1 + ε)i+1) and each column in Gi,j is repeated a number
of times in [(1 + ε)i, (1 + ε)i+1), then∑

a∈Gi

∑
b∈Gi,j

∣∣∣(U′V′)a,b − Ãa,b

∣∣∣p ≤ (1 + ε)3 min
U∈{0,1}n×k,V∈{0,1}×k×d

∑
a∈Gi

∑
b∈Gi,j

∣∣∣(UV)a,b − Ãa,b

∣∣∣p ,
where the first factor of (1+ε) is from the (1+ε)-approximation guarantee of U(i) and V(i) by Lemma 3.1 and the second
and third factors of (1 + ε) is from the number of each row and each column in G(i,j) varying by at most (1 + ε) factor.

20

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Therefore,

∥U′V′ −A∥pp ≤ (1 + ε)
∑
i∈[ℓ]

∑
a∈Gi

∑
j∈[ℓ]

∑
b∈Gi,j

∣∣∣(U′V′)a,b − Ãa,b

∣∣∣p
≤ (1 + ε)4 min

U∈{0,1}n×k,V∈{0,1}k×d
∥UV − Ã∥pp

Let U∗ ∈ {0, 1}n×k and V∗ ∈ {0, 1}k×d be minimizers to the binary Lp low-rank approximation problem, so that

∥U∗V∗ −A∥pp = min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV −A∥pp.

Let M3 and M4 be the indicator matrices that select rows and columns of U∗V∗ to match to each row of Ã, so that by
Lemma C.4,

min
U∈{0,1}n×k,V∈{0,1}k×d

∥UV − Ã∥pp ≤ (1 + ε)∥M3U
∗V∗M4 − Ã∥pp.

Then by the choice of t in Theorem 4.1 so that Ã is a strong coreset of A,

∥M3U
∗V∗M4 − Ã∥pp ≤ (1 + ε)∥U∗V∗ −A∥pp.

Therefore,
∥U′V′ −A∥pp ≤ (1 + ε)6∥U∗V∗ −A∥pp

and the desired claim then follows from rescaling ε.

We now analyze the running time of Algorithm 5.
Lemma 4.3. For any constant p ≥ 1, Algorithm 5 uses 2poly(k/ε) poly(n, d) running time.

Proof. By Theorem 4.1, we have that Algorithm 5 uses 2O(k) · poly(n, d) time to compute Ã ∈ {0, 1}N×D with N,D =

poly(n). We now consider the time to compute Ũ(i,j), Ṽ(i,j) for each i, j ∈ [ℓ] for ℓ = O
(

logn
ε

)
. For each i, j, we make

guesses for SU∗ and SA in Since SU∗ and SA have m = O
(

kp+1 log r
ε2

)
rows, then there are

(
t
m

)
possible choices for

SU∗ and
(
t
m

)
choices for SA, where t = 2k logn

εp . Hence, there are 2poly(k/ε) poly(n, d) possible guesses for SU∗ and
SA.

For each guess of SU∗ and SA, Algorithm 4 iterates through the columns of Ṽ(i,j), which uses 2O(k) · poly(n, d) time.

Similarly, the computation of Ũ(i,j), U′, and V′ all take 2O(k) · poly(n, d) time. Therefore, the total running time of
Algorithm 5 is 2poly(k/ε) poly(n, d).

F. Applications to Big Data Models
This section describes how we can generalize our techniques to big data models such as streaming or distributed models.

Algorithmic modularization. To adapt our algorithm to the streaming model or the distributed model, we first present
a high-level modularization of our algorithm across all applications, i.e., Frobenius binary low-rank approximation, binary
low-rank approximation over F2, and binary low-rank approximation with Lp loss. We are given the input matrix A ∈
{0, 1}n×d in each of these settings. We first construct a weighted coreset Ã for A. We then perform a number of operations
on Ã to obtain low-rank factors Ũ and Ṽ for Ã. Setting V′ = Ṽ, our algorithms finally use A and V′ to construct the
optimal factor U′ to match V′.

