
A Proofs

A.1 Proof of Proposition 4.1

This proof is a direct adaptation of [27, Lemma 3], and has only been included for the sake of
completeness.

In this proof, we use the notion of weighted exchangeability as defined in Section 3.2 of [27].
Definition A.1 (Weighted exchangeability). Random variables V1, . . . , Vn are said to be weighted

exchangeable with weight functions w1, . . . , wn, if the density f of their joint distribution can be
factorized as

f(v1, . . . , vn) =
nY

i=1

wi(vi)g(v1, . . . , vn) (9)

where g is any function that does not depend on the ordering of its inputs, i.e. g(v�(1), . . . , v�(n)) =
g(v1, . . . , vn) for any permutation � of 1, . . . , n.

Lemma A.2. Let Zi = (Xi, Yi) 2 Rd ⇥ R, i = 1, ..., n+ 1, be such that {(Xi, Yi)}ni=1
i.i.d.⇠ P

⇡b

X,Y

and (Xn+1, Yn+1) ⇠ P
⇡⇤

X,Y . Then Z1, . . . , Zn+1 are weighted exchangeable with weights wi ⌘ 1,

i  n and wn+1(X,Y) = dP⇡⇤

X,Y /dP
⇡b

X,Y (X,Y).

Proof. The proof below is merely a verification that our proposed weights still retain the coverage
guarantees and is mainly taken from [27]. Hence, we follow the same strategy as in [27], with the
exception that we have the weights as in Lemma A.2, hence inducing a lot of simplifications. As in
[27], we assume for simplicity that V1, . . . , Vn+1 are distinct almost surely, however the result holds
in general case as well. We define f as the joint distribution of the random variables {Xi, Yi}n+1

i=1 .
We also denote Ez as the event of {Z1, . . . , Zn+1} = {z1, . . . , zn+1} and let vi = s(zi) = s(xi, yi),
then for each i:

{Vn+1 = vi|Ez} = {Zn+1 = zi|Ez} =

P
�:�(n+1)=i f(z�(1), . . . , z�(n+1))P

� f(z�(1), . . . , z�(n+1))
(10)

Now using the fact that Z1, . . . , Zn+1 are weighted exchangeable:

P
�:�(n+1)=i f(z�(1), . . . , z�(n+1))P

� f(z�(1), . . . , z�(n+1))
=

P
�:�(n+1)=i

Qn+1
j=1 wj(z�(j))g(z�(1), . . . , z�(n+1))

P
�

Qn+1
j=1 wj(z�(j))g(z�(1), . . . , z�(n+1))

(11)

=
wn+1(zi)g(z1, . . . , zn+1)Pn+1

j=1 wn+1(zj)g(z1, . . . , zn+1)

= p
w
i (zn+1)

where we recall that

p
w
i (x, y) :=

w(Xi, Yi)Pn
j=1 w(Xj , Yj) + w(x, y)

.

We get simplifications in (11) due to the weights defined in Lemma A.2, i.e. wi ⌘ 1 for i  n and
wn+1(x, y) = w(x, y) = dP⇡⇤

X,Y /dP
⇡b

X,Y (x, y). Next, just as in [27] we can view:

Vn+1 = vi|Ez ⇠
n+1X

i=1

p
w
i (zn+1)�vi (12)

which implies that:

{Vn+1  Quantile�(
n+1X

i=1

p
w
i (zn+1)�vi)|Ez} � �.

14

This is equivalent to

{Vn+1  Quantile�(
n+1X

i=1

p
w
i (Zn+1)�vi)|Ez} � �

and, after marginalizing, one has

{Vn+1  Quantile�(
n+1X

i=1

p
w
i (Zn+1)�vi)} � �

This is equivalent to the claim in Proposition 4.1.

A.2 Proof of Proposition 4.2

The following proof is an adaptation of [14, Proposition 1] to our setting.

Before detailing the main proof, we introduce a preliminary result which will be used in the proof of
Proposition 4.2.

Lemma A.3. Let ŵ(x, y) be an estimate of the weights w(x, y) = dP⇡⇤

X,Y /dP
⇡b

X,Y (x, y), and

(E
(X,Y)⇠P⇡b

X,Y
[ŵ(X,Y)r])1/r  Mr < 1 for some r � 2. Let (Xi, Yi)

i.i.d.⇠ P
⇡b

X,Y and A denote the

event that
nX

i=1

ŵ(Xi, Yi)  n/2.

Then,

P(A)  c1M
2
r

n

where c1 is an absolute constant, and the probability is taken over {Xi, Yi}ni=1
i.i.d.⇠ P

⇡b

X,Y .

Proof of Lemma A.3

The condition E
(X,Y)⇠P⇡b

X,Y
[ŵ(X,Y)r] < 1 =) P

(X,Y)⇠P⇡b
X,Y

(ŵ(X,Y) < 1) = 1

and E
(X,Y)⇠P⇡b

X,Y
[ŵ(X,Y)] < 1. WLOG assume E

(X,Y)⇠P⇡b
X,Y

[ŵ(X,Y)] = 1. Recall that

p
ŵ
i (x, y) := ŵ(Xi,Yi)Pn

i=1 ŵ(Xi,Yi)+ŵ(x,y) , and therefore, pŵi (x, y) are invariant to weight scaling. Since
E
(Xi,Yi)⇠P⇡b

X,Y
[ŵ(Xi, Yi)]2  M

2
r and E

(Xi,Yi)⇠P⇡b
X,Y

(ŵ(Xi, Yi)) = 1, using Chebyshev’s inequal-
ity

P

nX

i=1

ŵ(Xi, Yi)  n/2

!
=P

nX

i=1

(ŵ(Xi, Yi)� 1)  �n/2

!

P

|

nX

i=1

(ŵ(Xi, Yi)� 1)| � n/2

!

 4

n2
E
"

nX

i=1

ŵ(Xi, Yi)� E[ŵ(Xi, Yi)]

!2 #

=
4

n2

�
nE|ŵ(X1, Y1)� E[ŵ(X1, Y1)]|2

(13)

16

n2
nE|ŵ(X1, Y1)|2 (14)

c1M
2
r

n

where to get from (13) to (14) we use:

E|ŵ(X1, Y1)� E[ŵ(X1, Y1)]|2  2E
⇥
ŵ(X1, Y1)

2 + E[ŵ(X1, Y1)]
2
⇤

 4E[ŵ(X1, Y1)
2].

15

We can now prove Proposition 4.2.

