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1 Pretraining data1

Molecular dataset The pretraining datasets we use consist of two parts: one part is a database2

collection of 12 million molecules that can be synthesized and purchased (See Table 1), and the3

other part is taken from a previous work [1], whose molecules are collected from the ZINC [2]4

and ChemBL [3] databases. After normalizing and duplicating, we obtain 19 million molecules as5

our pretraining dataset. For each molecule, we add random conformer augmentations with ten 3D6

conformers generated by RDKit and one 2D graph to avoid ETKDG patterns missing match.7

Candidate protein pocket dataset The pretraining dataset for candidate protein pockets is derived8

from the Protein Data Bank (RCSB PDB 1) [4], a collection of 180K structural data of proteins. We9

first pre-process the raw data by adding missing side chains and hydrogen atoms, and then we use10

Fpocket [5] to detect candidate binding pockets of the proteins. After filtering the raw pockets by the11

number of residues they have contact with (10~25) and including water molecules inside the pockets,12

we collect a pretraining dataset of 3,291,739 candidate pockets.13

2 Downstream data supplements14

Molecular property prediction We conduct experiments on the MoleculeNet[6] benchmark in the15

molecular property prediction task. MoleculeNet is a widely used benchmark for molecular property16

prediction. The details of the 15 datasets we used are described below.17

• BBBP Blood-brain barrier penetration (BBBP) contains the ability of small molecules to penetrate18

the blood-brain barrier.19

• BACE This dataset contains the results of small molecules as inhibitors of binding to human20

β-secretase 1 (BACE-1).21

• ClinTox This dataset contains the toxicity of the drug in clinical trials and the status of the drug for22

FDA approval[7].23

• Tox21 The dataset contains toxicity measurements of 8k molecules for 12 targets.24

• ToxCast This dataset is derived from toxicology data from in vitro high-throughput screening and25

contains toxicity measurements for 8k molecules against 617 targets.26

• SIDER The Side Effect Resource (SIDER) contains side effects of drugs on 27 system organs.27

These drugs are not only small molecules but also some peptides with molecular weights over28

1000.29

• HIV This dataset contains 40k compounds with the ability to inhibit HIV replication.30

1http://www.rcsb.org/
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Table 1: Database collection of 12M purchasable molecules
Database Molecules Link

Targetmol 10,000 https://www.targetmol.com/
Chemdiv 1,613,931 https://www.chemdiv.com/
Enamine 2,734,581 https://enamine.net/
Chembridge 1,557,942 https://www.chembridge.com/
Life Chemical 509,975 https://lifechemicals.com/
Specs 208,670 https://www.specs.net/
Vitas-M 1,409,339 https://vitasmlab.biz/
InterBioScreen 48,627 https://www.ibscreen.com/
Maybridge 53,352 https://www.thermofisher.in/
Bionet-Key Organics 259,244 https://www.keyorganics.net/
Asinex 530,881 https://www.asinex.com/
UkrOrgSynthesis 688,952 https://uorsy.com/
Eximed 61,009 https://eximedlab.com/
HTS Biochemie Innovationen 58,437 https://www.hts-biochemie.de/
Princeton BioMolecular 1,532,542 https://princetonbio.com/
Otava 270,835 https://otavachemicals.com/
Alinda Chemical 202,332 https://www.alinda.ru/
Analyticon 42,664 https://www.analyticon-diagnostics.com/

• PCBA PubChem BioAssay (PCBA) is a database of small molecule bioactivities generated by31

high-throughput screening. This is a subset containing over 400k molecules on 128 bioassays.32

• MUV Maximum Unbiased Validation (MUV) is another subset of PubChem BioAssay, containing33

90k molecules and 17 bioassays.34

• ESOL This dataset contains the water solubility of the compound and is a small dataset with 112835

molecules.36

• FreeSolv The dataset contains hydration free energy data for small molecules, of which we use the37

experimental values as labels.38

• Lipo Lipophilicity contains the solubility of small molecules in lipids, of which we use the39

octanol/water distribution coefficient as the label.40

• QM7, QM8, QM9 The molecule in QM7 contains up to 7 heavy atoms, QM8 is 8 and QM9 is41

9. These datasets provide the geometric, energetic, electronic and thermodynamic properties of42

the molecule, which are calculated by density functional theory (DFT)[8]. QM9 contains several43

quantum mechanical properties of different quantitative ranges, and we select homo, lumo and gap44

of similar quantitative range, following the setup of the previous work[9].45

Molecular corformation generation Following the settings in previous works [10, 11], we use46