F.1. Streaming Model

We can adapt our approach to the streaming model, where either the rows or columns of the input matrix arrive sequentially.
For brevity, we shall only discuss the setting where the rows of the input matrix arrive sequentially; the setting where the
columns of the input matrix arrive sequentially is symmetric.

21

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Formal streaming model definition. We consider the two-pass row-arrival variant of the streaming model. In this
setting, the rank parameter k and the accuracy parameter ε > 0 are given to the algorithm before the data stream. The
input matrix A ∈ {0, 1}n×d is then defined through the sequence of row-arrivals, A1, . . . ,An ∈ {0, 1}d, so that the i-th
row that arrives in the data stream is Ai. The algorithm passes over the data twice so that in the first pass, it can store some
sketch S that uses space sublinear in the input size, i.e., using o(nd) space. After the first pass, the algorithm can perform
some post-processing on S and then must output factors U ∈ {0, 1}n×k and V ∈ {0, 1}k×d after being given another pass
over the data, i.e., the rows A1, . . . ,An ∈ {0, 1}d.

Two-pass streaming algorithm. To adapt our algorithm to the two-pass streaming model, recall the high-level mod-
ularization of our algorithm described at the beginning of Section F. The first step is constructing a coreset Ã of A.
Whereas our previous coreset constructions were offline, we now require a streaming algorithm to produce the coreset Ã.
To that end, we use the following well-known merge-and-reduce paradigm for converting an offline coreset construction to
a coreset construction in the streaming model.

Theorem F.1. Suppose there exists an algorithm that, with probability 1− 1
poly(n) , produces an offline coreset construction

that uses f(n, ε) space, suppressing dependencies on other input parameters, such as k and p. Then there exists a one-
pass streaming algorithm that, with probability 1− 1

poly(n) , produces a coreset that uses f(n, ε′) · O (log n) space, where
ε′ = ε

logn .

In the first pass of the stream, we can use Theorem F.1 to construct a strong coreset C of A with accuracyO (ε). However,
C will have 2poly(k) · poly

(
1
ε , log n

)
rows, and thus, we cannot immediately duplicate the rows of C to form Ã because

we cannot have log n dependencies in the number of rows of Ã.

After the first pass of the stream, we further apply the respective offline coreset construction, i.e., Theorem 2.2 or Theo-
rem 4.1 to C to obtain a coreset C ′ with accuracy ε and a number of rows independent of log n. We then use C ′ to form
Ã and perform a number of operations on Ã to obtain low-rank factors Ũ and Ṽ for Ã. Setting V′ = Ṽ, we can finally
use the second pass of the data stream over A, along with V′, to construct the optimal factor U′ to match V′. Thus the
two-pass streaming algorithm uses 2poly(k) ·d ·poly

(
1
ε , log n

)
total space in the row-arrival model. For the column-arrival

model, the two-pass streaming algorithm uses 2poly(k) · n · poly
(
1
ε , log d

)
total space.

F.2. Two-round distributed algorithm.

Our approach can also be adapted to the distributed model, where the rows or columns of the input matrix are partitioned
across multiple users. For brevity, we again discuss the setting where the rows of the input matrix are partitioned; the
setting where the columns of the input matrix are partitioned is symmetric.

Formal distributed model definition. We consider the two-round distributed model, where the rank parameter k and the
accuracy parameter ε > 0 are known in advance to all users. The input matrix A ∈ {0, 1}n×d is then defined arbitrarily
through the union of rows, A1, . . . ,An ∈ {0, 1}d, where each row Ai may be given to any of γ users. An additional
central coordinator sends and receives messages from the users. The protocol is then permitted to use two rounds of
communication so that in the first round, the protocol can send o(nd) bits of communication. The coordinator can process
the communication to form some sketch S, perform some post-processing on S, and then request additional information
from each user, possibly using o(nd) communication to specify the information demanded from each user. After the users
again use o(nd) bits of communication in the second round of the protocol, the central coordinator must output factors
U ∈ {0, 1}n×k and V ∈ {0, 1}k×d.