Proof. The condition E
(X,Y)⇠P⇡b

X,Y
[ŵ(X,Y)r] < 1 =) P

(X,Y)⇠P⇡b
X,Y

(ŵ(X,Y) < 1) = 1

and E
(X,Y)⇠P⇡b

X,Y
[ŵ(X,Y)] < 1. WLOG assume E

(X,Y)⇠P⇡b
X,Y

[ŵ(X,Y)] = 1. Let P̃⇡⇤

X,Y be a
probability measure with

dP̃⇡⇤

X,Y (x, y) := ŵ(x, y)dP⇡b

X,Y (x, y)

and (X̃, Ỹ) ⇠ P̃
⇡⇤

X,Y that is independent of the data. By Hölder’s inequality,

E(X̃,Ỹ)⇠P̃⇡⇤
X,Y

[ŵ(X̃, Ỹ)] =

Z

x̃,ỹ

dP̃⇡⇤
(x̃, ỹ)

dP⇡b(x̃, ỹ)
dP̃⇡⇤

(x̃, ỹ)

=E
(X,Y)⇠P⇡b

X,Y
[ŵ(X,Y)2]  M

2
r < 1

Note using Proposition 4.1 with (X̃, Ỹ) denoting (Xn+1, Yn+1) for simplicity

P(Ỹ 2 Ĉ(X̃, Ỹ))

= E(X̃,Ỹ)⇠P⇡⇤
X,Y

"
P

s(X̃, Ỹ)  Quantile1�↵

nX

i=1

p
ŵ
i (X̃, Ỹ)�Vi + p

ŵ
n+1(X̃, Ỹ)�1

!
| E(Ṽ)

!#

(15)

where E(Ṽ) denotes the unordered set of V1, . . . , Vn+1. Marginalising over {(Xi, Yi)}ni=1, we obtain

(15)  E
✓
1� ↵+ max

i2[n+1]
p
ŵ
i (X̃, Ỹ)

◆
(16)

where the expectation is over {(Xi, Yi)}ni=1
i.i.d.⇠ P

⇡b

X,Y and (X̃, Ỹ) ⇠ P̃
⇡⇤

X,Y . Let A denote the event
that

nX

i=1

ŵ(Xi, Yi)  n/2.

using Lemma A.3 and E[ŵ(X̃, Ỹ)]  M
2
r , we get that

E

max

i2[n+1]
p
ŵ
i (X̃, Ỹ)

�
=E

"
max{ŵ(X̃, Ỹ),maxi ŵ(Xi, Yi)}
ŵ(X̃, Ỹ) +

Pn
i=1 ŵ(Xi, Yi)

#

E
"
max{ŵ(X̃, Ỹ),maxi ŵ(Xi, Yi)}
ŵ(X̃, Ỹ) +

Pn
i=1 ŵ(Xi, Yi)

AC

#
+ P(A)

E
"
2max{ŵ(X̃, Ỹ),maxi ŵ(Xi, Yi)}

n
AC

#
+

c1M
2
r

n

 2

n

⇣
E[ŵ(X̃, Ỹ)] + Emax

i
ŵ(Xi, Yi)

⌘
+

c1M
2
r

n

 2

n

0

@E[ŵ(X̃, Ỹ)] +

nX

i=1

E[ŵ(Xi, Yi)
r]

!1/r
1

A+
c1M

2
r

n

 2

n

⇣
M

2
r + n

1/r
Mr

⌘
+

c1M
2
r

n
.

This implies that
P(X,Y)⇠P̃⇡⇤

X,Y
(Y 2 Ĉ(X))  1� ↵+ cn

1/r�1

for some constant c that only depends on Mr and r. Note that

|P(X,Y)⇠P̃⇡⇤
X,Y

(Y 2 Ĉ(X))� P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ(X))|  dTV(P̃
⇡⇤
, P

⇡⇤
) (17)

16

where dTV is the total variation norm which satisfies

dTV(P̃
⇡⇤
, P

⇡⇤
) =

1

2

Z
|ŵ(x, y)dP⇡b

(x, y)� dP⇡⇤
(x, y)|

=
1

2

Z
|ŵ(x, y)dP⇡b

(x, y)� w(x, y)dP⇡b

(x, y)|

=
1

2
E
(X,Y)⇠P⇡b

X,Y
[|ŵ(X,Y)� w(X,Y)|] = �w. (18)

Putting together (17) and (18), we get

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ(X))  1� ↵+�w + cn
1/r�1

. (19)

For the lower bound, using Proposition 4.1 we get that

P(X̃,Ỹ)⇠P̃⇡⇤
X,Y

(Ỹ 2 Ĉ(X̃, Ỹ)) =P

s(X̃, Ỹ)  Quantile1�↵

nX

i=1

p
ŵ
i (X̃, Ỹ)�Vi + p

ŵ
n+1(X̃, Ỹ)�1

!!

� 1� ↵. (20)

Using (17) we thus obtain

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ(X)) �P(X,Y)⇠P̃⇡⇤
X,Y

(Y 2 Ĉ(X))� dTV (P̃
⇡⇤
, P

⇡⇤
)

�1� ↵��w. (21)

A.3 Proof of Proposition 4.3

For notational convenience, we suppress the subscripts m and n in q̂, ŵ, Ĉ. Moreover, we use ŵi to
denote ŵ(Xi, Yi) and ⌘(x, y) to denote Quantile1�↵(

Pn
i=1 p̂i(x, y)�Vi + p̂n+1(x, y)�1).

Proof. We use (X̃, Ỹ) ⇠ P
⇡⇤

X,Y in place of (Xn+1, Yn+1) and let ✏ < r/2. By the definition of
Ĉ(X̃), we directly have

P(Ỹ 2 Ĉ(X̃) | X̃) =P(s(X̃, Ỹ)  ⌘(X̃, Ỹ) | X̃)

�P(s⇤(X̃, Ỹ)  ⌘(X̃, Ỹ)�H(X̃) | X̃) (22)

where s
⇤(X̃, Ỹ) := max{Ỹ � q↵hi(X̃), q↵lo(X̃) � Ỹ } and the probability is taken over

{(Xi, Yi)}ni=1
i.i.d.⇠ P

⇡b

X,Y and Ỹ ⇠ P
⇡⇤

Y |X=X̃
. We then get

(22) �P(s⇤(X̃, Ỹ)  �✏�H(X̃) | X̃)� P(⌘(X̃, Ỹ) < �✏ | X̃)

�P(s⇤(X̃, Ỹ)  �✏�H(X̃) | X̃)
⇣

(H(X̃)  ✏) + (H(X̃) > ✏)
⌘
� P(⌘(X̃, Ỹ) < �✏ | X̃)

(23)

�
⇣
P(s⇤(X̃, Ỹ)  0 | X̃)� b2{✏+H(X̃)}

⌘
(H(X̃)  ✏)

+ P(s⇤(X̃, Ỹ)  �✏�H(X̃) | X̃) (H(X̃) > ✏)� P(⌘(X̃, Ỹ) < �✏ | X̃) (24)

�P(s⇤(X̃, Ỹ)  0 | X̃) (H(X̃)  ✏)� b2{✏+H(X̃) (H(X̃)  ✏)}

+
⇣
P(s⇤(X̃, Ỹ)  0 | X̃)� P(s⇤(X̃, Ỹ) 2 (�✏�H(X̃), 0))

⌘
(H(X̃) > ✏)

� P(⌘(X̃, Ỹ) < �✏ | X̃)

�P(s⇤(X̃, Ỹ)  0 | X̃)� b2{✏+H(X̃) (H(X̃)  ✏)}� (H(X̃) > ✏)

� P(⌘(X̃, Ỹ) < �✏ | X̃) (25)

where, to get from (23) to (24), we use the condition 2✏ < r and Assumption 2

17

(25) �P(s⇤(X̃, Ỹ)  0 | X̃)� b2{✏+H(X̃)}� (H(X̃) > ✏)� P(⌘(X̃, Ỹ) < �✏ | X̃) (26)

=1� ↵� b2{✏+H(X̃)}� (H(X̃) > ✏)� P(⌘(X̃, Ỹ) < �✏ | X̃). (27)

Next, we derive an upper bound on P(⌘(X̃, Ỹ) < �✏ | X̃). Let G denote the CDF of the random
distribution

Pn
i=1 p̂i(x, y)�Vi + p̂n+1(x, y)�1. Then, ⌘(X̃, Ỹ) < �✏ implies G(�✏) � 1� ↵ and

thus P(⌘(X̃, Ỹ) < �✏ | X̃)  P(G(�✏) � 1� ↵ | X̃) a.s. Moreover, we have

P(G(�✏) � 1� ↵ | X̃) =P
 Pn

i=1 ŵi (Vi  �✏)
Pn

i=1 ŵi + ŵ(X̃, Ỹ)
� 1� ↵ | X̃

!

