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Abstract
In Reinforcement Learning (RL), designing pre-
cise reward functions remains to be a challenge,
particularly when aligning with human intent.
Preference-based RL (PbRL) was introduced to
address this problem by learning reward models
from human feedback. However, existing PbRL
methods have limitations as they often overlook
the second-order preference that indicates the rel-
ative strength of preference. In this paper, we pro-
pose Listwise Reward Estimation (LiRE), a novel
approach for offline PbRL that leverages second-
order preference information by constructing a
Ranked List of Trajectories (RLT), which can be
efficiently built by using the same ternary feed-
back type as traditional methods. To validate the
effectiveness of LiRE, we propose a new offline
PbRL dataset that objectively reflects the effect
of the estimated rewards. Our extensive exper-
iments on the dataset demonstrate the superior-
ity of LiRE, i.e., outperforming state-of-the-art
baselines even with modest feedback budgets and
enjoying robustness with respect to the number
of feedbacks and feedback noise. Our code is
available at https://github.com/chwoong/LiRE

1. Introduction
Reinforcement Learning (RL) has demonstrated consider-
able success in various domains such as robotics (Haarnoja
et al., 2018; Kalashnikov et al., 2018), game (Silver et al.,
2017; Mnih et al., 2013; Vinyals et al., 2019), autonomous
driving (Kiran et al., 2021), and real-world tasks (Tan et al.,
2018; Chebotar et al., 2019). An essential component of RL
is to define suitable and precise reward functions so that an
RL agent can be trained successfully (Wirth et al., 2017).
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However, designing the reward function is time-consuming,
especially if we want to align it with human intent (Hejna &
Sadigh, 2024).

This shortcoming has led to research on learning the reward
model from human feedback without explicitly designing
the reward function. While expert demonstration is one
type of human feedback (Abbeel & Ng, 2004), recent pa-
pers use preference feedback on which of a pair of trajec-
tory segments is preferred since it is a significantly easier
type of feedback to collect (Kaufmann et al., 2023; Casper
et al., 2023). More specifically, the common approach for
the Preference-based RL (PbRL) consists of two steps: (1)
learn a reward model using preference feedback from trajec-
tory segment pairs, then (2) apply ordinary RL algorithms
with the learned reward model. After successfully train-
ing a robot agent with PbRL (Christiano et al., 2017), it
was shown that novel behaviors aligned with human intent,
e.g., backflips, can also be learned (Lee et al., 2021b), while
learning such behavior would be extremely hard from explic-
itly hand-coded rewards. The PbRL framework has gained
popularity in both online (Park et al., 2021; Liang et al.,
2021) and offline (Kim et al., 2022; Shin et al., 2022; An
et al., 2023; Hejna & Sadigh, 2024) settings, in which the
former allows the agents to interact with their environments,
while the latter does not.

In this paper, we focus on the offline PbRL setting, in which
the goal is to find an optimal policy solely from the previ-
ously collected preference feedbacks on the pairs of trajec-
tories obtained from some past, fixed policy. This setting
is challenging since the preference feedback cannot be ac-
tively collected on the trajectories generated by the current,
updated policy. Hence, developing effective methods for
collecting maximally informative preference feedback data
from the past policy as well as devising efficient reward
learning schemes is indispensable.

The current norm is to collect ternary preference feedback
(i.e., more/less/equally preferred) for independently sampled
pairs of trajectories, and then employ the standard Bradley-
Terry (BT) model (Bradley & Terry, 1952) on the collected
data to learn the reward function. While the above approach
was shown to be effective to some extent, a critical limitation
also exists. Namely, due to the independent sampling of the
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Figure 1: An overview of LiRE. The figure shows an example of a button-press-topdown task. We sample a trajectory
segment and sequentially obtain the preference feedback for existing trajectories in RLT. We use binary search to find the
correct rank (left) efficiently. Multiple preference pairs are generated from RLT to learn the reward model (right).

pairs of trajectories and simple ternary feedback, the second-
order preference, which stands for the relative strengths of
the preferences, cannot be utilized. There exists a long
line of work in several areas asserting that utilizing such
second-order preference is indeed effective for more accu-
rate learning (Xia et al., 2008; Touvron et al., 2023; Hwang
et al., 2023; Song et al., 2024). However, the majority of
these works presume the availability of more sophisticated
preference feedback types, which are considerably more
laborious and expensive to obtain than the above-mentioned
ternary feedback.

To that end, we propose to construct a Ranked List of Tra-
jectories (RLT) while collecting preference feedback data to
exploit the second-order preference when learning a reward
function. The key novelty and strength of our method is to
use exactly the same feedback type and budget as before and
not require any additional sophistication in collecting the
preference feedback. As outlined in Figure 1, the main idea
of building such a ranked list is to sample a trajectory and
sequentially obtain the preference feedback by comparing
it with existing trajectories in the ranked list multiple times
to find its correct rank in the list. Hence, our method ends
up sampling fewer trajectories for a fixed feedback budget
compared to the conventional independent pair sampling.
However, once the complete RLT is built, the second-order
preference can be extracted and exploited for estimating
the reward function, which, as we show in our experiments,
results in a significant performance boost of offline PbRL.

The superiority of our method, dubbed as LiRE (Listwise
Reward Estimation), is demonstrated through extensive ex-
perimental validation. We first created an offline RL dataset
using Meta-World (Yu et al., 2020) and DeepMind Control
Suite (DMControl) (Tassa et al., 2018) environments that
can objectively compare the reward estimation quality of
offline PbRL methods. This is motivated by (Li et al., 2023),
which pointed out that the offline RL performance can be
high in some popular benchmark datasets even with wrong

or constant reward functions. On our proposed datasets,
we show that many tasks cannot be properly learned with
existing offline PbRL methods, even with a large preference
feedback budget. In contrast, we showcase our LiRE can
outperform those baselines on most of the tasks with sig-
nificant margins even with a modest preference feedback
budget. We conduct comprehensive experimental analyses
to investigate the impact of several factors, including the
score function of the BT model, the number of preference
feedbacks, and the number of trajectories in the RLT. The
experimental results show that the degree to which second-
order information is utilized has a significant positive impact
on the performance of offline PbRL. Furthermore, the re-
sults of the real human preference feedback experiments,
along with experiments on the level of preference feedback
noise and feedback granularity, demonstrate the effective-
ness of LiRE in practical scenarios. These analyses provide
substantial evidence supporting the strength and robustness
of LiRE.

2. Related Works
2.1. Offline Preference-based RL

Due to the difficulty of defining rewards in reinforcement
learning (Sutton & Barto, 2018; McKinney et al., 2023),
PbRL uses comparison information between trajectories to
learn a reward function (Christiano et al., 2017; Fürnkranz
et al., 2012; Wilson et al., 2012; Akrour et al., 2012; Ouyang
et al., 2022; Stiennon et al., 2020). However, the human
preference feedback required for PbRL is expensive to ob-
tain. Thus, several PbRL approaches have been devised to
reduce the number of expensive human feedbacks, such as
using additional expert demonstrations (Ibarz et al., 2018),
meta-learning (Hejna III & Sadigh, 2023), semi-supervised
learning or data augmentation (Park et al., 2021), unsuper-
vised pre-training (Lee et al., 2021b), exploration based on
reward uncertainty (Liang et al., 2021), and using sequen-

2



Listwise Reward Estimation for Offline Preference-based Reinforcement Learning

tial preference ranking (Hwang et al., 2023). Offline PbRL
assumes a more challenging problem setting where agents
cannot interact with the environment, unlike online PbRL
where preference feedback can be obtained while interacting
with the environment.

In offline PbRL, the two kinds of data are provided: offline
data obtained from an unknown policy and preference feed-
backs on the pairs of trajectories. Also, traditional offline
PbRL methods have two phases; they train a reward model
using the preference feedback and then perform RL with the
trained reward model without interacting with the environ-
ment. On the other hand, recent works propose performing
offline PbRL without the reward model by directly optimiz-
ing policies (An et al., 2023; Kang et al., 2023), or learning
state-action value function or regret from preference labels
(Hejna & Sadigh, 2024; Hejna et al., 2023). However, due
to the constraint of no interaction with the environment, ob-
taining the most informative preference feedback from the
offline dataset is as important as developing a new training
method without the reward model or designing the struc-
ture of the reward model well (e.g., non-Markovian reward
modeling (Kim et al., 2022)). An active query selection
method has been proposed to obtain informative preference
pairs (Shin et al., 2022), but their method did not attempt to
obtain second-order preference.

Most offline PbRL papers have validated their algorithms
on the D4RL dataset (Fu et al., 2020). However, it has been
shown that typical offline RL algorithms can produce good
policies on D4RL even with a completely wrong reward
(e.g., zero, random, negative reward) due to the pessimism
and survival instinct of offline RL algorithms (Shin et al.,
2022; Li et al., 2023). Hence, to properly evaluate how well
offline PbRL algorithms learn the reward model, we need to
validate them on a new dataset, on which the policy cannot
be easily learned due to survival instincts.