GEOM-QM9 and GEOM-Drugs [12] dataset in this task.47

• GEOM This dataset contains 37 million accurate conformations generated for 450,000 molecules48

by advanced sampling and semi-empirical density flooding theory (DFT). Of these, 133,00049

molecules are from QM9, and the remaining 317,000 molecules have biophysical, physiological,50

or physical chemistry experimental data, i.e., Drugs.51

Pocket property prediction NRDLD [13] is a benchmark dataset for pocket druggability prediction.52

As NRDLD and other existing benchmark datasets are too small, we construct a regression dataset to53

benchmark pocket property prediction performance.54

• NRDLD NRDLD contains 113 proteins, and a predefined split is provided: 76 proteins constitute55

the training set and 37 proteins constitute the test set. It labels 71 proteins as druggable in that they56

noncovalently bind small drug-like ligands [14]. The rest 42 proteins are labeled as less-druggable57

because none of the ligands they cocrystallized satisfy the following requirements simultaneously:58

the rule of five, clogP ≥ -2, and ligand efficiency, as defined in [15], ≥ 0.3 kcal mol−1 / heavy59

atom.60

• Our created benchmark dataset The dataset contains 164,586 candidate pockets, and Fpocket61

scores each one of them on Fpocket Score, Druggability Score, Total SASA, and Hydrophobicity62
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Table 2: Uni-Mol hyperparameters setup during pre-training
Hyperparameter Molecular pretraining Pocket pretraining

Layers 15 15
Peak learning rate 1e-4 1e-4
Batch size 128 128
Max training steps 1M 1M
Warmup steps 10K 10k
Attention heads 64 64
FFN dropout 0.1 0.1
Attention dropout 0.1 0.1
Embedding dropout 0.1 0.1
Weight decay 1e-4 1e-4
Embedding dim 512 512
FFN hidden dim 2048 2048
Gaussian kernel channels 128 128
Mask ratio 0.15 0.15
Coordinate noise Uniform [-1 Å, 1 Å] Uniform [-1 Å, 1 Å]
Activation function GELU GELU
Learning rate decay Linear Linear
Adams ϵ 1e-6 1e-6
Adams (β1, β2) (0.9, 0.99) (0.9, 0.99)
Gradient clip norm 1.0 1.0
Atom loss function and its weight Cross entropy, 1.0 Cross entropy, 1.0
Coordinate loss function and its weight Smooth L1, 5.0 Smooth L1, 1.0
Distance loss function and its weight Smooth L1, 10.0 Smooth L1, 1.0
Max number of atoms 256 256
Vocabulary size (atom types) 30 9

Score. These four scores are indicators of the druggability of candidate pockets. To avoid leaking,63

the selected pockets are not overlapped with the candidate protein pocket dataset used in Uni-Mol64

pretraining.65

Protein-ligand binding pose prediction We use PDBbind General set v.2020 [16], excluding66

the complexes in CASF-2016 [17], as the training set. And CASF-2016 is used as the test set. In67

particular, we define the pocket for each protein-ligand pair as residues of the protein which have at68

least one atom within the range of 6Å from a heavy atom in the ligand. All atoms of the selected69

residues are included. In addition, we draw the smallest bounding box covering all of the atoms in70

the pocket and regard the water molecules in the bounding box as a part of the pockets, too.71

• PDBbind General set v.2020 This dataset contains 19,443 protein-ligand complexes with binding72

data and processed structural files originally from the Protein Data Bank (PDB). Only complexes73

with experimentally determined binding affinity data are included in the general set.74

• CASF-2016 CASF-2016 is the widely used benchmark for docking and scoring. This dataset,75

whose primary test set is known as the PDBbind Core set, contains 285 protein-ligand complexes76

with high quality crystal structures and reliable binding constants from PDBbind General set. For77

each protein-ligand complex, CASF-2016 provides 50~100 decoy molecular conformations of the78

same ligand for evaluation.79

3 Experiments details & reproduce80

Molecular Pretraining setup We report the detailed hyperparameters setup of Uni-mol during81

pretraining in Table 2. Uni-Mol training loss is summed up by three components, atom(token) loss,82

coordinate loss, and pair-distance loss. Atoms are masked, and noise is added to coordinate as83

described in sections 2.1 and 2.2. Since the values of the above three components differ significantly,84

to make them have a similar influence, we enlarge the coordinate loss and distance loss.85