P
✓Pn

i=1 ŵi (Vi  �✏)Pn
i=1 ŵi

� 1� ↵ | X̃
◆

(28)

=P
✓Pn

i=1 ŵi (Vi  �✏)Pn
i=1 ŵi

� 1� ↵

◆
(29)

where, to get from (28) to (29) we use the independence of {(Xi, Yi)}ni=1 and X̃ . Now we observe
that

Pn
i=1 ŵi (Vi  �✏)

n
=

Pn
i=1(ŵi � wi) (Vi  �✏)

n
+

Pn
i=1 wi (Vi  �✏)

n
.

As n ! 1, the strong law of large numbers yields
����

Pn
i=1(ŵi � wi) (Vi  �✏)

n

����
a.s.�!

���E(X,Y)⇠P⇡b
X,Y

[(ŵ(X,Y)� w(X,Y)) (s(X,Y)  �✏)]
���

 E
(X,Y)⇠P⇡b

X,Y
[|ŵ(X,Y)� w(X,Y)| (s(X,Y)  �✏)]

 E
(X,Y)⇠P⇡b

X,Y
[|ŵ(X,Y)� w(X,Y)|] m!1�! 0 (30)

from Assumption 1 and
Pn

i=1 wi (Vi  �✏)

n

a.s.�! E
(X,Y)⇠P⇡b

X,Y
[w(X,Y) (s(X,Y)  �✏)] = P(X,Y)⇠P⇡⇤

X,Y
(s(X,Y)  �✏).

(31)

Using the triangle inequality,

P(X,Y)⇠P⇡⇤
X,Y

(s(X,Y)  �✏)  P(X,Y)⇠P⇡⇤
X,Y

(s⇤(X,Y)  �✏/2) + P(H(X) � ✏/2) (32)

 P(X,Y)⇠P⇡⇤
X,Y

(s⇤(X,Y)  0)� ✏b1/2 + 2kE[Hk(X)]/✏k (33)

= 1� ↵� ✏b1/2 + 2kE[Hk(X)]/✏k
m!1�! 1� ↵� ✏b1/2.

To get from (32) to (33), we use Assumption 2 and Markov’s inequality. Similarly, we have

Pn
i=1 ŵi

n
=

Pn
i=1(ŵi � wi)

n
+

Pn
i=1 wi

n

so, as n ! 1,
����

Pn
i=1(ŵi � wi)

n

����
a.s.�!

���E(X,Y)⇠P⇡b
X,Y

[(ŵ(X,Y)� w(X,Y))]
���

 E
(X,Y)⇠P⇡b

X,Y
[|ŵ(X,Y)� w(X,Y)|] m!1�! 0, (34)

and
Pn

i=1 wi

n

a.s.�! E
(X,Y)⇠P⇡b

X,Y
[w(X,Y)] = 1. (35)

Putting this all together using the continuous mapping theorem, we get that, almost surely,

18

lim
m!1

lim
n!1

Pn
i=1 ŵi (Vi  �✏)Pn

i=1 ŵi
= lim

m!1
lim
n!1

Pn
i=1 ŵi (Vi  �✏)/nPn

i=1 ŵi/n
= 1� ↵� ✏b1/2. (36)

Since convergence almost surely implies convergence in probability, we have

lim
m!1

lim
n!1

P
✓Pn

i=1 ŵi (Vi  �✏)Pn
i=1 ŵi

� 1� ↵

◆
= 0. (37)

This implies that, for any ✏ > 0, limm!1 limn!1 P(⌘(X̃, Ỹ) < �✏ | X̃) = 0 almost surely.

Using Markov’s inequality and Assumption 3

P(H(X) > ✏)  E[Hk(X)]/✏k
m!1�! 0. (38)

So as m ! 1, H(X)
P! 0. Similarly, (H(X) > ✏)

P! 0 as m ! 1.

Recall (using 27) that, for any ✏ 2 (0, r/2), almost surely,

P(Ỹ 2 Ĉ(X̃) | X̃)� (1� ↵� b2✏) � �b2H(X̃)� (H(X̃) > ✏)� P(⌘(X̃, Ỹ) < �✏ | X̃).
(39)

For given t > 0, pick ✏ < min(r/2, t/2b2). Then,

P(Ỹ 2 Ĉ(X̃) | X̃)� (1� ↵� t/2) � �b2H(X̃)� (H(X̃) > ✏)� P(⌘(X̃, Ỹ) < �✏ | X̃).
(40)

Each term on the right hand side of (40) converges in probability to 0 as m,n ! 1, and therefore
using continuous mapping theorem

b2H(X̃) + (H(X̃) > ✏) + P(⌘(X̃, Ỹ) < �✏ | X̃)
P! 0.

This implies

P(P(Ỹ 2 Ĉ(X̃) | X̃)  1� ↵� t)

 P(b2H(X̃) + (H(X̃) > ✏) + P(⌘(X̃, Ỹ) < �✏ | X̃) � t/2) ! 0.

Therefore,

lim
m!1

lim
n!1

P(P(Ỹ 2 Ĉ(X̃) | X̃)  1� ↵� t) = 0. (41)

19

B Conformal Off-Policy Prediction (COPP)

B.1 Further comments on the differences between [14] and COPP

In this subsection, we elaborate on the differences between our work and [14].

Firstly, [14] consider a setup in which the distribution of X is shifted, and construct intervals on the
outcome under a specific (deterministic) action, i.e. Y (a). In contrast, we consider a setup in which
the distribution of Y |X is shifted due to a change in the policy which is non trivial, and construct
bounds on the outcome under this new policy (which could be stochastic). Additionally, since the
theory in our methodology relies on the ratio of the joint distribution PX,Y , our framework can be
straightforwardly extended to the case where both, the conditional PY |X and the covariate distribution
PX shift.

Secondly, as already mentioned in section 5, [14] can only be applied to the case where we have a
deterministic target policy and a discrete action space, whereas COPP generalizes to the stochastic
policy and continuous action space. This limitation of [14] can be partially addressed by employing
the “union method” as described in the main text, which consists of constructing CP intervals for each
action separately before taking the union of the intervals. However, we showed in our experiments
that this leads to overly conservative intervals i.e. coverage above the required 1�↵ in Table 1a. This
is because the predictive interval does not depend on the target policy, since every action is treated
identically when taking the union. This approach is moreover unsuitable for continuous action spaces,
whereas COPP applies without modification.