2.2. Second-order Preference Feedback

While typical approaches in PbRL only focus on the first-
order preference (i.e., ternary labels including bad, equal,
and good), several approaches in the NLP and RL domains
have recently been proposed to utilize second-order pref-
erence about the relative difference between preferences.
One approach is to directly obtain a relative rating for each
trajectory pair (e.g., significantly better or slightly better)
or an absolute rating for each trajectory (e.g., very good or
good) (Touvron et al., 2023; Cao et al., 2021; White et al.,
2023). However, the more granular the preferences are, the
more expensive they are than just ternary labels.

There is a rich Learning-to-Rank literature that learns the
ranking given second-order preference feedback in the form
of absolute ratings (Burges et al., 2005; Xia et al., 2008; Xu
& Li, 2007; Swezey et al., 2021), but they do not address

how to obtain second-order preference only with ternary
labels. Another approach is to obtain the second-order pref-
erence between samples from a fully-ranked list for multiple
trajectories (Chen et al., 2022; Palan et al., 2019; Zhu et al.,
2023; Song et al., 2024; Myers et al., 2022; Bıyık et al.,
2019; Brown et al., 2019). However, they do not address
how to efficiently obtain the fully-ranked list in terms of the
number of feedbacks. Since naively constructing a fully-
ranked list would require a large number of feedbacks that
increase quadratically with the number of trajectories, de-
veloping a more efficient list construction method is crucial.

Accordingly, some recent studies have developed how to
obtain partially-ranked lists that only know the rankings
among a few trajectories (Zhao et al., 2023; Hwang et al.,
2023). Perhaps, one of the closest research to ours is Sequen-
tial Preference Ranking (SeqRank) (Hwang et al., 2023),
which sequentially collects the preference feedback between
a newly observed segment and a previously collected seg-
ment. However, since their method builds partially-ranked
lists rather than fully-ranked lists, the short length of the lists
limits the ability to fully utilize second-order information.

3. Preliminaries
An RL algorithm considers a Markov decision process
(MDP) and aims to find the optimum policy that maximizes
the cumulative discounted rewards. MDP is defined by
a tuple (S,A, P, r, γ) where S,A are state, action space,
P = P (·|s, a) is the environment transition dynamics,
r = r(s, a) is reward function, and γ is discount factor.
In offline PbRL, we assume that we do not know the true
reward r, but we have a pre-collected dataset that is a set
of tuples, Do := {(s, a, s′)|(s, a) ∼ µ, s′ ∼ P (·|s, a)}.
In general, the policy µ from which the data was col-
lected is unknown. We are allowed to ask for prefer-
ence feedbacks to obtain preference labels for two dis-
tinct trajectory segments sampled from Ds := {σ |σ =
(s0, a0, s1, a1, · · · , sT−1, aT−1), (st, at, st+1) ∈ Do}. An-
notators assign a ternary label l given a pair of segments
σ1, σ2 ∈ Ds; l = 0 indicates that σ1 is preferred over σ2

(i.e., σ1 ≻ σ2), l = 1 indicates the opposite preference (i.e.,
σ1 ≺ σ2), and l = 0.5 indicates that σ1 and σ2 are equally
preferred (i.e., σ1 = σ2).

The goal of acquiring preference labels is to learn the un-
known reward function. Conventional offline PbRL methods
use a preference model that defines the probability that one
segment is better than the other as

Pθ(σ1 ≻ σ2) =
ϕ
(
rθ(σ1)

)
ϕ
(
rθ(σ1)

)
+ ϕ

(
rθ(σ2)

) (1)

in which rθ(σi) =
∑

(st,at)∈σi
rθ(st, at) and θ is the pa-

rameter of the reward model. The score function ϕ(x) =
exp(x) is commonly used in the BT model (Bradley & Terry,
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1952). Given the trajectory segment preference dataset,
Dpref := {(σi1 , σi2 , li)}Ki=1, the parameter θ is learned by
minimizing following cross-entropy loss:

L(θ) = − E
(σi1 ,σi2 ,li)

∈Dpref

[
(1− li) logPθ (σi1 ≻ σi2)+

li logPθ (σi1 ≺ σi2)
]
. (2)

4. LiRE: Listwise Reward Estimation
As mentioned in Section 1, the conventional offline PbRL
approaches cannot utilize the second-order information of
the preference feedback. In order to describe our method,
we begin by stating the mild assumptions we make.

Assumption 4.1. (Completeness) For any two segments
σi, σj , the human feedbacks are provided in the following
three ways, σi ≻ σj or σi ≺ σj or σi = σj .
(Transitivity) For any three segments σi, σj , and σk, if
σi = σj and σj = σk, then σi = σk. Also, if σi ≻ σj and
σj ≻ σk, then σi ≻ σk.
Remarks: These assumptions are a generalization of Se-
qRank (Hwang et al., 2023) to include equal labels. While
the transitivity assumption may not always hold in prac-
tice, we demonstrate that our method is robust both in the
presence of feedback noise (Section 5.4.3) and in real hu-
man experiments (Section 5.5), even when the transitivity
assumption may not hold.

4.1. Constructing a Ranked List of Trajectories (RLT)

Our goal is to obtain an RLT in which the segments σ are
ordered by their level of preference. We represent RLT, L,
in the following form:

L = [g1 ≺ g2 ≺ · · · ≺ gs],

in which gi = {σi1 , · · · , σik} is a group of segments with
the same preference level and s is the number of groups in
the list. Namely, if m > n, we note any segment σi ∈ gm
is preferred over any segment σj ∈ gn.

Since we assume to have exactly the same type of ternary
feedback defined in Section 3, we cannot build RLT by
obtaining the listwise feedback at once. Hence, we construct
by sequentially obtaining the labels as we describe below.

We start with an initial list [{σ1}] by selecting a random seg-
ment σ1 from Ds. We then repeat the process of sequentially
sampling the new segment σ2, σ3, · · · ∈ Ds and placing it in
the appropriate position in the list until the feedback budget
limit is reached. To place a newly sampled σi in the RLT,
we compare it with a segment σk ∈ gm for some group
gm in the list and obtain the ternary preference feedback.
Depending on the feedback, we proceed as follows:

Table 1: Feedback efficiency and sample diversity of inde-
pendent pairwise sampling, SeqRank, and RLT.

Independent SeqRank RLT
Feedback efficiency 1 1.392 O(M/ logM)
Sample diversity 2 O(1) O(1/ logM)

• If σi = σk, add σi to the group gm.
• If σi ≺ σk, find the position within g1, · · · , gm−1.
• If σi ≻ σk, find the position within gm+1, · · · , gs.

For the latter two cases, we use a binary search so that
we can recursively find the correct group for each segment.
Namely, the RLT construction algorithm is based on a binary
insertion sort and the pseudocode is summarized in Algo-
rithm 1 (Appendix). We note that while we can also adopt
merge sort or quick sort to construct an RLT after collecting
multiple segments, if we already have a partially constructed
RLT, binary insertion sort would be more feedback-efficient.

Feedback efficiency and sample diversity Note that by
design, we need to obtain multiple preference feedbacks
for each new segment σi. Therefore, for a fixed feedback
budget, our method samples fewer segments. However,
from the constructed RLT, we can generate many preference
pairs by exploiting the second-order information encoded
in the list; namely, σi is preferred to all the segments in the
groups that rank lower than the group that σi belongs to.

To that end, we analyze the feedback efficiency and sam-
ple diversity of RLT. Feedback efficiency is defined in
SeqRank (Hwang et al., 2023) as the ratio of the number of
total preference pairs generated to the number of preference
feedbacks obtained. We also define sample diversity as the
ratio of the total number of sampled segments to the num-
ber of preference feedbacks obtained. Suppose we obtain
preference feedbacks until we collect a total of M segments
in the preference dataset. Constructing an RLT with M
segments requires O(M logM) feedbacks because we use
an efficient sorting method based on binary search. In this
case, the number of all possible preference pairs (including
ties) that can be generated from the RLT is

(
M
2

)
. Table 1

summarizes the feedback efficiency and sample diversity of
independent pairwise sampling, SeqRank, and RLT. Note
our method has a faster rate of increase in the feedback
efficiency even with diminishing sample diversity as the
number of segments M in RLT increases.

