
A Proof of Lemma 21

Proof. We prove by contradiction. Suppose Lemma 2 is false, then either of the following shall hold:2

i) There exists two variables {Xi, Xj} ⊂ X, which are not equally contribute to g(X) at3

(xi, xj) with respect to (0, 0);4

ii) There are two variables Xi, Xj ⊂ X that cannot have Xi = xi and Xj = 0 simultaneously,5

or Xi = 0 and Xj = xj simultaneously.6

We consider contradiction to each of the above statements separately.7

i) According to Definition 1, if there exists two variables {Xi, Xj} ⊂ X, which are not equally8

contribute to g(X) at (xi, xj) with respect to (0, 0), we should have at least one assignment of X9

except for Xi and Xj such that10

gXi=xi,Xj=0(X\{Xi, Xj}) ̸= gXi=0,Xj=xj
(X\{Xi, Xj}).

However, since11

gXi=xi,Ej=0(X\{Xi, Xj}) = gXi=0,Xj=xj (X\{Xi, Xj}) = 0,

we have reached a contradiction to the first statement.12

ii) As all the variables are uncorrelated, the value assigned to one variable has no impact on how13

we choose values for the other variables. Therefore, it is possible to have Xi = xi and Xj = 014

simultaneously or to have Xi = 0 and Xj = xj simultaneously for arbitrary two variables Xi and15

Xj . We have reached a contradiction to the second statement.16

B Proof of Lemma 417

Proof. To prove Lemma 4, we first prove the following Lemma.18

Lemma B.1. For a scalar product term z in the expansion form of a pretrained GNN f(·), when19

the number of nodes N is large, it is feasible to have both νi = xi and νj = 0 or both νi = 0 and20

νj = xj for all possible pairs νi, νj of variables in z, where xi, xj indicate the presence of variables21

νi, νj , respectively.22

Proof. We first show that in the scenario of a large number of nodes N , an arbitrary variable Pc,e23

among the variables in z can take any value within its domain while keeping all other variables in z24

fixed to certain values.25

We begin with defining notations. For a scalar product term z in the expansion of a pretrained26

GNN f(·), we let U = A
(L)
αL0,αL1 . . . A

(1)
α10,α11 denotes the factors involving the adjacency matrix A,27

P = P
(1)
α10,β11

. . . P
(L)
αL0,βL1

· P (c1)
αL0,γ11 . . . P

(c(M−1))
αL0,γ(M−1)1

denotes the factors involving the activation28

pattern P , and C = W
(1)
β10,β11

. . .W
(L)
βL0,βL1

·W (c1)
γ10,γ11 . . .W

(cM )
γM0,γM1 stands for “reduced to constant”29

denoting the product of the related parameters in f(·), such that each product term can be rewritten30

as z = UPXi,jC.31

The entries in an activation pattern are determined by the hidden representation before being passed32

to the activation function. Similar to Equation (9), the (c, e)-th entry of the hidden representation33

at the l-th layer before the activation function can be expressed by the sum of all the related scalar34

products as35

h(l)′
c,e =

α,β,ρ∑ [(
A(l)
c,αl1

W
(l)
βl0,e

l−1∏
m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xρm0,ρm1

]
.

When none of the variables in h
(l)′
c,e are constrained, the mathematical range of h(l)′

c,e is R. Let c(h(l)′
c,e , z)36

be the sum of scalar products involving the variables in z. If the range of (h(l)′
c,e − c(h

(l)′
c,e , z)) is also37

R when none of the variables in it is constrained, then Pc,e can take any value within its domain38

while keeping the variables in z fixed to some certain values. In other words, if there is at least one39
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scalar product in (h
(l)′
c,e − c(h

(l)′
c,e , z)), then Pc,e can take any value within its domain while holding40

the variables in z fixed to certain values.41

The sum of scalar products involving Xi,j is42

c(h(l)′
c,e , Xi,j) =

α,β∑[(
A(l)
c,αl1

W
(l)
βl0,e

l−1∏
m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xi,j

]
.