Two-round distributed algorithm. To adapt our algorithm to the two-round distributed model, again recall the high-
level modularization of our algorithm described at the beginning of Section F. The first step is constructing a coreset Ã of
A. Whereas our previous coreset constructions were offline, we now require a distributed algorithm to produce the coreset
Ã. To that end, we request that each of the t users send a coreset with accuracy O (ε) of their respective rows. Note that
each user can construct the coreset locally without requiring any communication since the coreset is only a summary of
the rows held by the user. Thus the total communication in the first round is just the offline coreset size times the number
of players, i.e., γ · 2poly(k) · poly

(
1
ε , log n

)
rows.

Given the union C of the coresets sent by all users, the central coordinator then constructs a coreset C ′ of A with accuracy

22

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

ε, again using an offline coreset construction. The coordinator then uses C ′ to form Ã and performs the required operations
on Ã to obtain low-rank factors Ũ and Ṽ for Ã.

The coordinator can then send V′ to all players, using V′ and their local subset rows of A to construct U′ collectively.
The users then send the rows of U′ corresponding to the rows of A local to the user back to the central coordinator, who
can then construct U′. Thus the second round of the protocol uses Õ (nk + kd) · poly

(
1
ε

)
bits of communication. Hence,

the total communication of the protocol is dγ · 2poly(k) · poly
(
1
ε , log n

)
+ Õ (nk + kd) · poly

(
1
ε

)
in the two-round row-

partitioned distributed model. For the two-round column-partitioned distributed model, the total communication of the
protocol is nγ · 2poly(k) · poly

(
1
ε , log d

)
+ Õ (nk + kd) · poly

(
1
ε

)
.

G. Description of Experiments
In this section, we discuss a number of additional settings on which we perform our empirical evaluations comparing
various algorithms for binary matrix factorization.

Remark G.1. We additionally noticed a binary matrix factorization algorithm for sparse matrices based on subgradient
descent and random sampling2 that is not covered in the literature. This algorithm was excluded from our experiments as it
did not produce binary factors in our experiments. We found that it produces real-valued U and V, and requires binarizing
the product UV after multiplication, therefore not guaranteeing that the binary matrix is of rank k.

G.1. Comparing Algorithms for BMF

Synthetic data. For each algorithm, Table 3 shows the mean Frobenius norm error (i.e. errA(U,V) = ∥UV −A∥F)
across 10 runs of each algorithm and the mean running time in milliseconds for the synthetic datasets described above. For
our choices of parameters, we find that all algorithms terminate in under a second, with Zhang’s algorithm and BMF being
the fastest and the message-passing algorithm generally being the slowest. This is, of course, also influenced by the fact
that the algorithms’ implementations use different technologies, which limits the conclusions we can draw from the data.
We find that the kBMF+ algorithm slows down by a factor of 1.5 for small k ∈ {2, 3, 5}, and 15 when k = 15, compared
to the kBMF algorithm.

This is offset by the improved error, where our algorithm kBMF+ generally achieves the best approximation for dense
matrices, being able to sometimes find a perfect factorization, for example, in the case of a rank 5 matrix, when using
k ∈ {10, 15}. Even when the perfect factorization is not found, we see that the Frobenius norm error is 2-10 times lower.
On spare matrices, we find that Zhang’s and the message-passing algorithms outperform kBMF+, yielding solutions that
are about 2 times better in the worst case (matrix of rank 5, with sparsity 0.1 and k = 5). The kBMF algorithm generally
performs the worst across datasets, which is surprising considering the results of (Kumar et al., 2019). Another point of
note is that Zhang’s algorithm is tuned for sparse matrices, sometimes converging to factors that yield real-valued matrices.
If so, we attempted to round the matrix as best we could.