Constructing multiple RLTs Algorithm 1 places all the
segments in a single ranked list. Instead of constructing one
long list, we devise a variant that generates multiple lists
by setting a limit (Q) on the feedback budget for each list.
The reason for generating multiple lists is that as the length
of the list increases, the number of preference feedbacks
required by the binary search process increases. Hence,
we increase the sample diversity within the total feedback
budget by generating multiple RLTs.
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4.2. Listwise Reward Estimation from RLT

Once the RLT is constructed, we construct the preference
dataset, Dl = {(σi1 , σi2 , li)}Ki=1 with all the pairs we can
obtain from the RLT. Specifically, when σi1 ∈ gm and
σi2 ∈ gn, the preference label li is as follows: li = 0.5
if m = n, li = 0 if m > n, and li = 1 if m < n. The
key difference from traditional pairwise PbRL methods is
that, instead of independently sampling segment pairs, we
derive preference pairs from the RLT. To compare with the
independent sampling, suppose that the RLT has segments
with the relationship, σa < σb < σc. If we sample all pairs
from the RLT, then (σa, σb, 1), (σb, σc, 1), (σa, σc, 1) ∈ Dl.
From these preference pairs, it can be inferred that the de-
gree to which σc is preferred over σa is stronger than the
degree to which σc is preferred over σb. Consequently, the
reward model trained with pairwise loss in (2) can learn
second-order preference between each pair of segments. In
contrast, the reward model learned from independent sam-
pling cannot learn second-order preference because each
segment is not compared to multiple other segments.

We use pairwise loss in our main experiments, but we can
also train the reward model with listwise loss since the
segments are ranked in the RLT. To train the reward model
with listwise loss, we assume the segments follow a Plackett-
Luce model (Plackett, 1975) which defines the probability
distribution of objects in a ranked list. We discuss listwise
loss more in detail in Appendix A.3 — but, our experimental
results show that training with pairwise loss performs better
than listwise loss in most cases.

Our proposed LiRE trains the reward model with linear
score function ϕ(x) = x in (1). The choice of linear score
function has the same effect as setting the reward to be
the exponent of the optimal reward value obtained through
training with an exponential score function ϕ(x) = exp(x).
Therefore, the linear score function amplifies the difference
in reward values, particularly in regions with high reward
values, compared to the exponential score function.

Bounding reward model If ϕ(x) = exp(x), then adding
a constant to the reward function r̂θ does not affect the
resulting probability distribution. To align the scaling of the
learned r̂θ in ensemble reward models, a common choice for
the reward model is using the Tanh activation, i.e., r̂θ(σ) =∑

t r̂θ(st, at) =
∑

t tanh(fθ(st, at)) (Lee et al., 2021b;
Hejna & Sadigh, 2024), to bound the output of the reward
model.

In the case of ϕ(x) = x, scaling the reward function by a
constant does not affect the probability distribution. Simi-
larly, we use the same Tanh activation function for ϕ(x) = x
to bound the output of the reward model. Specifically, we
set r̂θ(σ) =

∑
t

(
1 + tanh(fθ(st, at))

)
> 0 to ensure that

the probability defined in (1) is positive.

5. Experimental Results
5.1. Settings

Dataset Previous offline PbRL papers are evaluated mainly
on D4RL (Fu et al., 2020), but D4RL has the problem that
RL performance can be high even when wrong rewards are
used (Li et al., 2023; Shin et al., 2022). To that end, we
newly collect the offline PbRL dataset with Meta-World
(Yu et al., 2020) and DeepMind Control Suite (DMControl)
(Tassa et al., 2018) following the protocols of previous work:
medium-replay dataset, e.g., (Yu et al., 2021a; Mazoure
et al., 2023; Gulcehre et al., 2020) and medium-expert
dataset, e.g., (Yu et al., 2021b; Sinha et al., 2022; Hejna &
Sadigh, 2024; Li et al., 2023).

The medium-replay dataset collects data from replay
buffers used in online RL algorithms, such as the SAC
(Haarnoja et al., 2018), and the medium-expert dataset
collects trajectories generated by the noisy perturbed expert
policy. We experiment on both datasets while our main anal-
yses are done on medium-replay; see Appendix C.2 for
complete details on constructing them. The prior works
(Shin et al., 2022; Zhang, 2023) have created datasets that
consider survival instinct. However, their dataset was evalu-
ated with only 100 or fewer preference feedbacks, whereas
we use 500, 1000, or more feedbacks.

Baselines In our experiments, we consider five baselines:
Markovian Reward (MR), Preference Transformer (PT)
(Kim et al., 2022), Offline Preference-based Reward Learn-
ing (OPRL) (Shin et al., 2022), Inverse Preference Learning
(IPL) (Hejna & Sadigh, 2024), and Direct Preference-based
Policy Optimization (DPPO) (An et al., 2023). MR refers to
the method trained with the MLP layer with the Markovian
reward assumption, which is the baseline model used in PT.
OPRL learns multiple reward models to select the query
actively with the highest preference disagreement. Lastly,
IPL and DPPO are algorithms that learn policies without
the reward model.

All the above five baselines belong to pairwise PbRL be-
cause they all train based on the BT model given first-order
preference feedbacks sampled as independent pairs. In addi-
tion to pairwise PbRL, we also compare with the sequential
pairwise comparison method proposed by SeqRank (Hwang
et al., 2023).

Implementation details For LiRE, we use the linear score
function and set Q = 100 as the default feedback budget for
each list. Therefore, if the total number of feedbacks is 500,
then five RLTs will be constructed. All baseline methods,
including ours, can be applied to any offline RL algorithm,
but, as in previous works, we use IQL (Kostrikov et al.,
2021). The hyperparameters for each algorithm and the
criteria for the equally preferred label threshold of scripted
teacher can be found in the Appendix C.4.
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Table 2: Average success rates on medium-replay dataset over six random seeds. We use 500 and 1000 preference
feedbacks and report the average performance of the last five trained policies. The yellow and gray shading represent the
best and second-best performances, respectively.

# of
feedbacks Algorithm button-press

-topdown box-close dial-turn sweep button-press
-topdown-wall sweep-into drawer-open lever-pull

- IQL with GT rewards 88.33 ± 4.76 93.40 ± 3.10 75.40 ± 5.47 98.33 ± 1.87 56.27 ± 6.32 78.80 ± 7.96 100.00 ± 0.00 98.47 ± 1.77

500

MR 9.60 ± 5.74 10.33 ± 8.23 50.20 ± 8.51 79.80 ± 13.36 0.13 ± 0.50 24.80 ± 5.28 98.07 ± 3.20 50.53 ± 8.55

PT (Kim et al., 2022) 22.87 ± 9.06 0.33 ± 1.16 68.67 ± 12.39 43.07 ± 24.57 0.87 ± 1.43 20.53 ± 8.26 88.73 ± 11.64 82.40 ± 22.69

OPRL (Shin et al., 2022) 12.13 ± 5.75 4.73 ± 3.24 54.33 ± 11.47 94.13 ± 5.95 0.20 ± 0.60 25.87 ± 8.58 94.13 ± 6.41 54.67 ± 12.79

DPPO (An et al., 2023) 3.93 ± 4.34 10.20 ± 11.47 26.67 ± 22.23 10.47 ± 15.84 0.80 ± 1.51 23.07 ± 7.02 35.93 ± 11.18 10.13 ± 12.19

IPL (Hejna & Sadigh, 2024) 34.73 ± 13.92 5.93 ± 5.81 31.53 ± 12.50 27.20 ± 23.81 8.93 ± 9.84 32.20 ± 7.35 19.00 ± 13.63 31.20 ± 15.76

SeqRank (Hwang et al., 2023) 17.6 ± 11.94 13.2 ± 12.72 65.6 ± 12.84 83.4 ± 9.76 1.73 ± 1.98 25.67 ± 11.02 99.53 ± 0.36 95.67 ± 4.04

LiRE (ours) 67.20 ± 18.97 51.53 ± 18.48 79.07 ± 10.96 77.53 ± 10.50 79.13 ± 15.19 49.13 ± 15.85 99.40 ± 1.65 95.67 ± 6.26

1000

MR 9.27 ± 5.30 17.07 ± 9.56 59.07 ± 7.57 90.80 ± 9.74 0.60 ± 1.87 26.07 ± 8.57 96.47 ± 4.02 50.87 ± 10.89

PT (Kim et al., 2022) 18.27 ± 10.62 2.27 ± 2.86 68.80 ± 5.50 29.13 ± 14.55 2.13 ± 2.96 20.27 ± 7.84 95.40 ± 7.27 72.93 ± 10.16

OPRL (Shin et al., 2022) 11.00 ± 7.84 15.07 ± 11.19 51.33 ± 10.08 85.53 ± 5.43 0.33 ± 0.75 28.27 ± 6.40 99.20 ± 1.42 53.20 ± 6.67

DPPO (An et al., 2023) 3.20 ± 3.04 9.33 ± 9.60 36.40 ± 21.95 8.73 ± 16.37 0.27 ± 0.85 23.33 ± 7.80 36.47 ± 7.30 8.53 ± 9.96

IPL (Hejna & Sadigh, 2024) 36.67 ± 17.40 6.73 ± 8.41 43.93 ± 13.37 38.33 ± 24.87 14.07 ± 11.47 30.40 ± 7.74 28.53 ± 18.37 40.40 ± 17.38

SeqRank (Hwang et al., 2023) 13.93 ± 8.11 46.60 ±12.53 70.67 ± 7.58 74.93 ±22.35 2.47 ±2.67 29.33 ± 11.59 98.6 ± 3.92 95.47 ± 3.86

LiRE (ours) 83.07 ± 6.38 89.13 ± 6.02 76.93 ± 7.55 75.87 ± 6.81 81.47 ± 10.04 57.73 ± 13.11 99.73 ± 0.85 99.47 ± 1.15

Table 3: Average success rates on medium-replay with
500 preference feedbacks.