The sum of scalar products involving an arbitrary variable Aa,b in U is43

c(h(l)′
c,e , Aa,b) =

α,β,ρ∑ [(
A(l)
c,αl1

W
(l)
βl0,e

l−1∏
m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xρm0,ρm1

]
,where

at least one of {A(l)
c,αl1

, A(l−1)
α(l−1)0,α(l−1)1

, . . . , A(1)
α10,α11

} isAa,b.

The sum of scalar products involving an arbitrary variable Pg,h in P is44

c(h(l)′
c,e , Pg,h) =

α,β,ρ∑ [(
A(l)
c,αl1

W
(l)
βl0,e

l−1∏
m=1

P
(m)
αm0,βm1

A(m)
αm0,αm1

W
(m)
βm0,βm1

)
Xρm0,ρm1

]
,where

one of {P (l−1)
α(l−1)0,β(l−1)1

, . . . , P
(1)
α10,β11

} isPg,h.

Then the number of scalar products in (h
(l)′
c,e − c(h

(l)′
c,e , z)) is45

|h(l)′
c,e − c(h(l)′

c,e , z)| ≥ |h(l)′
c,e | − |c(h(l)′

c,e , Xi,j)| − l · |c(h(l)′
c,e , Aa,b)| − (l − 1) · |c(h(l)′

c,e , Pg,h)|,

where |h(l)′
c,e |, |c(h(l)′

c,e , Xi,j)|, |c(h(l)′
c,e , Aa,b)|, |c(h(l)′

c,e , Pg,h)| represents the number of scalar prod-46

ucts in h
(l)′
c,e , c(h

(l)′
c,e , Xi,j), c(h

(l)′
c,e , Aa,b), c(h

(l)′
c,e , Pg,h) respectively. Hence if we can prove |h(l)′

c,e | −47

|c(h(l)′
c,e , Xi,j)| − l · |c(h(l)′

c,e , Aa,b)| − (l − 1) · |c(h(l)′
c,e , Pg,h)| ≥ 1, then we will also have48

|h(l)′
c,e − c(h

(l)′
c,e , z)| ≥ 1 proved. That is, we should prove49

|h(l)′
c,e |

|h(l)′
c,e |

− |c(h(l)′
c,e , Xi,j)|
|h(l)′
c,e |

− l · |c(h
(l)′
c,e , Aa,b)|
|h(l)′
c,e |

− (l − 1) · |c(h
(l)′
c,e , Pg,h)|
|h(l)′
c,e |

≥ 1

|h(l)′
c,e |

.

Equivalently, we should prove50

|c(h(l)′
c,e , Xi,j)|
|h(l)′
c,e |

+ l · |c(h
(l)′
c,e , Aa,b)|
|h(l)′
c,e |

+ (l − 1) · |c(h
(l)′
c,e , Pg,h)|
|h(l)′
c,e |

≤ 1− 1

|h(l)′
c,e |

.

Note that the first term51

|c(h(l)′
c,e , Xi,j)|
|h(l)′
c,e |

=
1

Nd
.

Since d ≥ 1 is the feature dimension of X , we have limN→∞
|c(h(l)′

c,e ,Xi,j)|
|h(l)′

c,e |
= 0.52

Now consider the second term l · |c(h(l)′
c,e ,Aa,b)|
|h(l)′

c,e |
:53

l · |c(h
(l)′
c,e , Aa,b)|
|h(l)′
c,e |

= l ·
(
l
1

)
N (l−1) +

(
l
2

)
N (l−2) + · · ·+

(
l
l

)
N0

N (l+1)

= l ·

((
l
1

)
N2

+

(
l
2

)
N3

+ · · ·+
(
l
l

)
N (l+1)

)

= l ·
(

l!

1!(l − 1)! ·N2
+

l!

2!(l − 2)! ·N3
+ · · ·+ l!

l!(l − l)! ·N (l+1)

)
=

(
l

1!N
· l

N

)
+

(
l

2!N
· l

N
· l − 1

N

)
+ · · ·+

(
l

l!N
· l

N
· l − 1

N
. . .