Real data. As before, Table 4 shows the algorithms’ average Frobenius norm error and average running time. We
observe, that all algorithms are fairly close in Frobenius norm error, with the best and worst factorizations’ error differing
by up to a factor of about 3 across parameters and datasets. Zhang’s algorithm performs best on the Congress dataset,
while the message-passing algorithm performs best on the ORL and Thyroid datasets. The kBMF algorithm generally does
worst, but the additional processing we do in kBMF+ can improve the solution considerably, putting it on par with the
other heuristics. On the Congress dataset, kBMF+ is about 1.1-2 times worse than Zhang’s, while on the ORL dataset, it is
about 10-30% worse than the message-passing algorithm. Finally, the Thyroid dataset’s error is about 10-20% worse than
competing heuristics.

We note that on the Thyroid datasets, which has almost 10000 rows, Zhang’s algorithm slows down considerably, about
10 times slower than kBMF and even slower than kBMF+ for k = 15. This suggests that for large matrices and small to
moderate k, the kBMF+ algorithm may actually run faster than other heuristics while providing comparable results. The
message-passing algorithm slows down tremendously, being almost three orders of magnitude slower than kBMF, but we
believe this could be improved with another implementation.

2https://github.com/david-cortes/binmf

23

https://github.com/david-cortes/binmf

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Error [Frobenius norm] Time [ms]
Alg kBMF kBMF+ MP Zh kBMF kBMF+ MP Zh

Dataset k

Random 2 75.8 72.3 71.3 71.3 11.2 8.6 280.7 11.6
p = 0.5 3 74.3 69.9 69.4 68.7 14.9 12.5 309.8 11.7

5 72.2 65.8 66.6 64.9 10.9 11.5 347.7 13.3
10 68.7 57.4 61.5 58.5 15.4 53.4 486.6 17.2
15 66.4 50.4 57.9 53.7 16.2 272.1 667.3 21.7

Random 2 36.0 35.0 34.9 35.2 10.8 11.3 277.3 9.9
p = 0.1 3 35.9 34.9 34.9 35.0 7.5 13.9 302.1 10.6

5 35.6 34.6 35.5 34.2 12.7 18.5 336.9 12.6
10 35.0 33.9 35.8 31.7 17.0 64.5 459.6 15.9
15 34.3 33.0 38.5 29.0 20.9 269.5 628.4 19.6

Low-Rank 2 72.5 67.1 66.0 67.8 4.1 7.9 274.9 11.9
r = 5 3 69.2 60.0 62.3 64.0 12.8 12.0 301.5 13.5
p = 0.5 5 64.0 26.9 55.2 56.7 10.4 11.9 339.8 15.4

10 52.9 0.7 41.0 42.5 14.7 72.7 472.5 19.5
15 43.3 0.0 32.8 31.1 18.0 296.0 658.0 23.8

Low-Rank 2 20.5 20.4 16.5 15.8 9.4 6.3 185.6 4.8
r = 5 3 17.0 16.6 13.1 12.0 5.0 5.8 209.1 12.3
p = 0.1 5 11.1 8.4 4.6 5.1 7.0 8.0 275.9 14.8

10 5.1 0.0 0.7 2.3 19.3 75.0 460.5 18.1
15 1.5 0.0 0.4 1.4 20.2 297.0 630.9 22.1

Low-Rank 2 75.8 72.2 71.1 71.7 13.4 15.5 281.2 11.5
r = 10 3 74.3 69.6 69.1 69.0 15.8 20.0 308.0 11.7
p = 0.5 5 72.0 64.7 66.1 64.8 20.9 19.7 345.5 13.6

10 68.2 28.4 60.2 57.9 16.2 51.4 477.8 17.3
15 65.6 0.8 56.0 52.9 19.3 245.2 659.6 21.3

Low-Rank 2 30.8 30.5 27.6 28.5 10.0 14.3 213.4 5.7
r = 10 3 28.5 28.1 25.2 25.5 11.1 13.3 248.5 11.5
p = 0.1 5 24.7 23.2 20.4 19.9 13.1 18.7 292.0 13.4