Thirdly, as stated in in section 5, even in the case when we only consider deterministic target policies,
there is an important methodological difference between COPP and [14]. [14] construct the intervals
on Y (a) by only using calibration data with A = a (see eq. 3.4 in [14]). In contrast, it can be
shown that COPP uses the entire calibration data when constructing intervals on Y (a). This is a
consequence of integrating out the actions in the weights w(x, y) (sec 3.1). This empirically leads to
smaller variance in coverage compared to [14] as evidenced by the experimental results in B.2.

Finally, in our paper we are not interested in a linear combination of the Y (a) as in [14], who consider
the linear combination of the form Y (1)�Y (0). Instead, as described in section 1.1, we are interested
in the outcome Y under the new target policy ⇡

⇤ (sometimes denoted as Y (⇡⇤) in the literature),
which cannot be expressed as a linear combination of Y (a). As a result, there does not appear to be a
straightforward application of [14, Section 4.3] to our setup which relies on the linear combination
assumption to be applicable.

B.2 Comparison with [14] on deterministic target policies.

In order to further clarify the distinction between COPP and [14], we conducted additional exper-
iments when the target policy is deterministic i.e. ⇡

⇤(A|X) = {A = a}. In the main text we
modified [14] to our setting of stochastic policies by constructing the conformal intervals through
the union of the CP sets across the actions. Here we aim to apply COPP to the setting of [14], i.e.
deterministic target policy.

As mentioned in in the main text, given that we are integrating out the action in Eq. 7, we are
essentially able to use the full dataset when constructing the CP intervals. To see this explicitly,
consider the case where Y | X,A is a normal random variable (as in our toy experiment). In this
case, it can be straightforwardly shown that the weights w(xi, yi) will be non-zero, and therefore,
when constructing the COPP intervals using (5), we are able to use all the calibration datapoints.

This is contrary to [14], who only consider calibration data with A = a, when constructing the CP
intervals for Y (a). Below, we use the same experimental setup as our toy experiment in section 6.1
(see section D.1 for more details) with the difference here that we now consider deterministic target
policies. In figure 2 we plot the coverage for given deterministic target policies against the number
of calibration datapoints. In this figure, we refer to the methodology of [14] as LC21. Here, we
use the behavioural policy ⇡0.3 and a deterministic target policy which takes a single fixed action
a 2 {1, 2, 3, 4} at test time. In the title of each subfigure, Y (a) corresponds to the outcome for the
target policy ⇡

⇤(A = a | X) = (A = a).

Results: We first note in Figure 2 that the coverage of COPP intervals has a lower variance than [14].
Given that COPP is able to use all the data when constructing the CP intervals, as opposed to [14]

20

Figure 2: Results for synthetic data experiment with ⇡
b = ⇡0.3 and deterministic target policies.

which only uses a subset, our bounds have lower variance while also attaining the coverage guarantees.
We observe this difference particularly in the case when we have little calibration data. Given that
[14] have to split the data into 4 different splits (we have 4 different actions), the calibration data
for each action is relatively small, whereas we are able to use the whole dataset to construct our CP
intervals.

B.3 Motivation of using stochastic policies for bandits

One of the key difference between our method and that of [14] is that our method can be applied
to the setting where the target policy is stochastic. In many settings, deterministic target policies
might not be applicable such as in the settings of recommendation systems or RL where exploration
is needed [25; 22]. For example, COPP can be used to compare different recommendation systems
given some logged data. We explore this application in our MSR experiments where the target
policies correspond to different recommendation systems which are, by default, stochastic. Other
applications which also make use of stochastic policies bandit problems can be found in [22; 7].

B.4 COPP for Group-balanced coverage

As [2] point out, we may want predictive intervals that have same error rates across multiple different
groups. Using our example of a recommendation system, we may want the predictive intervals to
have same coverage across male and female users.

Formally, this problem can be expressed as follows. Let ⌦ = {⌦1, · · · ,⌦k} be subsets of X ⇥ Y
with P(X,Y)⇠P⇡⇤

X,Y
((X,Y) 2 ⌦j) > 0 for j 2 {1, . . . , k}. We would like to construct predictive

intervals Ĉ⌦
n which satisfy

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ
⌦
n (X) | (X,Y) 2 ⌦j) � 1� ↵ for all j 2 {1, . . . , k}.

CP offers us the ability to construct such intervals Ĉ⌦
n , by simply running algorithm 1 (main text) on

each group separately. This has been visualized in figure 3.

21

Figure 3: Figure taken from [2]. To achieve group-balanced coverage, we simply run conformal
prediction separately on each group.

Formally, this procedure can be described as follows. We group scores into different groups according
to each subset.

{(X⌦j

i , Y
⌦j

i)}nj

i=1 := {(Xi, Yi) : (Xi, Yi) 2 ⌦j}ni=1 and,

V
⌦j

i := (X
⌦j

i , Y
⌦j

i)

Then, within each subset, we calculate the conformal quantile,

⌘
⌦j (x, y) := Quantile1�↵(F̂

⌦j
n (x, y))

where,

F̂
⌦j
n (x, y) :=

njX

i=1

p
⌦j

i (x, y)�
V

⌦j
i

+ p
⌦j

n+1(x, y)�1 where,

p
⌦j

i (x, y) :=
w(X

⌦j

i , Y
⌦j

i)
Pnj

i=1 w(X
⌦j

i , Y
⌦j

i) + w(x, y)

p
⌦j

n+1(x, y) :=
w(x, y)

Pnj

i=1 w(X
⌦j

i , Y
⌦j

i) + w(x, y)

Next, we construct the set Ĉ⌦
n as follows:

Ĉ
⌦
n (x

test) :=
k[

j=1

Ĉ
⌦j
n (xtest) where,

Ĉ
⌦j
n (xtest) := {y : (xtest

, y) 2 ⌦j and s(xtest
, y)  ⌘

⌦j (xtest
, y)}.

(42)

Proposition B.1 (Coverage guarantee for class-balanced conformal prediction). Let ⌦ =
{⌦1, · · · ,⌦k} be subsets of X ⇥ Y with P(X,Y)⇠P⇡⇤

X,Y
((X,Y) 2 ⌦j) > 0 for j 2 {1, . . . , k}.

Then, the set Ĉ
⌦
n defined above satisfies the coverage guarantee

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ
⌦
n (X) | (X,Y) 2 ⌦j) � 1� ↵ for all j 2 {1, . . . , k}.

Proof of Proposition B.1

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ
⌦
n (X) | (X,Y) 2 ⌦j)

� P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ
⌦j
n (X) | (X,Y) 2 ⌦j)

� P(X,Y)⇠P⇡⇤
X,Y

((X,Y) 2 ⌦j : s(X,Y)  ⌘
⌦j (X,Y) | (X,Y) 2 ⌦j) (43)

Define the measure P
j
X,Y by restricting P

⇡⇤

X,Y to ⌦j , i.e.