1

N

)
.
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Since N ≫ l, we have limN→∞
l
N = 0. Also, because l

N > l−1
N > · · · > 1

N > 1
1!N > · · · > 1

l!N ,54

we then have limN→∞ l · |c(h(l)′
c,e ,Aa,b)|
|h(l)′

c,e |
= 0.55

Now we consider the third term (l − 1) · |c(h(l)′
c,e ,Pg,h)|
|h(l)′

c,e |
:56

(l − 1) · |c(h
(l)′
c,e , Pg,h)|
|h(l)′
c,e |

= (l − 1) · 1

N ld

Since N ≫ l and d ≥ 1, we have limN→∞(l − 1) · |c(h(l)′
c,e ,Pg,h)|
|h(l)′

c,e |
= 0.57

For the terms on the right hand side of the inequality, since 1

|h(l)′
c,e |

≤ |c(h(l)′
c,e ,Xi,j)|
|h(l)′

c,e |
, we have58

limN→∞
1

|h(l)′
c,e |

= 0. Hence limN→∞ 1− 1

|h(l)′
c,e |

= 1.59

Since 0 < 1, we have prove that when N is large,
|c(h(l)′

c,e ,Xi,j)|
|h(l)′

c,e |
+ l · |c(h(l)′

c,e ,Aa,b)|
|h(l)′

c,e |
+ (l − 1) ·60

|c(h(l)′
c,e ,Pg,h)|
|h(l)′

c,e |
≤ 1 − 1

|h(l)′
c,e |

. Therefore, in scenarios with a large number of nodes N , an arbitrary61

variable Pc,e in P can take any value within its domain while keeping all other variables in z fixed to62

certain values.63

If the data is properly preprocessed, a feature Xi,j and the unique entries in A should be uncorrelated64

with each other. Also, from the above proof we can conclude that when N is large, any arbitrary65

variables in z can be freely set to “absence” or “present” without affecting other variables. That is, in66

scenarios with a large number of nodes N , it is always feasible to hold67

• both Xi,j = 0 and Aa,b = Aa,b, as well as both Xi,j = xi,j and Aa,b = 0;68

• both Ak,n = 0 and Aa,b = Aa,b, as well as both Ak,n = Ak,n and Aa,b = 0;69

• both Xi,j = 0 and Pc,e = pc,e, as well as both Xi,j = xi,j and Pc,e = 0;70

• both Aa,b = 0 and Pc,e = pc,e, as well as both Aa,b = Aa,b and Pc,e = 0;71

• both Pc,e = 0 and Pg,h = pg,h, as well as Pc,e = pc,e and Pg,h = 0,72

without affecting other variables in z, where Xi,j , Aa,b, Ak,n, Pc,e, Pg,h refers to the variables in z.73

Hence we have proved Lemma B.1.74

Next, we prove by contradiction that for all possible variable pairs (νi, νj) among the unique variables75

in z, we have (νi, νj) contribute equally to z at (xi, xj) with respect to (0, 0) , where νi = xi, νj = xj76

means the “presence” of the variables.77

Assume there exists two variables (νi, νj) in V (z) that are not equally contribute to z at (xi, xj) with78

respect to (0, 0). Then by Definition 1, we should have one assignment of other variables in z, such79

that80

zνi=xi,νj=0(V (z)\{νi, νj}) ̸= zνi=0,νj=xj
(V (z)\{νi, νj}).

However, since81

zνi=xi,νj=0(V (z)\{νi, νj}) = zνi=0,νj=xj
(V (z)\{νi, νj}) = 0,

we have reached a contradiction. Hence we have proved Lemma 4.82

C Proof of Theorem 583

Proof. If the total number of unique variables in a scalar product equals to the total number of84

occurences of all the unique variables, i.e., if |V (z)| =
∑
ρ in z O(ρ, z), we will have Iν(z) =85

z
|V (z)| = O(ν,z)·z∑

ρ in z O(ρ,z) . This is because when |V (z)| =
∑
ρ in z O(ρ, z), all the occurrences of86

variables are unique variables, and we have O(ν, z) = 1. Consider Iν(fm,n(·)) as the sum of two87
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components, which are the contribution Iν(f
V=O
m,n (·)) of ν to the scalar products where |V (z)| =88 ∑

ρ in z O(ρ, z) holds, and the contribution Iν(f
V ̸=O
m,n (·)) of ν to the scalar products where |V (z)| =89 ∑

ρ in z O(ρ, z) does not hold. That is,90

Iν(fm,n(·)) = Iν(f
V=O
m,n (·)) + Iν(f

V ̸=O
m,n (·)).