RLT ϕ(x)
button-press

-topdown box-close dial-turn lever-pull

✗ exp(x) 9.60 ± 5.74 10.33 ± 8.23 50.20 ± 8.51 50.53 ± 8.55

✓ exp(x) 12.87 ± 7.86 22.73 ± 10.40 65.87 ± 9.46 57.87 ± 11.28

✗ x 36.87 ± 13.75 11.27 ± 14.91 77.27 ± 11.90 70.20 ± 18.03

✓ x 67.20 ± 18.97 51.53 ± 18.48 79.07 ± 10.96 95.67 ± 6.26

5.2. Evaluation on the Offline PbRL Benchmark

We compare LiRE with the baselines mainly on the Meta-
World medium-replay dataset. Table 2 summarizes the
results of offline RL performance using ground-truth (GT)
rewards and preference feedbacks respectively. For many
tasks, such as button-press-topdown and box-close, MR per-
forms poorly compared to training with GT rewards, even
with 1000 preference feedbacks. The problem of poor per-
formance remains even if we replace the reward model with
a more complex transformer architecture, PT. PT improves
performance in dial-turn and lever-pull tasks, but for other
tasks, the performance worsens. OPRL generally performs
better than MR due to the increased consistency of the re-
ward models, but the performance improvement is small.
Lastly, DPPO and IPL perform better than MR on only a
few tasks. We note that existing offline PbRL methods are
rarely better than MR when validated on our new dataset.

In contrast, LiRE shows a significant performance improve-
ment over MR except for the sweep task. We demon-
strate the importance of RLT and the linear score func-
tion by achieving high performance even when compared
to SeqRank, which is also not an independent pairwise
method. In addition, policies trained with preference data
outperform policies trained with GT rewards on the button-
press-topdown-wall task, suggesting that reward models
trained with preference data may be more effective, as
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Figure 2: Scatter plots of the estimated rewards for the
segments used for box-close task. The reward models are
trained with MR or LiRE using the exp or linear score func-
tion. The Pearson correlation coefficient, r, is presented.

also reported in prior works (Christiano et al., 2017; Kim
et al., 2022; An et al., 2023). The results of the Meta-
World medium-expert dataset and full learning curves
are shown in the Appendix A.

5.3. Ablation Studies of LiRE

5.3.1. FACTORS OF PERFORMANCE IMPROVEMENT

We conduct an ablation study to verify if the performance
improvement of LiRE is due to two factors: the linear score
function and the RLT construction. Table 3 demonstrates
that using the linear score function (bottom two rows) clearly
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Figure 3: Average success rates of each method while varying the number of preference feedbacks. The black dotted line
represents the average success rates when trained with GT reward.

Table 4: Average success rates of LiRE when adjusting the Q budget. We use a total of 500 preference feedbacks.

Dataset Q=1
(MR w/ linear) Q=2 Q=10 Q=20 Q=50 Q=100 Q=500 SeqRank

w/ linear

button-press-topdown 36.87 ± 13.75 59.47 ± 2.18 53.60 ± 10.82 65.13 ± 14.24 71.26 ± 12.95 67.20 ± 18.97 77.67 ± 18.13 54.87 ± 9.89

lever-pull 70.20 ±18.03 69.80 ± 3.79 70.47 ±18.19 92.7 ±7.16 93.4 ±7.90 95.67 ± 6.26 99.33 ± 1.18 74.33 ± 18.50

brings a significant performance improvement compared
to the default exponential score function (first two rows).
Additionally, the bottom two rows of Table 3 show that
constructing RLT improves performance by constructing the
preference list and exploiting the second-order information.
In particular, using the linear score function with RLT has a
synergistic effect, resulting in even greater improvement.

5.3.2. EFFECT OF RLT AND SCORE FUNCTION ON
REWARD ESTIMATION

We examine the estimated reward values of the learned re-
ward models. Figure 2 scatter plots the estimated rewards
(y-axis), learned with 500 preference feedbacks, of the seg-
ments in box-close task against the GT rewards (x-axis).
Note our LiRE uses fewer segments to train the reward
model, so Figure 2(b) contains fewer dots than Figure 2(a).
Each segment has a length of 25 and both GT and the esti-
mated rewards are normalized to values between [0, 25].

From the figure, we clearly observe that the estimated re-
wards in Figure 2(b) are more highly correlated than those
in Figure 2(a). Namely, by constructing the RLT, LiRE
exploits the second-order preference, and the high and low
reward segments are more clearly distinguished by the re-
ward estimates than vanilla MR. Additionally, when training
the reward model with the linear score function, there is a
larger gap in the estimated rewards within the reward region
for higher GT rewards, as shown in Figure 2(d). We spec-
ulate that using the linear score function and RLT makes
the estimated reward discern the optimal and suboptimal
segments (with respect to the GT rewards) more clearly,
hence, the policy learned with the estimated reward turns
out to perform much better.

5.4. Additional Analyses of LiRE

5.4.1. VARYING THE NUMBER OF FEEDBACKS

We evaluate how the performances of the offline PbRL al-
gorithms are affected by the number of feedbacks. Namely,
we measure the average success rate of the sweep-into,
box-close, and button-press-topdown-wall tasks of the
medium-replay dataset while varying the number of the
preference feedbacks from 50 to 2000. We note that most
previous works (Kim et al., 2022; Hejna & Sadigh, 2024;
An et al., 2023) using D4RL only use up to 500 preference
feedbacks. As shown in Figure 3, we observe that the typi-
cal baseline, MR with exponential score function (denoted
as MR w/ exp), cannot achieve a success rate higher than
50% for all three tasks even with 2000 preference feedbacks.
When we instead use the linear score function, we observe
that MR w/ linear performs much better than MR w/ exp,
but the success rates sometimes still remain to be low (e.g.,
box-close with 500 feedbacks and button-press-topdown-
wall for most of the times). In contrast, it is evident that
LiRE mostly surpasses the two baselines with large margins,
even with fewer number of preference feedbacks. Specif-
ically, for the button-press-topdown-wall task, LiRE with
only 100 feedbacks outperforms not only the baselines with
2000 feedbacks but also the policy learned using the GT
reward. Again, we can confirm that the high feedback ef-
ficiency enabled by RLT makes LiRE very effective even
with a smaller number of feedbacks.

5.4.2. VARYING Q BUDGET

In Section 4.1, we described that multiple RLTs can be con-
structed by putting the budget limit (Q) in order to increase
the sample diversity. In this subsection, we show the ef-
fect of Q. Table 4 shows the performance change of LiRE
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Figure 4: Robustness of LiRE w.r.t the feedback noise.

when varying the Q budget to 1, 2, 10, 20, 50, 100, and 500
while setting the total number of preference feedbacks to
500. Hence, for example, Q = 100 results in five lists, and
Q = 500 results in a single list. Table 4 also shows the
result of SeqRank (with linear score function). From the
table, we observe that since the utilization of the second-
order information increases with higher values of Q, the
offline PbRL performance correspondingly improves, as
expected. We also note that the performance of SeqRank
is similar to that of LiRE with Q = 2 since SeqRank cre-
ates approximately 2.3 groups in the ranked list, as detailed
in Table 5. This result indicates that SeqRank does not
fully utilize second-order preference due to only building
partially-ranked lists. A more in-depth comparison with
SeqRank is given in Section 5.4.5.

5.4.3. ROBUSTNESS TO FEEDBACK NOISE

If the preference feedback used in PbRL models human
preference labeling, it would be reasonable to assume that
the preference feedback may be noisy. To that end, we
experiment to assess the robustness of the offline PbRL per-
formance of LiRE with respect to the preference feedback
noise. We assume that the preference feedback can be noisy
with probability p (i.e., if li = 0 or 1, the label is flipped
to 1 − li with probability p, and for tie labels, we flip to
li = 0 or 1 with probability p/2, respectively). We varied
the noise probability p from 0 to 0.3, and Figure 4 compares
the success rates of MR w/ linear and LiRE. From the figure,
we confirm that the performance of LiRE does not drop as
severely as MR w/ linear when p increases. In particular, for
lever-pull task, we observe that LiRE with feedback noise
of p = 0.3 even results in a higher success rate than MR w/
linear with no noise, highlighting the robustness of LiRE
with respect to feedback noise.