10 18.3 10.2 7.6 8.8 16.4 76.2 434.6 16.9
15 15.2 2.5 4.7 5.4 14.8 261.3 638.8 22.1

Low-Rank 2 75.7 72.3 71.2 71.3 14.5 18.6 277.6 11.3
r = 15 3 74.2 69.9 69.3 68.7 12.7 11.1 306.5 11.7
p = 0.5 5 72.1 65.7 66.6 64.8 15.0 19.0 339.7 13.0

10 68.6 56.5 61.5 58.4 18.7 51.4 478.3 17.2
15 66.4 29.2 57.7 53.6 13.0 239.9 652.8 21.1

Low-Rank 2 38.7 38.2 35.6 36.5 12.1 10.4 242.2 9.7
r = 15 3 37.1 36.2 33.7 34.2 10.0 13.0 274.1 12.8
p = 0.1 5 33.7 32.2 29.8 29.5 13.2 17.9 313.2 14.6

10 28.1 22.3 20.3 19.8 20.2 56.3 457.3 17.9
15 25.3 14.2 11.6 13.4 21.2 247.9 643.8 21.2

Noisy 2 75.8 72.3 71.2 71.6 13.9 12.8 290.4 11.3
r = 10 3 74.3 69.6 69.3 69.0 13.8 15.6 309.3 11.6
p = 0.5 5 72.1 64.7 66.2 65.0 17.6 23.8 345.8 13.6
pnoise = 0.001 10 68.2 33.8 60.3 58.1 16.8 54.0 481.1 17.6

15 65.6 4.8 56.2 53.2 18.4 247.1 661.8 21.6

Noisy 2 32.5 32.1 29.3 30.0 6.3 9.6 223.6 7.6
r = 10 3 30.0 29.5 26.9 27.1 6.4 10.1 255.4 11.6
p = 0.1 5 26.2 24.6 22.0 21.3 6.6 9.7 291.9 13.5
pnoise = 0.001 10 19.8 12.0 9.3 10.4 16.4 67.4 441.2 18.2

15 16.7 4.9 6.8 7.2 13.9 255.0 641.8 22.4

Noisy 2 75.8 72.1 71.0 71.7 9.7 11.4 276.1 11.4
r = 10 3 74.3 69.5 69.0 69.1 12.1 13.3 302.4 12.0
p = 0.5 5 72.0 64.7 66.0 64.8 12.4 12.5 338.9 13.4
pnoise = 0.01 10 68.3 38.2 60.2 57.9 15.0 50.7 475.0 17.2

15 65.7 16.7 56.1 52.8 18.0 254.0 672.9 21.3

Noisy 2 33.3 33.0 30.3 30.9 9.9 11.5 225.3 9.2
r = 10 3 31.3 30.8 28.2 28.0 10.8 10.5 257.5 12.5
p = 0.1 5 27.8 26.2 23.6 23.4 9.4 18.3 292.1 14.3
pnoise = 0.01 10 22.3 16.3 14.0 15.1 21.0 58.5 448.5 17.4

15 19.9 12.5 12.5 12.0 20.5 260.3 645.4 21.7

Table 3. The average running time and error for different Binary Matrix Factorization algorithms on synthetic datasets. The minimum
Frobenius norm error is marked in bold.