We are not able to have multiple occurrences of X or P in a scalar product, but only able to have91

multiple occurrences of A. Considering the scalar products are bounded by a value of c, we have92

Iν(f
V ̸=O
m,n (·))

Iν(fm,n(·))
≤

c ·
[(
L
2

)
NL−1 + · · ·+

(
L
L

)
N
]

c ·NL+1

=
L!NL−1

2!(L− 2)!NL+1
+ · · ·+ L!N

(L)!0!NL+1

=
L(L− 1)

2!N2
+ · · ·+ 1

NL

≤ L2

N2
+ · · ·+ L2

N2
,

Since N ≫ L, we have93

lim
N→∞

Iν(f
V ̸=O
m,n (·))

Iν(fm,n(·))
= 0.

Therefore, when N is large, Iν(fm,n(·)) = Iν(f
V=O
m,n (·)). Hence, by Equation (10), we have proved94

that when N is large, Iν(fm,n(·)) =
∑
z in fm,n(·) that contain ν

O(ν,z)∑
ρ in z O(ρ,z) · z.95

D Case study: Explaining GraphSAGE (SAmple and aggreGatE)96

GraphSAGE adopts concatenation at the COMBINE step, hence the hidden state of a GraphSAGE’s97

l-th layer is98

H(l) = ReLU
(
AH(l−1)W (l)ϕ +H(l−1)W (l)ψ +B(l)

)
, (D.1)

where W (l)ϕ and W (l)ψ represents the trainable parameters for concatenating the node information99

and its neighborhood information. Suppose a GraphSAGE network f(A,X) has three message-100

passing layers and a 2-layer MLP as the classifier, then its expansion form without the activation101

functions ReLU(·) will be102

f(A,X) ̸P = XW (1)ψW (2)ψW (3)ψW (c1)W (c2) +A(1)XW (1)ϕW (2)ψW (3)ψW (c1)W (c2)

+A(2)XW (1)ψW (2)ϕW (3)ψW (c1)W (c2) +A(3)XW (1)ψW (2)ψW (3)ϕW (c1)W (c2)

+A(2)A(1)XW (1)ϕW (2)ϕW (3)ψW (c1)W (c2)

+A(3)A(1)XW (1)ϕW (2)ψW (3)ϕW (c1)W (c2)

+A(3)A(2)XW (1)ψW (2)ϕW (3)ϕW (c1)W (c2)

+A(3)A(2)A(1)XW (1)ϕW (2)ϕW (3)ϕW (c1)W (c2)

+A(2)B(1)W (2)ϕW (3)ψW (c1)W (c2) +A(3)B(1)W (2)ψW (3)ϕW (c1)W (c2)

+A(3)A(2)B(1)W (2)ϕW (3)ϕW (c1)W (c2) +B(1)W (2)ψW (3)ψW (c1)W (c2)

+A(3)B(2)W (3)ϕW (c1)W (c2) +B(2)W (3)ψW (c1)W (c2)

+B(3)W (c1)W (c2) +B(c1)W (c2) +B(c2).

(D.2)

Then all the other steps will be identical to the case study of GCN. The code of explaining GraphSAGE103

on the graph classification task is in the package of Supplementary Material.104

E Case Study: Explaining Graph Isomorphism Network (GIN)105

GIN adopts weighted sum at the COMBINE step, hence the hidden state of a GIN’s l-th layer is:106

H(l) = Φ(l)
(
ÂH(l−1) + ϵ(l)H(l−1)

)
, (E.3)
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where Â = A+I refers to the adjacency matrix with the self-loops, ϵ(l) is a trainable scalar parameter.107

If Φ(l)(·) is a 2-layer MLP, expanding Φ(l), we have108

H(l) = ReLU
(
ReLU

(
ÂH(l−1)WΦ

(l)
1 + ϵ(l)H(l−1)WΦ

(l)
1 +BΦ

(l)
1

)
WΦ

(l)
2 +BΦ

(l)
2

)
. (E.4)