5.4.4. IMPACT OF FEEDBACK GRANULARITY

In Figure 5, we compare the performance of LiRE based on
the threshold that determines the tie between the segments.
Specifically, we adjust the threshold value for the reward
difference that indicates whether two segments are equally
preferred. Namely, a higher threshold value means that
more segment pairs are labeled as equally preferred, result-
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Figure 5: Effect of the granularity of preference feedback.

Table 5: Comparison results between SeqRank and LiRE
on Meta-World medium-replay dataset.

# of
feedbacks Algorithm Avg

success rate
# of groups
in the list

Feedback
efficiency

Sample
diversity

500 SeqRank w/ linear 61.84 ± 15.80 2.3 ± 0.09 2.20 ± 0.78 1.002
LiRE 74.83 ± 12.23 9.3 ± 1.83 11.33 ± 3.39 0.474 ± 0.069

1000 SeqRank w/ linear 67.49 ± 13.56 2.3 ± 0.09 2.18 ± 0.75 1.001
LiRE 82.92 ± 6.48 9.3 ± 1.84 11.33 ± 3.28 0.474 ± 0.067

ing in less granular preference feedback. We note that the
threshold value used in Table 2 is 12.5 (see Appendix C.4
for details). Figure 5 shows that using a smaller threshold
(i.e., more granular feedback) improves the performance of
LiRE, while the performance becomes similar to that of MR
w/ linear (e.g., button-press-topdown task with threshold
25) when the threshold increases. Thus, we confirm that the
more granular preference labels generate additional second-
order preference information, which would positively affect
the performance of LiRE.

5.4.5. COMPARISON WITH SEQRANK

Here, we compare LiRE with SeqRank, which also utilizes
partially-ranked lists. We also employed the linear score
function for SeqRank since it gave better results than using
the exponential function and led to a fair comparison with
LiRE. We evaluate the average success rates of SeqRank
and LiRE on the Meta-World medium-replay dataset.
The experimental results in Table 5 show that LiRE clearly
achieves higher performance than SeqRank. We argue that
SeqRank does not fully utilize the second-order informa-
tion because SeqRank does not construct a fully-ranked
list. Indeed, the third column of Table 5 shows that the
number of groups in the ranked lists averages less than 3
with the SeqRank, whereas it increases to about 9 on aver-
age with LiRE. The last two columns of Table 5 compare
feedback efficiency and sample diversity. LiRE achieves a
sample diversity of approximately 0.47 through the use of
binary search, and the feedback efficiency increases signifi-
cantly to 11.33 by constructing RLT. Additionally, Table 6
shows the superiority of LiRE over SeqRank on the DM-
Control medium-replay dataset. We note SeqRank also
performs similarly to MR w/ linear on walker-walk and
humanoid-walk tasks, while LiRE achieves much higher
performance gains on all three tasks. Thus, we confirm that
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Table 6: Average episode returns of MR, SeqRank, and
LiRE on DMControl medium-replay dataset.

Algorithm hopper-hop walker-walk humanoid-walk

IQL with GT rewards 157.95 ± 9.64 839.6 ± 36.57 250.9 ± 11.62

MR w/ linear 53.96 ± 24.42 677.38 ± 88.14 84.35 ± 23.23

SeqRank w/ linear 80.84 ± 27.67 698.81 ± 91.71 80.68 ± 14.67

LiRE 99.14 ± 12.28 822.27 ± 50.83 104.08 ± 17.45
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Figure 6: Combining LiRE with other baselines.

constructing RLT and leveraging second-order preference is
effective for locomotion as well as manipulation tasks.

5.4.6. COMPATIBILITY WITH OTHER METHODS

To check the compatibility of LiRE with other methods, we
tested the performance of LiRE when combined with OPRL
and PT, respectively. First, to apply OPRL and LiRE si-
multaneously, we trained a reward model each time an RLT
was newly constructed, and then actively sampled based
on the disagreement of the reward models (following the
method of OPRL) when constructing the next RLT. In Fig-
ure 6(a), we observe that LiRE+OPRL outperforms LiRE
in sweep-into and lever-pull tasks but performs worse in
button-press-topdown task. This discrepancy suggests that
while the OPRL method enhances the consistency of the
reward model, it may lead to oversampling similar segments
that are challenging to distinguish depending on the task.
Second, as shown in Figure 6(b), LiRE does not necessarily
gain improvements when combined with PT. That is, since
PT was originally designed to capture temporal dependen-
cies of segments in reward modeling, it seems to struggle in
accurately capturing the second-order preference informa-
tion from RLT possibly due to overfitting to the sequence of
past segments.

5.5. Human Experiments

Table 7 presents the results with real human preference feed-
back on the new button-press-topdown offline RL dataset,
which is distinct from the dataset used in Table 2. Namely,
we collected 200 preference feedbacks from one of the au-
thors for each of the three feedback collection methods:
MR, SeqRank, and LiRE. For LiRE, we used the feedback
budget of Q = 100, resulting in two RLTs. The results
again indicate that LiRE dominates other baselines and gets
stronger when the linear score function is used. We believe
this result shows the potential of LiRE that it can be very

Table 7: Average success rates of a button-press-topdown
task with 200 of real human feedbacks.

ϕ(x) MR SeqRank LiRE

exp(x) 38.00 ± 8.85 40.93 ± 10.72 78.27 ± 6.59

x 43.33 ± 25.72 74.13 ± 9.96 90.67 ± 7.57

effective in practical scenarios with real human preference
feedback, as in LLM alignment.

6. Limitation
We believe there are two limitations of LiRE. First, LiRE
lacks the ability to parallelize the construction of RLT since
there are dependencies between the order in which feed-
backs are obtained to construct a fully-ranked list. Therefore,
in scenarios where parallel feedback collection is feasible,
constructing an RLT could be more time-consuming com-
pared to collecting preference feedbacks independently in
pairs. Nevertheless, the results presented in Appendix A.2
show that LiRE with only 200 feedbacks outperforms the
independent pairwise sampling method using 1000 feed-
backs, suggesting the importance of constructing RLT. Sec-
ond, LiRE relies on the transitivity assumption outlined
in Assumption 4.1. Although our experiments with feed-
back noise indicate LiRE’s robustness to noise that violates
this assumption, transitivity violations can occur even with
noiseless labels in real-world applications. This issue is
not unique to LiRE but affects other preference-based RL
methods as well. Addressing transitivity violation remains a
challenge for scalar reward models, so future research could
explore solutions by using multi-dimensional preference
feedback to construct RLTs for each dimension.

7. Concluding Remarks
In this paper, we propose a novel Listwise Reward Estima-
tion (LiRE) method for offline preference-based RL. While
obtaining second-order preference from a traditional frame-
work is challenging, we demonstrate that LiRE efficiently
exploits second-order preference by constructing an RLT
using ordinary, simple ternary feedback. Our experiments
demonstrate the significant performance gains achieved by
LiRE on our new offline PbRL dataset, specifically designed
to objectively reflect the effect of estimated rewards. No-
tably, the reward model trained with LiRE outperforms tra-
ditional pairwise feedback methods, even with fewer prefer-
ence feedbacks, highlighting the importance of second-order
preference information. Moreover, our findings suggest that
constructing ranked lists can be straightforward without
complex second-order preference feedback, indicating the
broad applicability of LiRE to more challenging tasks and
real-world applications.
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Impact Statement
We believe our LiRE can be potentially applied to align-
ing the RL agent with more fine-grained human intent and
preference. Such applications can bring significant societal
consequences by enhancing the precision and effectiveness
of AI systems in various fields such as health care and ed-
ucation. By ensuring that AI systems more closely reflect
and respond to the detailed intentions of their users, LiRE
has the potential to foster trust and acceptance of AI tech-
nologies, ultimately contributing to their more widespread
and ethical adoption.
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A. Additional Experimental Analysis of LiRE
A.1. Experimental Results on medium-expert Dataset

We summarize the experimental results on the Meta-World medium-expert dataset in Table 8. LiRE outperforms
significantly baselines for sweep and hammer tasks. While DPPO performs better than LiRE in the case of box-close task,
DPPO performs poorly compared to basic MR in other tasks.

Table 8: Average success rate of the algorithms on Meta-World medium-expert dataset over six random seeds. We use
500 and 1000 preference feedbacks and LiRE significantly outperforms the existing baselines.