Pocket Pretraining setup The pocket Uni-Mol model is slightly different from molecule ones86

during pretraining: 1) We use a residue-level masking strategy instead of the original atom-level, as87
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Table 3: Search space for small datasets: BBBP, BACE, ClinTox, Tox21, Toxcast, SIDER, ESOL,
FreeSolv, Lipo, QM7, QM8, for large datasets: PCBA, MUV, QM9, and for HIV

Hyperparameter Small Large HIV

Learning rate [5e-5, 1e-4, 4e-4, 5e-4] [2e-5, 1e-4] [2e-5, 5e-5]
Batch size [32, 64, 128, 256] [128, 256] [128, 256]
Epochs [40 ,60, 80, 100] [20, 40] [2, 5, 10]
Pooler dropout [0.0, 0.1, 0.2, 0.5] [0.0, 0.1] [0.0, 0.2]
Warmup ratio [0.0, 0.06, 0.1] [0.0, 0.06] [0.0, 0.1]

Table 4: Hyperparameters setup for molecular conformation generation
Learning rate 1e-4
Batch size 8
Epochs 5
Warmup ratio 0.06
Coordinate loss function and weight MSE, 1.0
Distance loss function and weight MSE, 1.0

residue granularity is non-redundancy and integrity in protein. 2) Only polar hydrogen is remained in88

pocket Uni-Mol pretraining, to reduce the number of used atoms and thus improve efficiency. 3) All89

weights of loss functions are set 1, as the residue-level masking strategy makes the 3D denoising task90

much harder. Other settings are listed in Table 2.91

Molecular property prediction92

• Data split In our experiments, referring to previous work GEM[9], we use scaffold splitting[18]93

to divide the dataset into training, validation, and test sets in the ratio of 8:1:1. Scaffold splitting94

is more challenging than random splitting as the scaffold sets of molecules in different subsets95

do not intersect. This splitting tests the model’s generalization ability and reflects the realistic96

cases[6]. Since this splitting is according to the scaffold of the molecule, we find that whether or97

not chirality is considered when generating the scaffold using RDKit has a significant impact on98

the division results. From the results, the splitting considering chirality makes the task harder. The99

original implementation of MolCLR does not consider chirality, and we reproduce the experiment100

by considering it. In all experiments, we choose the checkpoint with the best validation loss, and101

report the results on the test-set run by that checkpoint.102

• Hyperparameter search space Referring to previous works, we use a grid search to find the best103

combination of hyperparameters for the molecular property prediction task. To reduce the time104

cost, we set a smaller search space for the large datasets. The specific search space is shown in105

Table 3.106

Molecular conformation generation We report the detailed hyperparameters setup for molecular107

conformation generation in Table 4. Since this is a 3D-related task, we only use coordinate loss and108

distance loss.109

• Data details We leverage RDKit (ETKGD) for generating inputs in molecular conformation110

generation tasks. Specifically, in finetuning, we randomly generate 100 conformations and cluster111

them into 10 conformations, as the model input. A similar pipeline is used in the inference of test112

data. For most baselines, as they aim to generate conformations from scratch, RDKit-generated113

conformations are not leveraged. We do not check whether any molecules exist in both pretraining114

data set and test set of molecular generation. As the same input conformation generation method115

is used in pretraining and finetuning, and the label of the test set is the accurate conformation116

generated by semi-empirical density functional theory (DFT)[12], we believe there is no data117

leakage in the test set.118

Pocket property prediction The hyperparameters we search are listed in Table 5.119

• Fpocket Score and Druggability Score. Fpocket tool[5] will output 4 scores, Fpocket score,120

Druggability score, Total SASA, and Hydrophobicity Score. We call these 4 scores Fpocket scores121
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Table 5: Search space for pocket property prediction
Hyperparameter NRDLD Fpocket Scores

Learning rate [5e-5, 1e-4, 3e-4] 3e-4
Batch size [1, 2, 4, 8, 16] 32
Epochs 40 20
Pooler dropout [0, 0.1, 0.2, 0.3] 0
Warmup ratio [0.0, 0.1] 0.1