24

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

Error [Frobenius norm] Time [ms]
Alg kBMF kBMF+ MP Zh kBMF kBMF+ MP Zh

Dataset k

Congress 2 40.0 38.8 38.8 36.4 2.0 3.3 280.7 6.9
3 38.4 36.6 35.9 32.7 2.3 4.1 311.2 13.6
5 35.7 32.7 31.1 27.7 4.6 5.2 332.9 16.2
10 32.7 23.9 22.5 18.4 3.2 16.9 407.1 22.6
15 30.9 14.8 15.5 9.6 7.4 246.7 480.5 27.5

ORL 2 39.4 37.8 35.9 33.5 2.0 2.9 203.7 11.6
3 35.7 34.6 32.2 29.7 2.9 4.7 241.6 13.1
5 31.7 30.7 27.7 25.6 3.8 5.8 289.4 15.4
10 26.4 25.7 21.6 21.4 4.3 22.3 415.7 19.1
15 23.4 22.8 17.8 19.7 6.1 318.0 575.5 22.2

Thyroid 2 106.6 98.6 90.5 91.6 12.6 14.2 7063.6 44.3
3 94.5 90.5 75.5 73.9 14.4 18.7 7822.0 92.9
5 82.7 80.4 78.5 61.8 31.8 25.2 8860.2 132.1
10 66.0 55.4 54.0 52.9 28.9 59.6 12686.3 241.4
15 57.6 38.9 39.2 46.7 26.7 313.4 16237.7 432.7

Table 4. The average running time and error for different Binary Matrix Factorization algorithms on real datasets, minimum Frobenius
norm error highlighted in bold.

G.2. Using Coresets with our Algorithm

Motivated by our theoretical use of strong coresets for k-means clustering, we perform experiments to evaluate the increase
in error using them. To this end, we run the BMF+ algorithm on either the entire dataset, a coreset constructed via
importance sampling (Bachem et al., 2017; Braverman et al., 2021), or a lightweight coreset (Bachem et al., 2018). Both
of these algorithms were implemented in Python. The datasets in this experiment are a synthetic low-rank dataset with
additional noise (size 5000× 50, rank 5 and 0.0005 probability of flipping a bit), the congress, and thyroid datasets.

We construct coresets of size rn for each r ∈ {0.001, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, . . . , 0.9}. We sample 10 coresets
at every size and use them when finding V in our kBMF+ algorithm. The theory suggests that the quality of the coreset
depends only on k and the dimension d of the points, which is why in Figure 2, we observe a worse approximation for
a given size of coreset for larger k. We find that the kBMF+ algorithm performs just as well on lightweight coresets as
the one utilizing the sensitivity sampling framework. This is expected in the binary setting, as the additive error in the
weaker guarantee provided by lightweight coresets depends on the dataset’s diameter. Thus, the faster, lightweight coreset
construction appears superior in this setting.

We observe that using a coreset increases the Frobenius norm error we observe by about 35%, but curiously, on the low-
rank dataset, the average error decreased after using coresets. This may be due to coreset constructions not sampling the
noisy outliers that are not in the low-dimensional subspace spanned by the non-noisy low-rank matrix, letting the algorithm
better reconstruct the original factors instead.

Our datasets are comparatively small, none exceeding 1000 points, which is why, in combination with the fact that the
coreset constructions are not optimized, we observe no speedup compared to the algorithm without coresets. However,
even though constructing the coreset takes additional time, the running time between variants remained comparable. We
expect to observe significant speedups for large datasets using an optimized implementation of the coreset algorithms.
Using off the shelf coresets provides a large advantage to this algorithm’s feasibility compared to the iterative methods
when handling large datasets.

25

Fast 1+eps-Approximation Algorithms for Binary Matrix Factorization

0.0 0.5 1.0

100

125

150

175

200

Er
ro

r

k = 5 | Dataset = low_rank

0.0 0.5 1.0

34

36

38

k = 5 | Dataset = congress

0.0 0.5 1.0

80

90

100

k = 5 | Dataset = thyroid

0.0 0.5 1.0
Size

10

20

30

40

Er
ro

r

k = 10 | Dataset = low_rank

0.0 0.5 1.0
Size

24

25

26

27

28

k = 10 | Dataset = congress

0.0 0.5 1.0
Size

55

60

65

70

75

k = 10 | Dataset = thyroid

Algorithm
kBMF+
Importance + kBMF+
Lightweight + kBMF+

Figure 2. A plot of the effect of different relative coreset sizes on the results of our algorithm.

26