# of feedback Algorithm box-close sweep hammer

- IQL with GT rewards 65.00 ± 9.98 85.33 ± 5.96 65.00 ± 11.36

500

MR 15.33 ± 6.99 42.67 ± 9.21 5.67 ± 6.97

PT (Kim et al., 2022) 2.33 ± 3.54 57.33 ± 8.92 1.67 ± 2.92

OPRL (Shin et al., 2022) 10.00 ± 9.87 30.00 ± 8.87 6.00 ± 4.62

DPPO (An et al., 2023) 41.00 ± 9.50 12.33 ± 8.44 8.00 ± 10.07

IPL (Hejna & Sadigh, 2024) 7.00 ± 9.50 15.33 ± 10.37 4.33 ± 4.23

SeqRank (Hwang et al., 2023) 10.73 ± 7.58 53.8 ± 18.21 4.6 ± 5.27

LiRE (ours) 25.26 ± 11.70 59.53 ± 26.92 50.20 ± 16.98

1000

MR 13.67 ± 11.57 50.00 ± 8.64 8.00 ± 8.25

PT (Kim et al., 2022) 13.00 ± 12.26 21.00 ± 15.44 1.33 ± 2.98

OPRL (Shin et al., 2022) 11.33 ± 6.80 44.33 ± 6.67 6.33 ± 5.47

DPPO (An et al., 2023) 42.67 ± 15.52 14.33 ± 13.19 5.33 ± 4.85

IPL (Hejna & Sadigh, 2024) 10.67 ± 6.90 16.67 ± 11.64 9.33 ± 9.14

SeqRank (Hwang et al., 2023) 13.4 ± 8.89 68.45 ± 14.26 21.27 ± 17.86

LiRE (ours) 27.53 ± 20.45 73.00 ± 25.68 41.66 ± 32.64

A.2. LiRE with Fewer Preference Feedbacks

If we have pre-collected independent pairwise preference data, MR can use the entire preference data. However, LiRE has
the disadvantage of requiring additional feedbacks between segments for constructing RLT. Nevertheless, Table 9 shows
the importance of RLT to obtain second-order preference. The performance of LiRE with 200 feedbacks is better than the
performance using 1000 independent pairwise feedbacks.

Table 9: Average success rates on Meta-World medium-replay dataset. We use 1000 preference feedbacks for MR and
200 preference feedbacks for LiRE.

# of
feedbacks Algorithm button-press

-topdown box-close dial-turn sweep button-press
-topdown-wall sweep-into drawer-open lever-pull

- IQL with GT rewards 88.33 ± 4.76 93.40 ± 3.10 75.40 ± 5.47 98.33 ± 1.87 56.27 ± 6.32 78.80 ± 7.96 100.00 ± 0.00 98.47 ± 1.77

1000 MR 9.27 ± 5.30 17.07 ± 9.56 59.07 ± 7.57 90.80 ± 9.74 0.60 ± 1.87 26.07 ± 8.57 96.47 ± 4.02 50.87 ± 10.89

200 LiRE 36.60 ± 16.30 60.33 ± 23.96 80.73 ± 10.53 76.87 ± 13.86 53.27 ± 24.12 39.33 ± 10.62 99.93 ± 0.36 81.47 ± 13.53

A.3. Training LiRE with Listwise Loss

Section 4.2 describes how to train the reward model with pairwise loss from constructed RLT. However, we can apply
listwise loss in addition to pairwise loss since a ranked list is constructed. In this section, we introduce how to train the
reward model with listwise loss. Suppose that we have n segments, (σ1, σ2, · · · , σn) and denote the rewards of the segments,(
r(σ1), r(σ2), · · · , r(σn)

)
. We assume the probability of permutation of n segments follows a Plackett-Luce (PL) model

(Plackett, 1975):

P (π) =

n∏
i=1

ϕ
(
r(σπi

)
)∑n

j=i ϕ
(
r(σπj

)
) (3)

where ϕ is an increasing and strictly positive function and π = (π1, π2, · · · , πn) is a permutation of (1, 2, · · · , n). Here,
P (π) is the probability distribution in which n segments are ranked in order of permutation π, indicating the likelihood of
segment σi being ranked πi-th.

Since we do not know the true probability of permutation, we set the score of the segment based on the ranks. Specifically,
given k ranks in the list, let s(σ) = (k + 1−m)R/k be the score of the segment σ that belongs to the m-th preferred rank
(i.e., σ ∈ gk+1−m) where m ∈ {1, · · · , k} and R is constant. In our implementation, the constant R is set to the maximum
boundary of the output of the reward model, which is bounded by [0, R] by the Tanh function.
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Our goal is to minimize the following objective:

DKL (Ps(π)∥Pθ(π)) = DKL

(
n∏

i=1

ϕ(s(σπi))∑n
j=i ϕ(s(σπj

))

∥∥∥∥∥
n∏

i=1

ϕ
(
rθ(σπi

)
)∑n

j=i ϕ
(
rθ(σπj )

)) . (4)

Since the number of permutations grows by n!, computing the permutation probability demands a high computational cost.
Thus, we minimize the following objective using the top one probability proposed by ListNet (Xia et al., 2008):

n∑
i=1

DKL (Ps(i)∥Pθ(i)) (5)

where

Ps(i) = Ps(π1 = i) =
ϕ(s(σi))∑n
j=1 ϕ(s(σj))

(6)

and

Pθ(i) = Pθ(π1 = i) =
ϕ(rθ(σi))∑n
j=1 ϕ(rθ(σj))

. (7)

We train the reward model by sampling n = 10 segments from the RLT at each gradient descent. Table 10 compares the
performance of LiRE trained with listwise and pairwise losses. As shown in Table 10, training the reward model with
pairwise loss is more stable and performs better in most cases, except for sweep and sweep-into tasks.

Table 10: Average success rates on medium-replay dataset when using the listwise loss for training the reward model.

# of
feedbacks Algorithm button-press

-topdown box-close dial-turn sweep button-press
-topdown-wall sweep-into drawer-open lever-pull

- IQL with GT rewards 88.33 ± 4.76 93.40 ± 3.10 75.40 ± 5.47 98.33 ± 1.87 56.27 ± 6.32 78.80 ± 7.96 100.00 ± 0.00 98.47 ± 1.77

500 LiRE w/ listwise 53.13 ± 10.63 55.07 ± 16.11 63.87 ± 8.39 99.53 ± 1.12 17.73 ± 11.51 63.47 ± 11.47 98.60 ± 3.27 84.53 ± 10.33

LiRE w/ pairwise 67.20 ± 18.97 51.53 ± 18.48 79.07 ± 10.96 77.53 ± 10.50 79.13 ± 15.19 49.13 ± 15.85 99.40 ± 1.65 95.67 ± 6.26

1000 LiRE w/ listwise 55.73 ± 8.57 68.07 ± 9.06 68.20 ± 9.37 99.07 ± 1.44 23.93 ± 7.31 62.60 ± 12.21 99.40 ± 2.08 83.80 ± 7.97

LiRE w/ pairwise 83.07 ± 6.38 89.13 ± 6.02 76.93 ± 7.55 75.87 ± 6.81 81.47 ± 10.04 57.73 ± 13.11 99.73 ± 0.85 99.47 ± 1.15

A.4. Increasing Epochs of Reward Model Training

As described in Appendix C.5, the epochs experimented with in Table 2 is 300. Table 11 shows the performance when we
increase the epochs to 5000. Both MR and LiRE tend to perform better with more epochs, but LiRE still performs better than
MR. The performance gap between using the exponential score function and the linear score function for LiRE is smaller at
5000 epochs than at 300 epochs. However, when the epoch is 5000, the linear score function has a significant performance
improvement on the dial-turn and button-press-topdown-wall tasks and performs better or similar to the exponential score
function on other tasks.

Table 11: Average success rates on Meta-World medium-replay dataset with increased epochs. There is a performance
improvement when training with longer epochs.