Suppose a GIN f(Â,X) has three message-passing layers and a 2-layer MLP as the classifier, then109

its expansion form without the activation functions ReLU(·) will be110

f(Â,X) ̸P = Xϵ(3)ϵ(2)ϵ(1)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(1)Xϵ(3)ϵ(2)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(2)Xϵ(3)ϵ(1)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)Xϵ(2)ϵ(1)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(2)Â(1)Xϵ(3)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)Â(1)Xϵ(2)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)Â(2)Xϵ(1)WΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)Â(2)Â(1)XWΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ ϵ(3)ϵ(2)BΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(2)ϵ(3)BΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)ϵ(2)BΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)Â(2)BΦ
(1)
1 WΦ

(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ ϵ(3)ϵ(2)BΦ
(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(2)ϵ(3)BΦ
(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)ϵ(2)BΦ
(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)Â(2)BΦ
(1)
2 WΦ

(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)BΦ
(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ ϵ(3)BΦ
(2)
1 WΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+ Â(3)BΦ
(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2) + ϵ(3)BΦ

(2)
2 WΦ

(3)
1 WΦ

(3)
2 W (c1)W (c2)

+BΦ
(3)
1 WΦ

(3)
2 W (c1)W (c2) +BΦ

(3)
2 W (c1)W (c2) +B(c1)W (c2) +B(c2).

(E.5)

Then similar to the case study on GCN and GraphSAGE, the activation patterns are multiplied to111

each of the scalar products. Although Equation (E.5) may appear complex, we can observe a pattern112

that when Â(l) is present in a product term, the corresponding ϵ(l) is not. This observation allows us113

to simplify the expression by using for loops to cover all the product terms. The code of explaining114

GIN on the graph classification task is in the package of Supplementary Material.115

F Handling Batch Normalization Layer116

In certain cases, Batch Normalization (BN) may be applied between the message-passing layers. In117

this section, we will elaborate on how BN layer is handled to provide explantions with GOAt. The118

formula of BN is119

y =
x− µ√
δ + ε

·W +B, (F.6)

where µ is the running mean, δ is the running variance, ε is a prefixed small value, W , B are learnable120

parameters. During the evaluation mode of a pretrained GNN, µ, δ, ε, W and B are fixed. As a result,121

we can treat the Batch Normalization (BN) layer as a linear mapping y = xW (BN) +B(BN) while122
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obtaining GNN explanations with GOAt, where123

W (BN) =
W√
δ + ε

, B(BN) =
−µ ·W√
δ + ε

+B. (F.7)

G Fidelity Results of Explaining GraphSAGE and GIN124
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Figure G.1: Fidelity performance averaged across 10 runs on the pretrained GraphSAGE for the
datasets at different levels of average sparsity.
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Figure G.2: Fidelity performance averaged across 10 runs on the pretrained GIN for the datasets at
different levels of average sparsity.

H Statistics and Implementation Details125

The GNNs are trained using the following data splits: 80% for the training set, 10% for the validation126

set, and 10% for the testing set. All experiments are conducted on an Intel® Core™ i7-10700127

Processor and NVIDIA GeForce RTX 3090 Graphics Card. The GNN architectures consist of 3128

message-passing layers and a 2-layer classifier. The hidden dimension is set to 32 for BA-2Motifs,129

BA-Shapes, BA-Community, Tree-grid, and 64 for Mutagenicity and NCI1. The code is available in130

the Supplementary Material, provided alongside this Appendix file.131
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Table H.1: Statistics of the datasets used and the classification accuracy of the trained GNNs.

BA- BA- Tree- BA- Mutagenicity NCI1Shapes Community Grid 2Motifs

# Graphs 1 1 1 1,000 4,337 4,110
# Nodes (avg) 700 1,400 1,231 25 30.32 29.87
# Edges (avg) 4,110 8,920 3,410 25.48 30.77 32.30
# Classes 4 8 2 2 2 2

Test ACC
GCN 0.97 0.91 0.97 1.00 0.82 0.81
GraphSAGE - - - 1.00 0.80 0.80
GIN - - - 1.00 0.89 0.83

I Visualization of Explanation Embeddings on Mutagenicity and NCI1132

Class 0 Class 1
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Figure I.3: Visualization of explanation embeddings on the Mutagenicity dataset. Subfigure (i) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.
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Figure I.4: Visualization of explanation embeddings on the NCI1 dataset. Subfigure (i) refers to the
visualization of the original embeddings by directly feeding the original data into the GNN without
any modifications or explanations applied.