Table 6: Performance of Fpocket tool on NRDLD
Accuracy Recall Precision F1-score

Fpocket score 0.73 0.83 0.76 0.79
Druggability Score 0.78 0.83 0.83 0.83

(an "s" here). Specifically, the Fpocket score is a custom score by Fpocket; the druggability score is122

an empirical score calculated from evolution and homologous information. Besides, to verify the123

effectiveness of the Fpocket tool on real world data, we test this tool on NRDLD. Table6 shows the124

performance of Fpocket tool on NRDLD dataset.125

Protein-ligand binding pose prediction126

• Data split The training set is PDBbind General set v.2020 excluding the complexes covered by127

CASF-2016. We perform data preprocessing, such as adding missing atoms to both proteins128

and ligands and manually fixing file-loading errors, before constructing the training set. And we129

additionally filter the complexes based on the number of residues contained in the pockets (>= 5130

), resulting in a training set of 18k protein-ligand complexes. The test set is CASF-2016, which131

contains 285 protein-ligand complexes.132

• Binding pose model architecture As shown in Figure 1, the binding pose model is an encoder-133

decoder architecture consisting of two 15 layers Uni-Mol as encoder and a 4 layers Uni-Mol as134

decoder. The decoder Uni-Mol block follows the same setting as the pretraining ones.135

• Scoring function To evaluate the docking power of our proposed Uni-Mol model, we construct a136

scoring function, composed of cross distance loss and self-distance loss, out of Uni-Mol. Cross137

distance loss evaluates the atom-wise distance between atoms on the pocket and ligand, and self-138

distance evaluates the atom-wise distance between atoms on the same ligand. The ultimate scoring139

function is a weighted sum of the cross distance loss and the self-distance loss, and the weights are140

1.0 and 5.75 respectively.141

• Hyperparameter settings142

As shown in Figure 1, Uni-Mol directly predicts protein-ligand cross distance and self-distance143

with MSE loss during finetuning. Dist_threshold is used to mask distances, since atoms that are144

more than a certain distance apart do not have interactions that would affect the binding pose. We145

use 10 randomly generated molecular conformations as data augmentation when sampling. Also, a146

lower dist_threshold is used to reduce variance in sampling with consideration of error in prediction.147

The details of hyperparameters are shown in Table 7.148

• Exhaustiveness search To ensure that the comparison between Uni-Mol and popular molecular149

docking software is unbiased, we increase the exhaustiveness of the global search (roughly propor-150

tional to time) of the molecular docking software to observe the effect of computational complexity151

to docking power on CASF-2016 benchmark. And we find that when exhaustiveness is above 16,152

the popular molecular docking software can no longer improve the performance by increasing the153

computational complexity.154

• Differential evolution algorithm We use a differential evolution algorithm inspired by Deep-155

dock[19] in protein-ligand pairs. We sample 10 RDKit conformations from the uniform dihedral156

angle in rotatable bonds, then choose the lowest score function in evolution sampling as the final157

predicted ligand pose. Moreover, we also tried a faster method, by directly back-propagation from158

distance-based scoring function to input coordinates.159
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Table 7: Hyperparameters setup for binding pose prediction
Hyperparameters for finetuning Value

Learning rate 3e-4
Batch size 32
Epochs 50
Warmup ratio 0.06
Dropout 0.2
Dist_threshold 8.0
Cross distance loss function and weight MSE, 1.0
Holo distance loss function and weight MSE, 1.0

Hyperparameters for sampling Value

Population size 150
Max iterations 500
Dist_threshold 5.0
Mutation (0.5, 1.0)
Recombination 0.9
Conformation size 10
Cross distance weight 1.0
Holo distance weight 5.75

Table 8: Exhaustiveness study of popular docking tools on CASF-2016
Ligand RMSD

% Below Threshold ↑
Methods Exhaustiveness 0.5 Å 1.0 Å 1.5 Å 2.0 Å
Autodock Vina 1 21.40 35.79 47.02 52.28
Autodock Vina 8 23.86 44.21 57.54 64.56
Autodock Vina 16 25.61 45.96 60.70 66.67
Autodock Vina 32 25.96 45.96 60.00 66.32
Vinardo 1 16.84 33.33 43.16 49.82
Vinardo 8 23.51 41.75 57.54 62.81
Vinardo 16 23.51 45.26 60.70 66.67
Vinardo 32 23.86 44.56 59.30 65.61
Smina 1 23.51 39.65 50.53 56.14
Smina 8 23.51 47.37 59.65 65.26
Smina 16 28.77 49.47 61.40 67.72
Smina 32 28.07 51.23 61.75 67.37
Autodock4 1 4.91 18.95 26.67 28.87
Autodock4 8 7.02 21.75 31.58 35.44
Autodock4 16 6.32 24.56 34.04 38.95
Autodock4 32 6.32 23.16 34.04 38.25
Uni-Molrandom - 14.04 49.47 65.26 75.44
Uni-Mol - 24.91 70.53 84.21 88.07
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Figure 1: protein-ligand binding pose model: 1) Encoder: molecular representation and pocket
representation are obtained from their own pretraining Uni-Mol models; 2) Decoder: representation is
concatenated with atom and pair-level, as inputs of a 4 layers Uni-Mol block learning from scratch. 3)
Output: The complex representation is used as a project layer to learn the pair distances of molecule
and pocket.