P
j
X,Y (x, y) / P

⇡⇤

X,Y (x, y) ((x, y) 2 ⌦j)

22

Then, (43) can be written as

(43) =P(X,Y)⇠P j
X,Y

(s(X,Y)  ⌘
⌦j (X,Y)) (44)

Moreover, for (x, y) 2 ⌦j we have

w(x, y) =
P

⇡⇤

X,Y (x, y)

P
⇡b

X,Y (x, y)
/

P
j
X,Y (x, y)

P
⇡b

X,Y (x, y)

Since p
⌦j

i (x, y) is invariant to scaling of weights w(x, y), replacing the weights by w̃(x, y) =
P j

X,Y (x,y)

P⇡b
X,Y (x,y)

keeps the conformal sets unchanged.

Therefore, using Proposition 4.1, the conformal sets constructed will provide coverage guarantees
under the measure P

j
X,Y , i.e.

P(X,Y)⇠P j
X,Y

(s(X,Y)  ⌘
⌦j (X,Y)) � 1� ↵

Using (44), we get that

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ
⌦
n (X) | (X,Y) 2 ⌦j) � P(X,Y)⇠P j

X,Y
(s(X,Y)  ⌘

⌦j (X,Y)) � 1� ↵

B.4.1 COPP for class-balanced coverage

Algorithm 2: COPP for class-balanced coverage
Inputs: Observational data Dobs = {Xi, Ai, Yi}nobs

i=1 , conf. level ↵, a score function s(x, y) 2 R,
new data point xtest, target policy ⇡

⇤ ;
Output: ĈY

n (xtest) with coverage guarantee (45);
Split Dobs into training data (Dtr) and calibration data (Dcal) of sizes m and n respectively;
Use Dtr to estimate weights ŵ(·, ·);
for y 2 Y do

Let {Xy
j , Y

y
j }

ny

j=1 be the following subset of calibration data: {(Xi, Yi) : Yi = y};
Let V y

j := s(Xy
j , Y

y
j), for j = 1, . . . , ny;

Define F̂
x,y
n =

Pny

i=1 p
w
i (x, y)�V y

i
+ p

w
n+1(x, y)�1;

where, pwi (x, y) :=
w(Xy

i ,Y
y
i)Pny

i=1 w(Xy
i ,Y

y
i)+w(x,y)

, pwn+1(x, y):=
w(x,y)Pny

i=1 w(Xy
i ,Y

y
i)+w(x,y)

;

⌘(x, y) := Quantile1�↵(F̂
x,y
n)

end
Define Ĉ

Y
n (xtest) := {y : s(xtest

, y)  ⌘(xtest
, y)};

Return Ĉ
Y
n (xtest)

In the case when Y is discrete, we construct predictive sets, ĈY
n (x), which offer label conditioned

coverage guarantees using the methodology described above,

P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉ
Y
n (X) | Y = y) � 1� ↵, for all y 2 Y (45)

This is a strictly stronger guarantee than marginal coverage, i.e. P(X,Y)⇠P⇡⇤
X,Y

(Y 2 Ĉn(X)) � 1�↵.
To understand what (45) means, consider our running example of recommendation systems, where
the outcome Y is whether the recommendation is relevant (0) or not (1) to the user. Then, Eq. (45)
ensures that out of the users who received irrelevant recommendations, the predictive sets contain
‘not relevant’ (1) at least 100 · (1� ↵)% of the times. This can be thought of as controlling the false
negative rate of irrelevant recommendations at 100 · ↵%. The same is true for users who receive
relevant recommendations. This is particularly useful when data is imbalanced, for example when
majority of the users in observational receive relevant recommendations.

23

B.5 Weights estimation ŵ(x, y)

B.5.1 Consistent estimation of the weights does not imply consistent estimation of P̂ (y|x, a)

In Proposition 4.1, we assume to have consistent estimator of w(x, y) which begs the following
question: In general, does a consistent estimate of w(x, y) imply that we also obtain a consistent
estimate of P (y|x, a)? In particular, one could then just use the estimate of P̂ (y|x, a) to construct
the predictive interval. However, we answer the above question with the negative by supplying a
counter example.

Counter-example:
Let X 2 [1,+1), a 2 s.t. |a| < K for K 2 >0.

Let Y |X, a ⇠ N ((KX
2 + a)0.5, (KX

2 � a)).

We have [Y 2|X, a] = V ar(Y |X, a)+ [Y |X, a]2 = KX
2+a+KX

2�a = 2KX
2 (independent

of a)

Next let

P̂ (y|x, a) := y
2
P (y|x, a)
2Kx2

. (46)

Recall that

w(x, y) =

R
P (y|x, a)⇡⇤(a|x)daR
P (y|x, a)⇡b(a|x)da

(47)

Using the above definition of P̂ (y|x, a) we have:

ŵ(x, y) =

R
P̂ (y|x, a)⇡⇤(a|x)da

R
P̂ (y|x, a)⇡b(a|x)da

=

R
P (y|x, a) Y 2

2KX2⇡
⇤(a|x)da

R
P (y|x, a) Y 2

2KX2⇡
b(a|x)da

= w(x, y).

Hence, w(x, y) ⌘ ŵ(x, y) 6=) P̂ (y|x, a) ⌘ P (y|x, a).
More generally, if there exists a function � : X ⇥ Y ! R�0 such that

1. �(x, y) is not constant in y

2. 0 < E[�(X,Y) | X,A] < 1, and does not depend on A

Then, we can define P̃ (y|x, a) := P (y|x, a)�(x, y)/E[�(X,Y) | X,A], and the weights computed
using P̃ (y|x, a) will be the equal to w(x, y) even though P̃ (y|x, a) 6= P (y|x, a).

B.5.2 Alternative ways to estimate ŵ(x, y) without estimating P̂ (y|x, a)

In this section, we show how we could estimate w(x, y) without having to estimate P̂ (y|x, a). One
way to obtain an estimate ŵ(x, y) is by taking a closer look at the definition of w(x, y) and rewriting
the ratio.

w(x, y) =
P

⇡⇤

X,Y (x, y)

P
⇡b

X,Y (x, y)

=

Z
P

⇡⇤

X,A,Y (x, a, y)

P
⇡b

X,A,Y (x, a, y)
P

⇡b

A|X,Y (a|x, y)da

=

Z
⇡
⇤(a|x)

⇡b(a|x)P
⇡b

A|X,Y (a|x, y)da

= E
A⇠P⇡b

A|X=x,Y =y

h
⇡
⇤(A|x)

⇡b(A|x)

i
. (48)

24

Lemma B.2. Let w(x, y) =
P⇡⇤

X,Y (x,y)

P⇡b
X,Y (x,y)

, then

w(x, y) = argmin
f

E
X,A,Y⇠P⇡b

X,A,Y

h���
���
⇡
⇤(A|X)

⇡b(A|X)
� f(X,Y)

���
���
2i
. (49)

Proof of Lemma B.2 This follows directly from the identity (48). We prove it here for sake of
completeness.

E
X,A,Y⇠P⇡b

X,A,Y

h���
���
⇡
⇤(A|X)

⇡b(A|X)
� f(X,Y)

���
���
2i

= E
X,Y⇠P⇡b

X,Y

h
E
A⇠P⇡b

A|X,Y

���
���
⇡
⇤(A|X)

⇡b(A|X)
� f(X,Y)

���
���
2i

= E
X,Y⇠P⇡b

X,Y

h
Var

A⇠P⇡b
A|X,Y

h
⇡
⇤(A|X)

⇡b(A|X)

i
+

✓
E
A⇠P⇡b

A|X,Y

h
⇡
⇤(A|X)

⇡b(A|X)

i
� f(X,Y)

◆2 i
. (50)

Where, (50) is minimized if f(x, y) = E
A⇠P⇡b

A|X=x,Y =y

h
⇡⇤(A|x)
⇡b(A|x)

i
= w(x, y).