Epochs Algorithm button-press
-topdown box-close dial-turn sweep button-press

-topdown-wall sweep-into drawer-open lever-pull

- IQL with GT rewards 88.33 ± 4.76 93.40 ± 3.10 75.40 ± 5.47 98.33 ± 1.87 56.27 ± 6.32 78.80 ± 7.96 100.00 ± 0.00 98.47 ± 1.77

300
MR 9.60 ± 5.74 10.33 ± 8.23 50.20 ± 8.51 79.80 ± 13.36 0.13 ± 0.50 24.80 ± 5.28 98.07 ± 3.20 50.53 ± 8.55

LiRE w/ exp 12.87 ± 7.86 22.73 ± 10.40 65.87 ± 9.46 82.67 ± 19.86 1.33 ± 2.15 24.87 ± 8.39 98.67 ± 1.89 57.87 ± 11.28

LiRE w/ linear 67.20 ± 18.97 51.53 ± 18.48 79.07 ± 10.96 77.53 ± 10.50 79.13 ± 15.19 49.13 ± 15.85 99.40 ± 1.65 95.67 ± 6.26

5000
MR 32.87 ± 9.94 31.80 ± 12.65 60.33 ± 8.34 93.5 ± 6.61 25.40 ± 10.25 36.00 ± 9.58 98.00 ± 4.00 75.93 ± 6.46

LiRE w/ exp 68.33 ± 16.33 83.13 ± 10.36 77.53 ± 6.25 91.87 ± 7.02 36.80 ± 14.17 59.53 ± 14.99 99.93 ± 0.36 79.47 ± 8.61

LiRE w/ linear 77.27 ± 13.52 76.6 ± 17.16 88.33 ± 5.49 87.6 ± 15.45 77.27 ± 13.52 60.67 ± 11.96 97.07 ± 5.63 83.4 ± 6.43

A.5. Applying a Linear Score Function to Other Baselines

Many existing studies utilize the exponential score function for PbRL using human feedback (Christiano et al., 2017; Lee
et al., 2021b). Nevertheless, numerous other score functions are also prevalent in the PbRL literature such as Table 1 in
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the survey paper of PbRL (Wirth et al., 2017). Additionally, (Song et al., 2024) have demonstrated that alternative score
functions are effective in RLHF. We also present the performance of baselines using the linear score function instead of
the exponential function across four Meta-World medium-replay tasks in Table 12. Table 12 reveals that LiRE, when
utilizing the linear score function, surpasses all other baselines, even when these baselines also use the linear score function.
For PT or DPPO, there is no performance improvement when using a linear score function. We leave it as future work to
analyze which score functions are effective depending on the model structure or training method.

Table 12: Average success rates when applying the linear and exponential score functions to the baselines.

Task ϕ(x) MR PT OPRL DPPO SeqRank LiRE

button-press-topdown exp(x) 9.60 ± 5.74 22.87 ± 9.06 12.13 ± 5.75 3.93 ± 4.34 20.00 ± 3.54 12.87 ± 7.86

x 36.87 ± 13.75 17.33 ± 10.7 30.00 ± 7.21 1.33 ± 2.31 54.87 ± 9.89 67.20 ± 18.97

box-close exp(x) 10.33 ± 8.23 0.33 ± 1.16 4.73 ± 3.24 10.20 ± 11.47 26.8 ± 3.47 22.73 ± 10.40

x 11.27 ± 14.91 1.33 ± 2.31 47.33 ± 39.71 3.33 ± 4.16 46.67 ± 36.49 51.53 ± 18.48

dial-turn exp(x) 50.20 ± 8.51 68.67 ± 12.39 54.33 ± 11.47 26.67 ± 22.23 62.27 ± 5.97 65.87 ± 9.46

x 77.27 ± 11.9 56.67 ± 10.87 71.33 ± 9.87 22.0 ± 21.07 59.80 ± 17.73 79.07 ± 10.96

lever-pull exp(x) 50.53 ± 8.55 82.40 ± 22.69 96.0 ± 4.00 10.13 ± 12.19 97.07 ± 1.80 57.87 ± 11.28

x 70.20 ± 18.03 78.8 ± 13.87 86.67 ± 12.2 4.00 ± 5.67 74.33 ± 18.50 95.67 ± 6.26

A.6. Online PbRL

Figure 7 depicts the experimental results of online PbRL. We compare the online PbRL performance by using a linear score
function and an exponential score function. The increase in performance when using the linear score function suggests that
the BT model using the exponential score function may not be the optimum choice for PbRL. We used the code implemented
in PEBBLE (Lee et al., 2021b).
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Figure 7: Learning curves on online PbRL experiments. Using linear score function in online PbRL improves performance.

B. Details of the Main Experimental Results
B.1. Full Learning Curves of Each Method

Full learning curves for the Meta-World medium-replay dataset are shown in Figure 8 and for the Meta-World
medium-expert dataset are shown in Figure 9. We plot the results for MR, PT (Kim et al., 2022), OPRL (Shin
et al., 2022), DPPO (An et al., 2023), IPL (Hejna & Sadigh, 2024), and LiRE. The average success rates reported in Table 2
are obtained with the last 5 trained policies. Although the performance of LiRE for the medium-replay sweep task is
relatively low, the full learning curve shows that the performance of the best-trained policy is competitive.

B.2. Ablation Study of LiRE

We evaluate the success rate by the following: (1) with MR or with LiRE and (2) exponential or linear score function.
Table 13 shows that both constructing RLT and using linear function improve offline PbRL performance.

B.3. Effect of RLT and Score Function on Reward Estimation

Similar to Figure 2, in button-press-topdown task, Figure 10 shows that constructing RLT and using a linear score function
can better distinguish the rewards between segments with relatively high preference.
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Figure 8: Full learning curves of baselines and LiRE for the Meta-World medium-replay dataset. We use 500 and 1000
preference feedbacks and LiRE significantly outperforms existing algorithms for many tasks.

B.4. Comparison with SeqRank

Table 14 shows the success rate of each task in Table 5. SeqRank (Hwang et al., 2023) improves feedback efficiency but
constructs a shorter length of the ranked list, so LiRE is better at utilizing second-order preference.

C. Experimental Details
C.1. RLT Construction

To construct RLT, We can use any sorting method such as binary insertion sort, mergesort, or quicksort. However, if the RLT
is already partially constructed, a binary insertion sort is an efficient way to find the rank of each segment. The pseudocode
for the binary insertion sort we use to construct the RLT is summarized in Algorithm 1.
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Figure 9: Full learning curves of baselines and LiRE for the Meta-World medium-expert dataset. We use 500 and 1000
preference feedbacks. LiRE significantly outperforms existing algorithms for sweep and hammer tasks.

Table 13: Average success rates on Meta-World medium-replay dataset with 500 preference feedbacks. We train the
reward model with MR or LiRE using exponential or linear score functions.

Task ϕ(x) = exp(x) ϕ(x) = x
MR LiRE MR LiRE

button-press-topdown 9.60 ± 5.74 12.87 ± 7.86 36.87 ± 13.75 67.20 ± 18.97

box-close 10.33 ± 8.23 22.73 ± 10.40 11.27 ± 14.91 51.53 ± 18.48

dial-turn 50.20 ± 8.51 65.87 ± 9.46 77.27 ± 11.90 79.07 ± 10.96

sweep 79.80 ± 13.36 82.67 ± 19.86 78.47 ± 10.88 77.53 ± 10.50

button-press-topdown-wall 0.13 ± 0.50 1.33 ± 2.15 8.27 ± 8.64 79.13 ± 15.19

sweep-into 24.80 ± 5.28 24.87 ± 8.39 49.73 ± 13.52 49.13 ± 15.85

drawer-open 98.07 ± 3.20 98.67 ± 1.89 97.20 ± 5.88 99.40 ± 1.65

lever-pull 50.53 ± 8.55 57.87 ± 11.28 70.20 ± 18.03 95.67 ± 6.26
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Figure 10: Estimated rewards for the segments used in preference learning for box-close task. We train the reward model
with MR or LiRE using the exp or linear score function. The Pearson correlation coefficient, r is presented.

C.2. Creating Offline PbRL Dataset

Following offline RL data collection approach, we collect offline RL data from different policies in two ways:
medium-replay dataset and medium-expert dataset.

medium-replay dataset We use the replay buffer collected while training online RL as an offline RL dataset. We train
with 3 seeds using the online SAC (Haarnoja et al., 2018) implemented in PEBBLE (Lee et al., 2021b) with ground-truth
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Table 14: Average success rate and the number of ranks in the list of SeqRank and LiRE.

Task
Number of feedacks

500 1000
SeqRank w/ linear LiRE SeqRank w/ linear LiRE

button-press-topdown 54.87 ± 9.89 67.20 ± 18.97 60.13 ± 11.43 83.07 ± 6.38

box-close 46.67 ± 36.49 51.53 ± 18.48 65.00 ± 32.90 89.13 ± 6.02

dial-turn 59.80 ± 17.73 79.07 ± 10.96 45.67 ± 16.47 76.93 ± 7.55

sweep 86.33 ± 8.25 77.53 ± 10.50 94.27 ± 3.92 75.87 ± 6.81

button-press-topdown-wall 24.07 ± 16.39 79.13 ± 15.19 37.07 ± 16.96 81.47 ± 10.04

sweep-into 48.80 ± 18.72 49.13 ± 15.85 61.53 ± 13.57 57.73 ± 13.11

drawer-open 99.87 ± 0.50 99.40 ± 1.65 100.00 ± 0.00 99.73 ± 0.85

lever-pull 74.33 ± 18.50 95.67 ± 6.26 76.27 ± 13.27 99.47 ± 1.15

Avg success rate 61.84 ± 15.80 74.83 ± 12.23 67.49 ± 13.56 82.92 ± 6.48

Avg # of ranks in the list 2.3 ± 0.09 9.3 ± 1.83 2.3 ± 0.09 9.3 ± 1.84

rewards. We stop collecting replay buffers when the average success rate of the online RL’s performance is near 50. (For the
DMControl dataset, collect until the episode returns are about in the middle of the convergence value.) We measure the
online RL performance every 50,000 steps, so depending on the training speed of the online RL, the average success rate of
the online RL may be less or more than 50 at the end of the replay buffer collection. Table 15 shows the average success rate
when the collection of the replay buffers ends.