Other details160

• Max atoms We use the max atom as 256 because it is enough for the pocket (cover 99.998%161

pockets ). 256 is not a hard limit. During training, with gradient checkpointing, we can easily extend162

the atom number to more than 800, by the V100 GPU with 32G memory. There are some recent163

works that can also significantly reduce the memory cost in Transformer, like Flash-Attention[20].164

So we believe the max number of atoms will not be a limit. Besides, with an appropriate sampling165

strategy, even if the number of atoms could be limited in training time, we can use much more166

atoms at inference time and still achieve good performance. For example, in Alphafold[21], the167

training only samples 256/384 residues for saving memories and efficiency, but the inference can168

use thousands of residues.169

• Vocabulary size. Vocabulary size is different between molecules and proteins. Because the models170

for molecules and pockets are different; they don’t need to share the same vocabulary. And the171

vocabulary is made based on the atoms’ statistical information in the data. In pocket data, there are172

amino acids, whose atoms are mostly C, N, O, S and H. While in molecule data, the atom types are173

more diverse, so a larger vocabulary is used.174

4 Metrics175

In the conformation generation task, following previous work [22, 23], we use the Root of Mean176

Squared Deviations (RMSD) of heavy atoms to evaluate the difference between the generated177

conformation and the reference one. Before computing RMSD, the generated conformation is first178

aligned with the reference one, and the function Φ aligns conformations by applying rotations and179

translations to them:180

RMSD(R, R̂) = min
Φ

(
1

n

n∑
i=1

||Φ(Ri)− R̂i||2)
1
2 (1)

where R and R̂ are the generated and reference conformation, i is the i-th heavy atom, and n is the181

number of heavy atoms.182

We use Coverage (COV) and Matching (MAT) to evaluate the performance of the conformation183

generation model. Higher COV means better diversity, while lower MAT means higher accuracy.184

Formally, COV and MAT are denoted as:185

COV(Sg, Sr) =

∣∣∣{R ∈ Sr|RMSD(R, R̂) < δ, R̂ ∈ Sg

}∣∣∣
|Sr|

(2)
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Table 9: Ablation studies, molecular property prediction classification tasks
Classification (ROC-AUC %, higher is better ↑)

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV

Uni-Mol w/o pair-type 66.3(1.7) 76.2(0.2) 87.1(2.3) 72.4(0.1) 62.3(0.4) 61.2(1.1) 75.8(0.5) 85.1(0.1) 80.9(0.6)
Uni-Mol w/o pretraining 69.0(0.7) 80.9(5.4) 68.3(2.2) 75.8(0.4) 63.8(0.1) 61.9(0.5) 76.2(2.4) 86.1(0.5) 62.8(4.0)
Uni-Mol w/o pair representation 71.6(1.3) 85.4(2.7) 85.5(1.7) 79.4(0.1) 69.3(0.1) 64.3(0.9) 80.2(0.2) 88.4(0.1) 71.0(7.7)
2D shortest path encoding 71.6(2.1) 85.6(1.1) 83.6(4.0) 79.6(0.7) 68.8(0.8) 63.7(0.1) 78.9(0.4) 88.0(0.2) 78.2(0.6)
1D relative positional encoding 70.3(1.9) 77.8(3.7) 64.2(2.0) 73.3(0.7) 64.9(0.2) 61.5(1.6) 75.6(0.3) 77.2(1.4) 68.7(1.0)
Point Transformer 72.0(0.6) 84.1(1.3) 66.9(2.2) 79.1(0.6) 65.3(0.3) 64.3(0.6) 79.2(0.5) 87.2(0.4) 78.1(0.9)
Uni-Mol 72.9(0.6) 85.7(0.2) 91.6(0.6) 79.6(0.5) 69.6(0.1) 65.5(1.0) 80.8(0.3) 88.5(0.1) 82.1(1.3)