Using Lemma B.2, we can thus approximate w(x, y) by minimizing the loss

ŵ(x, y) = argmin
f✓

E
X,A,Y⇠P⇡b

X,A,Y

h���
���
⇡
⇤(A|X)

⇡b(A|X)
� f✓(X,Y)

���
���
2i

(51)

Hence we see that the ratio estimation problem can be rewritten as a regression problem where
f✓(x, y) is for example a neural network. This allows one to estimate directly, without the need for
estimating P̂ (y | x, a) first.

25

C Estimation of the quantiles of the target distribution

As mentioned in Section 4.2, we present here a way to estimate the quantiles of the target distribution
P

⇡⇤

X,Y consistently when the ground truth weight function w(x, y) is known. As we are interested in
the quantiles, we will be using the pinball loss to train our model f̂✓ defined by

L↵(✓, x, y) =

(
↵(f̂✓(x)� y) if (f̂✓(x)� y) > 0,

(1� ↵)(y � f̂✓(x)) if (f̂✓(x)� y) < 0.

Then we have the following objective to optimize:

E(X,Y)⇠P⇡⇤
X,Y

[L↵(✓, X, Y)] =

Z

X,Y
L↵(✓, x, y)P

⇡⇤

X,Y (dx, dy)

=

Z

X,Y
L↵(✓, x, y)

dP⇡⇤

X,Y (x, y)

dP⇡b

X,Y (x, y)
P

⇡b

X,Y (dx, dy)

=

Z

X,Y
L↵(✓, x, y)w(x, y)P

⇡b

X,Y (dx, dy)

= E
(X,Y)⇠P⇡b

X,Y
[L↵(✓, X, Y)w(X,Y)].

The above holds true if the true weight function is known. However in the case where we only have
a consistent estimator of w(x, y), it remains to be proven that the above objective will also yield
a consistent estimator of the quantiles under ⇡⇤. We leave this for future work to prove as we are
simply providing a possible avenue to relax the assumptions in Proposition 4.2.

26

D Experiments

The code for our experiments is available at https://anonymous.4open.science/r/COPP-75F5
and we ran all our experiments on Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz with 8GB RAM
per core. We were able to use 100 CPUs in parallel to iterate over different configurations and seeds.
However, we would like to note that our algorithms only requires 1 CPU and at most 10 mins to run,
as our networks are relatively small.

D.1 Toy Experiment

D.1.1 Synthetic data experiments setup

Model. The observational data distribution is defined as follows:

Xi
i.i.d.⇠ N (0, 9)

Ai | xi ⇠ ⇡
b(· | xi) where ⇡

b has been defined below
Yi | xi, ai ⇠ N (ai ⇤ xi, 1)

Behaviour and Target Policies. We define a family of policies ⇡✏(a | x) as follows:

⇡✏(a|x) :=

8
>><

>>:

✏ (a 2 {1, 2, 3}) + (1� 3✏) (a = 4) if |x| 2 (3,1)
✏ (a 2 {1, 2, 4}) + (1� 3✏) (a = 3) if |x| 2 (2, 3]
✏ (a 2 {1, 3, 4}) + (1� 3✏) (a = 2) if |x| 2 (1, 2]
✏ (a 2 {2, 3, 4}) + (1� 3✏) (a = 1) if |x| 2 [0, 1]

We use the parameter ✏ 2 (0, 1/3) to control the policy shift between target and behaviour policies.
For the behaviour policy ⇡

b, we use ✏
b = 0.3, and for target policies ⇡⇤, we use ✏

⇤ 2 {0.1, 0.2, 0.3}.
Here we use m = 1000 training datapoints.

Neural Network Architectures

• To approximate the behaviour policy ⇡
b, we use a neural network with 2 hidden layers and

16 nodes in each hidden layer, and ReLU activation function.
• To approximate P (y|x, a), we use N (µ(x, a),�(x, a)), where µ and � are neural networks

with one-hidden layer, 32 nodes in the hidden layer, and ReLU activation function.
• For the score function, we train the quantiles q̂↵/2 and q̂1�↵/2 using quantile regression,

each of which are modelled using neural networks with one-hidden layer, 32 nodes in the
hidden layer, and ReLU activation functions.

Results: Coverage as a function of increase calibration data As mentioned in the main text,
we have also performed experiments to investigate how much calibration data is needed for COPP
as well as other methods to converge to the required 90% coverage. In the below figure 4 we have
plotted the coverage as a function of n calibration data points. Our proposed method is converging
much faster to the required coverage compared to the competing methods.

Additional experimental baseline using weighted quantile regression. In order to add an addi-
tional baseline that is also covariate dependent, we have added some experiments using the weighted
quantile regression (WQR) as described in Sec. C on our toy experiments from Sec. 6 in the main text.
Below in Table 3 and Table 4 we see the complete coverage table with the respective interval lengths.
Note also that WQR does not seem to perform well as it does not have any statistical guarantees
and heavily relies on good estimation of the ratio. We have added these experiments here in the
appendix for completeness and did not add it in the main text as the results were not comparable to
other baselines.

27

https://anonymous.4open.science/r/COPP-75F5

Figure 4: Results for synthetic data experiment with ⇡
b = ⇡0.3 and the target policy is ⇡⇤ = ⇡0.1.

Left: our proposed method is able to converge to the required coverage rather quickly compared to
the competing methods. Right: here we see that our method is on par with using the GT weights. Due
to estimation error, COPP with estimated weights has slightly higher variance in terms of coverage

Table 3: Mean Coverage as a function of policy shift with 2 standard errors over 10 runs. We have
added weighted quantile regression (WQR) for completeness and note that it does not seem to perform
well.

Coverage �✏ = 0.0 �✏ = 0.1 �✏ = 0.2

COPP (Ours) 0.90 ± 0.01 0.90 ± 0.01 0.91 ± 0.01
WIS 0.89 ± 0.01 0.91 ± 0.02 0.94 ± 0.02
SBA 0.90 ± 0.01 0.88 ± 0.01 0.87 ± 0.01

COPP (GT weights Ours) 0.90 ± 0.01 0.90 ± 0.01 0.90 ± 0.01
CP (no policy shift) 0.90 ± 0.01 0.87 ± 0.01 0.85 ± 0.01
CP (union) 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
WQR 0.82 ± 0.04 0.76 ± 0.03 0.70 ± 0.03

Table 4: Mean Interval Length as a function of policy shift with 2 standard errors over 10 runs. We
have added weighted quantile regression (WQR) for completeness and note that it does not seem to
perform well.