Figure I.3 and Figure I.4 presented the visualization of explanation embeddings on the Mutagenicity133

and NCI1 datasets respectively. To create smaller plots, we have disabled the axes in Figure I.3134

and Figure I.4. In Figure I.5, we have enabled the axes for specific subplots to showcase the disper-135

sion of explanation embeddings from GOAt compared to SubgraphX and the original embeddings.136

Specifically, in the case of Mutagenicity, although the explanations generated by SubgraphX exhibit137

only some overlap, the scatters for different classes appear quite close. On the other hand, GOAt138

produces more discriminative explanations. For the NCI1 dataset, while the majority of explanations139

generated by SubgraphX overlap, the explanations from GOAt exhibit greater dispersion in the scatter140

plot. Furthermore, compared to the original embeddings, the explanations generated by GOAt for141
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Figure I.5: Visualization of explanation embeddings on the Mutagenicity and NCI1 datasets with
axes turned on.

NCI1 demonstrate higher confidence towards specific classes, as evident from the bottom-left area in142

Figure I.5(e).143

J Explanations of Node Classification144
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Figure J.6: Visualization of explanation embeddings on the BA-Shapes dataset. Subfigure (d) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.
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We utilize scatter plots to visually depict the explanation embeddings produced by GNNExplainer,145

PGExplainer, and GOAt, and compare them with the node embeddings in the original graphs. In the146

generated figures, we set the value of topk to be 6, 7, and 14 for the BA-Shapes, BA-Community,147

and Tree-Grid datasets, respectively. In the case of BA-Shapes and BA-Community, we only plot the148

nodes within the house-shape motif, as the other nodes are located far away and may not be easily149

discernible in terms of explanation performance.150

As presented in Figure J.8, the majority of the explanations on the Tree-Grid dataset generated151

by GNNExplainer are closely clustered together, and GOAt has fewer overlapped data points than152

PGExplainer. As illustrated in Figure J.6 and Figure J.7, the explanations generated by GNNExplainer153

and PGExplainer fail to exhibit class discrimination on BA-Shapes and BA-Communicty datasets,154

as all the data points are clustered together without any distinct separation. In contrast, our method,155

GOAt, generates explanations that clearly and effectively distinguish between classes, with fewer156

overlapping points and substantial separation distances, highlighting the strong discriminability of157

our approach on the node classification task.158

Discussion on the AUC/Accuracy metrics. Many existing GNN explanation approaches are159

evaluated using metrics such as AUC or Accuracy. These metrics compare the explanations generated160

by the explainers with "ground-truth" explanations that are predetermined by humans. Ground-truth161

explanations refer to the underlying evidence that leads to the correct label, rather than the prediction162

label itself. However, as highlighted by [1] there can often be a mismatch between the ground truth163

and the GNN. To avoid any potential misunderstandings, we have chosen to directly present scatter164

plots of the explanations generated by different explainers.165
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Figure J.7: Visualization of explanation embeddings on the BA-Community dataset. Subfigure (d)
refers to the visualization of the original embeddings by directly feeding the original data into the
GNN without any modifications or explanations applied.

K Broader Impacts and Limitations166

Our technique aims to contribute to the community’s understanding of the decision-making process167

in GNNs and enhance the reliability of these models. We hope that our approach will be valuable168

in advancing the field and fostering greater trust and transparency in GNNs. The core concept of169

our proposed GNN explaining approach, GOAt, which is based on "Equal Contribution in the scalar170

product," can potentially be extended to explain other neural networks, including CNNs. However,171
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Figure J.8: Visualization of explanation embeddings on the Tree-Grid dataset. Subfigure (d) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.

it is important to note that our technique currently requires expert knowledge to design specific172

explaining flows for different neural network architectures. While our method works well for shallow173

networks like GNNs, it may become more challenging for deeper networks such as Transformers174

or ResNets, where the explaining flows can become complex. In such cases, it may be necessary to175

group or prune scalar products that contribute minimally to the outputs. These are potential areas for176

future research and investigation.177
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