Table 10: Ablation studies, molecular property prediction regression tasks
Regression (lower is better)

RMSE MAE

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9

Uni-Mol w/o pair-type 0.977(0.007) 2.053(0.053) 0.951(0.056) 45.9(1.7) 0.0156(0.0001) 0.00473(0.00004)
Uni-Mol w/o pretraining 0.924(0.037) 1.880(0.206) 0.745(0.012) 45.2(0.6) 0.0174(0.0002) 0.00653(0.00040)
Uni-Mol w/o pair representation 0.807(0.027) 1.681(0.068) 0.611(0.004) 45.2(1.0) 0.0158(0.0001) 0.00573(0.00004)
2D shortest path encoding 0.831(0.007) 1.694(0.070) 0.605(0.003) 60.6(0.2) 0.0164(0.0001) 0.00650(0.00001)
1D relative positional encoding 0.929(0.035) 2.237(0.074) 0.866(0.004) 77.5(2.7) 0.0283(0.0007) 0.02283(0.00078)
Point Transformer 0.828(0.011) 1.672(0.061) 0.668(0.007) 47.2(0.7) 0.0208(0.0002) 0.00913(0.00009)
Uni-Mol 0.788(0.029) 1.620(0.035) 0.603(0.010) 41.8(0.2) 0.0156(0.0001) 0.00467(0.00004)

MAT(Sg, Sr) =
1

|Sr|
∑
R∈Sr

min
R̂∈Sg

RMSD(R, R̂) (3)

where Sg and Sr are the set of generated and reference conformations, respectively, and δ is a given186

RMSD threshold. Following previous work [10, 11], for GEOM-QM9, the threshold is 0.5Å, and for187

GEOM-Drugs, the threshold value is 1.25Å.188

5 Ablation studies189

5.1 Pair-type aware affine module190

We investigate the impact of the pair-type aware affine (PTAA) module on the molecular property191

prediction tasks. As described in Sec 2.1, in invariant spatial positional encoding, the PTAA is192

combined with the pair Euclidean distance matrix. Tables 9 and 10 show the results of the ablation193

studies, and we can find that PTAA largely improves the performance of molecular property prediction.194

There are several possible reasons: 1) in chemicals (and physics), the interactions between two atoms195

are determined by their distances and types together. Given pair distance and their types, the model196

can distinguish different interactions, such as Van der Waals forces, covalent interactions, etc., and197

thus perform better. 2) PTAA enlarges the capacity of pair representation by introducing more198

trainable parameters, and therefore, the model learns better pair interactions in 3D space and thus199

performs better.200

5.2 Pretraining, pair representation and invariant spatial positional encoding201

We investigate the impact of pretraining, pair representation and invariant spatial positional encod-202

ing on the molecular property prediction tasks. Specifically, to demonstrate the effectiveness of203

introducing 3D information, we replace the original invariant spatial position encoding with a 2D204

Graphormer-like[24] shortest path positional encoding and a 1D BERT-like[25] relative position205

encoding on atoms. For other 3D Transformer baseline, we design an experiment for comparison.206

Specifically, we replace the spatial encoding method used in Uni-Mol with the one used in Point207

Transformer[26]. The results are summarized in the following table. Tables 9 and 10 show the results208

of the ablation studies, and we can find that pretraining, pair representation and invariant spatial209

positional encoding all largely improves the performance of molecular property prediction. It is clear210

that 3D information indeed helps the performance of downstream tasks. And compared with Point211

Transformer, Uni-Mol performs better.212
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6 Training Stability213

With Pre-LayerNorm [27] backbone and mixed-precision training, the pretraining sometimes diverges.214

After investigation, we found there are large numerical values in the intermediate states when215

divergence happens. We hypothesize that the Final-LayerNorm layer in the Pre-LayerNorm backbone216

results in the problem. Specifically, Final-LayerNorm is applied to the sum of all encoder layers,217

denoted as218

oi = LayerNorm(si), si =

L∑
l=1

ol
i (4)

where L is the number of layers, ol
i is the output of the i-th position in the l-th layer, and oi is the219

final output of the i-th position, after Final-LayerNorm. Therefore, due to normalization, si can be220

arbitrarily large (or arbitrarily small), without affecting model results. However, a too large or too221

small numerical value will cause the numerical unstable, especially in the mixed-precision training.222