Interval Lengths �✏ = 0.0 �✏ = 0.1 �✏ = 0.2

COPP (Ours) 9.08 ± 0.10 9.48 ± 0.22 9.97 ± 0.38
WIS 24.14 ± 0.30 32.96 ± 1.80 43.12 ± 3.49
SBA 8.78 ± 0.12 8.94 ± 0.10 8.33 ± 0.09

COPP (GT weights Ours) 8.91 ± 0.09 9.25 ± 0.12 9.59 ± 0.20
CP (no policy shift) 9.00 ± 0.10 9.00 ± 0.10 9.00 ± 0.10
CP (union) 10.66 ± 0.18 11.04 ± 0.2 11.4 ± 0.26
WQR 8.55 ± 0.50 8.61 ± 0.52 8.70 ± 0.55

D.1.2 Experiments with continuous action space

As mentioned in the main text and also in Sec. B.1, our proposed method, contrary to the work of
[14] is able to also handle continuous action space. Given that we are integrating out the actions when
computing the weights in Eq. 7 our method trivially extends to the continuous action space, whereas
[14] is only applicable for discrete action spaces, as they compute conformal intervals conditioned on
a given action.

Model. The observational data distribution is defined as follows:

Xi
i.i.d.⇠ N (0, 4)

Ai | xi ⇠ N (xi/4, 1)

Yi | xi, ai ⇠ N (ai + xi, 1)

28

Target Policies. We define a family of policies ⇡✏(a | x) as follows:

⇡✏(a | x) = N (x/4 + ✏, 1). (52)

In our experiments, for the target policy ⇡
⇤, we use ⇡

⇤ = ⇡✏⇤ for ✏⇤ 2 {0, 0.5, 1, 1.5, 2, 2.5}.

Results. Table 5 shows the coverages of different methods as the policy shift ✏⇤ increases. The
behaviour policy ⇡

b = ⇡0 is fixed and we use n = 5000 calibration datapoints and m = 1000
training points, across 10 runs. Table 5 shows, how COPP stays very close to the required coverage
of 90% across all target policies with ✏

⇤  2.0, compared to WIS and SBA. Both, WIS intervals
and SBA intervals suffer from under-coverage i.e. below the required coverage. These results again
support our hypothesis from Sec. 3.1, which stated that COPP is less sensitive to estimation errors of
P̂ (y|x, a) compared to directly using P̂ (y|x, a) for the intervals i.e. SBA.

Next, Table 6 shows the mean interval lengths and even though WIS intervals are under-covered,
the average interval length is huge compared to COPP. Additionally, for ✏⇤ 2 {0, 0.5, 1, 1.5}, COPP
with estimated weights produces results which are close to COPP intervals with ground truth weights.
This shows that when the behaviour and target policies have reasonable overlap, the effect of weights
estimation error on COPP results is limited. However, as ✏⇤ increases to 2.0 and 2.5, the overlap
between behaviour and target policies becomes low. We empirically note that this leads to high
weights estimation error and consequently under-coverage in COPP with estimated weights. In
contrast, COPP with ground truth weights still achieves required coverage, even though it becomes
conservative when the overlap is low. Figure 5 visualises how the overlap between target and
behaviour policies decreases with increasing ✏

⇤. It can be seen that ✏⇤ 2 {2, 2.5} leads to very low
overlap between the behaviour and target data.

Table 5: Mean Coverage as a function of policy shift with 2 standard errors over 10 runs.
Coverage ✏

⇤ = 0.0 ✏
⇤ = 0.5 ✏

⇤ = 1.0 ✏
⇤ = 1.5 ✏

⇤ = 2.0 ✏
⇤ = 2.5

COPP (Ours) 0.90 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.91 ± 0.01 0.89 ± 0.02 0.85 ± 0.02
WIS 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.01 0.87 ± 0.02 0.89 ± 0.02 0.83 ± 0.02
SBA 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.86 ± 0.01 0.89 ± 0.02 0.83 ± 0.02

COPP (GT Weights Ours) 0.90 ± 0.01 0.91 ± 0.01 0.91 ± 0.01 0.90 ± 0.01 0.96 ± 0.02 0.93 ± 0.02
CP (no policy shift) 0.90 ± 0.01 0.88 ± 0.01 0.82 ± 0.01 0.73 ± 0.01 0.60 ± 0.01 0.46 ± 0.01

Table 6: Mean Interval Length as a function of policy shift with 2 standard errors over 10 runs.
Interval Lengths ✏

⇤ = 0.0 ✏
⇤ = 0.5 ✏

⇤ = 1.0 ✏
⇤ = 1.5 ✏

⇤ = 2.0 ✏
⇤ = 2.5

COPP (Ours) 4.75 ± 0.04 5.08 ± 0.09 5.89 ± 0.14 6.92 ± 0.18 7.82 ± 0.41 8.45 ± 0.44
WIS 9.55 ± 0.1 9.56 ± 0.12 9.56 ± 0.27 9.44 ± 0.38 9.40 ± 0.59 9.08 ± 0.64
SBA 4.38 ± 0.03 4.37 ± 0.03 4.36 ± 0.04 4.34 ± 0.07 4.31 ± 0.1 4.28 ± 0.14

COPP (GT Weights Ours) 4.73 ± 0.05 5.07 ± 0.09 5.87 ± 0.14 6.82 ± 0.13 7.57 ± 0.19 8.07 ± 0.22
CP (no policy shift) 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05 4.70 ± 0.05

29

Figure 5: Plots of A against X , where X ⇠ N (0, 4) and A | X is sampled from behaviour and target
policies. Here, target policies are defined in (52) for ✏⇤ 2 {0, 0.5, 1, 1.5, 2, 2.5}.

D.2 Experiments on Microsoft Ranking Dataset

Dataset details. The dataset contains relevance scores for websites recommended to different
users, and comprises of 30, 000 user-website pairs. For a user i and website j, the data contains a
136-dimensional feature vector uj

i , which consists of user i’s attributes corresponding to website j,
such as length of stay or number of clicks on the website. Furthermore, for each user-website pair,
the dataset also contains a relevance score, i.e. how relevant the website was to the user.

First, given a user i we sample (with replacement) 5 websites, {uj
i}5j=1, from the data. Next, we

reformulate this into a contextual bandit where A 2 {1, 2, 3, 4, 5} corresponds to the website we
recommend to a user. For a user i, we define X by combining the 5 feature vectors corresponding
to the user, i.e. X 2 R5⇥136, where xi = (u1

i , u
2
i , u

3
i , u

4
i , u

5
i). In addition, Y 2 {0, 1, 2, 3, 4}

corresponds to the relevance score for the A’th website, i.e. the recommended website. The goal is to
construct prediction sets that are guaranteed to contain the true relevance score with a probability of
90%. Here we use m = 5000 training data points.

Behaviour and Target Policies. We first train a Neural Network (NN) classifier model mapping
each 136-dimensional feature vector to the softmax scores for each relevance score class, f̂✓ : U !
[0, 1]5. We use this trained model f̂✓ to define a family of policies such that we pick the most relevant
website as predicted by f̂✓ with probability ✏ and the rest uniformly with probability (1 � ✏)/4.

30

Formally, this has been expressed as follows. We use f̂
label
✓ to denote the relevance class predicted by

f̂✓, i.e. f̂ label
✓ (u) := argmaxi{f̂✓(u)i}.