Table 15: Average success rate of online RL when replay buffer collection ends.

button-press-topdown button-press-topdown-wall box-close dial-turn
47.0 36.0 46.0 49.3

sweep-v2 sweep-into drawer-open lever-pull
32.0 55.3 61.3 78.0

medium-expert dataset We collect medium-expert dataset following approaches by prior works (Hejna & Sadigh,
2024; Zhang, 2023): collect 50 trajectories from the expert policy provided by Meta-World (Yu et al., 2020), collect 50
trajectories from the expert policy for a different randomized object and goals positions, collect 100 trajectories from the
expert policy for a different task out of 50 Meta-World tasks, collect 200 trajectories from a random policy, and finally,
collect 200 trajectories from the ϵ-greedy policy that samples an action from the expert policy with 50% probability and
from the random policy with the remaining 50% probability. We also add Gaussian noise with a mean of 0 and a standard
deviation of 1 for each policy.

C.3. RL Performance between GT Reward and Wrong Rewards

For each dataset, we verify that there is a difference in RL performance when trained with GT reward versus wrong rewards
because if offline RL achieves high performance with wrong rewards, the dataset is not appropriate for offline PbRL. We use
the three wrong rewards chosen by (Li et al., 2023): zero rewards, where all rewards r(s, a) = 0; random rewards, where all
reward values are sampled from a uniform distribution U(0, 1); and negative rewards, set to −r(s, a). The performance of
offline RL with GT reward and wrong rewards on each dataset is shown in Table 16 and Table 17.

C.4. Preference Label

We set the length of segment σ used in the preference label to 25, denoted as T = 25 in σ = (s0, a1, · · · , sT−1, aT−1). We
use the GT reward to label the preference between segment pairs. Considering that GT reward in Meta-World ranges from
0 to 10, segments with GT reward differences less than 12.5 are labeled as equally preferred segments. This threshold is
equivalent to the threshold provided by B-pref (Lee et al., 2021a), which is used as an online PbRL benchmark, when the
policy has an average return of 5 (that is, medium performance).

C.5. Hyperparameters

Reward model The reward model used in our method and the standard pairwise PbRL and MR reward model use the same
reward model structure. We ensemble three reward models and finally predicted the reward in the offline RL dataset by
averaging the estimated reward values from the three reward models. The details of the hyperparameters are shown in
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Algorithm 1 RLT Construction

function BINARYSEARCH (σ,low,high, L) :
if low = high then

insert a new group {σ} to L right behind to glow+1

(i.e., glow ≺ {σ} ≺ glow+1)
else

/* Human Feedback */
compare σ to σs ∈ gmid where mid =

⌈
low+high

2

⌉
if σs ≺ σ then

BINARYSEARCH(σ,mid,high, L)
else if σ ≺ σs then

BINARYSEARCH(σ,low,mid− 1, L)
else
gmid ← gmid ∪ {σ}

Init: List L = [ ]
repeat

sample σ1, σ2, · · · ∈ Ds

if L is empty then
L← [{σi}]

else
BINARYSEARCH(σi, 0, l, L)

until end of feedback
Output: L

Table 16: Average success rate of each dataset on GT rewards and wrong rewards with IQL (Kostrikov et al., 2021).

Task GT Zero Random Negative

medium-replay dataset

button-press-topdown 88.33 ± 4.76 12.07 ± 5.76 13.00 ± 5.36 0.00 ± 0.00

box-close 93.40 ± 3.10 0.53 ± 0.88 0.13 ± 0.50 0.13 ± 0.50

dial-turn 75.40 ± 5.47 16.07 ± 6.44 13.93 ± 7.70 2.40 ± 3.32

sweep 98.33 ± 1.87 0.20 ± 0.60 0.40 ± 0.80 0.00 ± 0.00

button-press-topdown-wall 56.27 ± 6.32 1.67 ± 1.64 1.13 ± 1.77 0.00 ± 0.00

sweep-into 78.80 ± 7.96 24.73 ± 7.26 23.40 ± 7.23 0.07 ± 0.36

drawer-open 100.00 ± 0.00 25.67 ± 10.65 22.33 ± 11.66 0.00 ± 0.00

lever-pull 98.47 ± 1.77 1.27 ± 1.50 1.20 ± 1.51 0.00 ± 0.00

medium-expert dataset
box-close 65.00 ± 9.98 3.67 ± 4.68 2.67 ± 3.77 1.00 ± 1.53

sweep 85.33 ± 5.96 5.00 ± 10.31 2.00 ± 3.65 0.00 ± 0.00

hammer 65.00 ± 11.36 2.33 ± 5.22 1.67 ± 3.73 1.33 ± 2.21

Table 17: Episode returns of each DMControl medium-replay dataset on GT rewards and wrong rewards with IQL
(Kostrikov et al., 2021).

Task GT Zero Random Negative

hopper-hop 157.95 ± 9.64 18.9 ± 7.5 19.79 ± 7.47 0.01 ± 0.02

walker-walk 839.6 ± 36.57 189.58 ± 28.15 234.14 ± 37.22 28.79 ± 2.2

humanoid-walk 250.9 ± 11.62 60.36 ± 10.56 65.13 ± 10.16 1.38 ± 0.21

Table 18.

In our experiments, MR, PT, and OPRL are two-step PbRL methods that first train the reward model and learn the offline
RL with the trained reward model. We use the trained reward model to estimate the reward for every (s, a) in the offline RL
dataset and apply min-max normalization to the reward values in the dataset so that the minimum and maximum values are 0
and 1. We also apply min-max normalization to the experiments with GT rewards and wrong rewards for a fair comparison.

Implementation details We choose IQL for the default offline RL algorithm and CORL (Tarasov et al., 2023) for the
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implementation code1. We use IQL because it is the default offline RL algorithm in previous offline PbRL papers, and IQL
is also one of the strongest offline algorithms according to CORL. We use the same hyperparameters that were used to train
Gym-MuJoCO in CORL. For PT, we follow their implementation2 for the training reward model and use the CORL library
for training offline RL. We follow the official implementations of DPPO3 and IPL4 with the hyperparameters they use in the
Gym-MuJoCo and Metaworld dataset. The hyperparameters for each baseline, including IQL, are listed in Table 18. The
total number of gradient descent steps in the offline RL is 250,000 and we evaluate the success rate for 50 episodes every
5000 steps. We run six seeds for all baselines and our method. We then report the average success rate of the last 5 trained
policies. We use a single NVIDIA RTX A5000 GPU and 32 CPU cores (AMD EPYC 7513 @ 2.60GHz) in our experiments.

1https://github.com/tinkoff-ai/CORL
2https://github.com/csmile-1006/PreferenceTransformer
3https://github.com/snu-mllab/DPPO
4https://github.com/jhejna/inverse-preference-learning
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Table 18: Hyperparameters of the reward model and the baselines.

Hyperparameter Value

Reward model

Optimizer Adam (Kingma & Ba, 2014)
Learning rate 1e-3
Batch size 512
Q 100
Hidden layer dim 128
Hidden layers 3
Activation function ReLU
Final activation Tanh
Epochs 300
# of ensembles 3
Reward from the ensemble models Average

IQL (Kostrikov et al., 2021)

Optimizer Adam (Kingma & Ba, 2014)
Critic, Actor, Value hidden dim 256
Critic, Actor, Value hidden layers 2
Critic, Actor, Value activation function ReLU
Critic, Actor, Value learning rate 0.5
Mini-batch size 256
Discount factor 0.99
β 3.0
τ 0.7

PT (Kim et al., 2022)

Optimizer AdamW (Loshchilov & Hutter, 2018)
# of layers 1
# of attention heads 4
Embedding dimension 256
Dropout rate 0.1

IPL (Hejna & Sadigh, 2024)

Optimizer Adam (Kingma & Ba, 2014)
Regularization λ 3e-4
Q,V, π arch 3x256d
β 4.0
τ 0.7
Subsample s 16

DPPO (An et al., 2023)

Preference predictor The same as PT (Kim et al., 2022)
Smoothness regularization ν 1.0
Smoothness sigma m 20
Regularization λ 0.5

OPRL (Shin et al., 2022)

# of ensembles 7
Initial preference labels 30% of feedback budget
Every 50 epochs 10% of feedback budget
Total epochs 500
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