To tackle this, we introduce a simple loss, to restrict the value range of si. Formally, the loss is223

denoted as224

Lnorm = meani

(
max

(∣∣∣∥si∥ − √
d
∣∣∣− τ, 0

))
, (5)

where d is the dimension size of si, τ is the tolerance factor. In Uni-Mol, we set τ = 1, and both225

atom-level and pair-level representations are constrained by this loss. Besides, to avoid affecting226

other loss functions, we set a very small loss weight (0.01) to Lnorm.227

7 Related work228

Pretraining In recent years, pretraining [28, 29, 30] has received much attention and has been229

prevailing in many applications. The masked language models, for example, BERT [25] and GPT [31,230

32, 33], mask part of the input and predict the masked part to train the model, which has achieved231

good performance in Natural Language Processing (NLP). There are also works in Computer Vision232

(CV) inspired by the success of pretraining Transformer in NLP, such as ViT [34] and BEiT [35],233

applying masking strategy to images to help model training. Recently, some works [36, 37] focus on234

self-supervised learning that uses the data augmentation strategy to improve the model performance.235

Protein representation learning Protein representation learning is critical for drug design. In236

recent years, many pretraining based methods have been proposed [38, 39, 40]. Besides, the structure237

of a protein influences how it behaves when bound to a drug-like molecule. Some works also focus on238

learning from protein 3D structure [21, 41, 42] expecting better performance in 3D structure-related239

downstream tasks such as protein-ligand binding pose prediction.240

Comparison with Equibind For the protein-ligand binding pose prediction task, there are several241

graph deep learning based methods like Equibind [43]. However, we cannot have an apple-to-242

apple comparison with Equibind, due to Equibind being proposed for Blind Docking. While Uni-243

Mol is currently designed for Targeted Docking, which follows most previous traditional tools in244

docking [44]. The difference is that Blind Docking uses whole protein for docking, while Target245

Docking directly uses the pocket. We will extend Uni-Mol to Blind Docking tasks in future work.246

8 Self-attention map visualization247

For better interpretability, we conduct a visualization on the self-attention map and pair distance of248

the molecule as shown in Figure 2. Figure 2 shows that when two atoms in a molecule are close, i.e.,249

the distance between them is small, their corresponding attention weight is large.250

9 Motivation for using Transformer251

Transformer is widely used as a backbone model in representation learning. In recent years, Trans-252

former has shown its power in graph data. For example, Graphormer[24] won two champions at253

KDD CUP 2021 graph level track and NeurIPS 2021 Open Catalyst Challenge. And some previous254

works also use Transformer in molecular representation learning, like GROVER[45]. One more255

9



(a) Visualization (b) Molecule

Figure 2: Visualization on self-attention map and pair distance of a molecule

motivation is that Transformer has a larger receptive field, as the nodes/atoms are fully connected.256

While in graph neural networks (GNNs), we usually cut off the edges by locality (distances, bonds).257

We believe the larger receptive field has more advantages in self-supervised pertaining, as it could258

learn the long-range interactions from large-scale unlabeled data. For example, in the last row of the259

attention visualization in Figure 2, there are some columns (21-27) that have slightly large attention260

weights, while the distances are also large.261

Comparison with Graphormer Graphormer motivated us to use Transformer, and we also follow262

its simplicity in designing the Uni-Mol backbone model. However, the positional encoding (shortest263

path) used in Grahpormer can only handle 2D molecular graphs, not 3D positions. So we added264

several modifications to make the model have the ability to handle 3D inputs and outputs. Further,265

there is a following-up work called 3D-Graphormer [46], adapting this method to 3D molecules.266

There are several differences between us: 1) Both Uni-Mol and 3D-Graphormer use the pair-wise267

Euclidean distance and Gaussian kernel to encode 3D spatial information. However, 3D-Graphormer268

has an additional node-level centrality encoding, which is the sum of spatial encodings of each node.269

2) 3D-Graphormer doesn’t have pair-representation. 3) Our SE(3) Coordinate Head is different270

from the "node-level projection head" in 3D-Graphormer. The method used in 3D-Graphormer is an271

attention layer for 3 axes in 3D coordinate. 4) 3D-Graphormer is not designed for self-supervised272

pretraining.273
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