Then,

⇡✏(a | X = (u1
, u

2
, u

3
, u

4
, u

5)) :=✏ (a = argmax
j

{f̂ label
✓ (uj)})

+ (1� ✏)/4 (a 6= argmax
j

{f̂ label
✓ (uj)})

Estimation of ratios, ŵ(X,Y). To estimate the P̂ (y | x, a) we use the trained model f̂✓ as follows:

P̂ (y | x = (u1
, u

2
, u

3
, u

4
, u

5), a) = f̂✓(u
a)y

where f̂✓(ua)y corresponds to the softmax prediction of ua for label y under the model f̂✓. To
estimate the behaviour policy ⇡̂

b, we train a classifier model X ! A using a neural network. We use
(7) to estimate the weights ŵ(x, y).

Neural Network Architectures

• To approximate the behaviour policy, we use a neural network with 2 hidden layers and 25
nodes in each hidden layer, ReLU activations and softmax output.

• To approximate f̂✓, we use a neural network with 2 hidden layers with 64 nodes each and
ReLU activations.

Results: Coverage as a function of increase calibration data. As mentioned in the main text, we
have also performed experiments to investigate how much calibration data is needed for COPP as
well as other methods to converge to the required 90% coverage. In the below plot we have plotted
the coverage as a function of n calibration data points. We observe that our proposed method is
converging much faster to the required coverage compared to the competing methods.

Figure 6: Results of Microsoft Ranking Dataset experiment with behaviour policy ⇡
b = ⇡0.5 and the

target policy is ⇡⇤ = ⇡0.2. Our proposed method is able to converge to the required coverage rather
quickly compared to the competing methods

31

Table 7: Coverages for COPP with and without label conditioned coverage, ĈY
n and Ĉn respectively.

Overall coverage refers to marginal coverage while Y = y refers to coverage conditioned on Y = y.
Here ntest corresponds to the number of test data points (⇠ P

⇡⇤
).

ntest Ĉn Cov Ĉ
Y
n Cov

Overall 5000 0.896 ± 0.005 0.941 ± 0.003
Y = 0 266 0.700 ± 0.020 1.000 ± 0.000
Y = 1 293 0.526 ± 0.019 1.000 ± 0.000
Y = 2 228 0.772 ± 0.018 0.990 ± 0.029
Y = 3 320 0.852 ± 0.015 0.964 ± 0.035
Y = 4 3893 0.950 ± 0.006 0.928 ± 0.003

D.2.1 Results: COPP for Class-balanced coverage

Table 7 shows the coverages of COPP predictive sets (Ĉn with marginal coverage guarantee con-
structed using algorithm 1) and COPP intervals with label conditioned coverage (ĈY

n satisfying
(45) constructed using algorithm 2). Extensions of WIS and SBA to the conditional case are not
straightforward and hence have not been included. For Ĉn, while the overall coverage is very close
to the required coverage of 90%, we see that there is under-coverage for Y = 0, 1, 2, 3. This can be
explained by the data imbalance – the number of test data points with Y = 0, 1, 2, 3 is significantly
lower than Y = 4.

This under-coverage problem disappears in Ĉ
Y
n . Instead, in cases where number of data points is

small, (Y = 0, 1, 2, 3), the predictive sets Ĉ
Y
n are conservative (i.e. have coverage > 90%). As

a result, the overall coverage increases to 0.941. This is a price to be paid for label conditioned
coverage – the overall coverage may increase, however, being conservative in safety-critical settings
is better than being overly optimistic.

D.3 UCI Dataset experiments

Following [9; 6; 30] we apply COPP on UCI classification datasets. We can pose classification as
contextual bandits by defining the covariates X as the features, the action space A = K, where
K is the set of labels, and the outcomes are binary, i.e. Y = {0, 1}, defined by Y | X,A =
(X belongs to class A). Here we use m = 1000 training data points.

Behaviour and Target Policies. First we train a neural network classifier mapping each covariate
to the softmax scores for each class, f̂✓ : X ! [0, 1]|K|. We use this trained model f̂✓ to define a
family of policies such that we pick the most likely label as predicted by f̂✓ with probability ✏ and the
rest uniformly with probability. Formally, this can be expressed as follows:

⇡✏(a | x) := ✏ (a = argmax
k2K

{f̂✓(x)k}) + (1� ✏)/(|K|� 1) (a 6= argmax
k2K

{f̂✓(x)k})

Like other experiments, we use ✏ to control the shift between behaviour and target policies. For ⇡b,
we use ✏

b = 0.5 and for ✏⇤ 2 {0.05, 0.3, 0.4, 0.5, 0.6, 0.7, 0.95}. Using this behaviour policy ⇡
b, we

generate an observational dataset Dobs = {xi, ai, yi}nobs
i=1 which is then split into training Dtr and

calibration datasets Dcal, of sizes m and n respectively.

Estimation of ratios, ŵ(X,Y). To estimate the P̂ (y | x, a) we use the trained model f̂✓ as follows:

P̂ (Y = 1 | x, a) = f̂✓(x)a

where f̂✓(x)a corresponds the softmax prediction of x for label a under the model f̂✓. To estimate
the behaviour policy ⇡̂

b, we train a classifier model X ! A using a neural network. We use (7) in
main text to estimate weights ŵ(x, y).

32

Score. We define P̂
⇡b

(y | x) =
P

i2K ⇡̂
b(A = i|x)P̂ (y|x,A = i). Using similar formulation as

in [2], we define the score as

s(x, y) =
X

y0=0,1

P̂
⇡b

(y0 | x) (P̂⇡b

(y0 | x) � P̂
⇡b

(y | x))

Neural Network Architectures

• To approximate the behaviour policy, we use a neural network with 2 hidden layers and 64
nodes in each hidden layer, ReLU activations and softmax output.

• To approximate f̂✓, we use a neural network with 2 hidden layers with 64 nodes each and
ReLU activations.

Results. Tables 8-13 show the coverages across varying target policies for different classification
datasets. The behaviour policy ⇡

b = ⇡0.5 is fixed and we use n = 5000 calibration datapoints, across
10 runs with m = 5000 training data. The tables show that COPP is able to provide the required
coverage of 90% across all target policies. Moreover, compared to COPP, SBA and WIS are overly
conservative. WIS estimates are not adaptive w.r.t. X , and as a result, the predictive sets produced
are uninformative (i.e. contain all outcomes) in these experiments where the outcome is binary.

We have also included a comparison of COPP using estimated behaviour policy with COPP using GT
behaviour policy. The latter provides more accurate coverage, and using estimated behaviour policy
provides slightly over-covered predictive sets comparatively in most cases. This can be explained by
policy estimation error. Additionally, we observe that using standard CP leads to predictive sets which
are not adaptive to policy shift. As a result, the standard CP predictive sets get overly conservative
(optimistic) as �✏ becomes more negative (positive).

33

Table 8: Yeast dataset results
�✏ = �0.45 �✏ = �0.2 �✏ = �0.1 �✏ = 0.0 �✏ = 0.1 �✏ = 0.2 �✏ = 0.45

COPP (Ours) 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.91±0.00
WIS 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 0.98±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

COPP (GT behav policy) 0.91±0.00 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00
CP (no policy shift) 0.97±0.00 0.93±0.00 0.92±0.00 0.90±0.00 0.89±0.00 0.87±0.00 0.83±0.00

Table 9: Ecoli dataset results
�✏ = �0.45 �✏ = �0.2 �✏ = �0.1 �✏ = 0.0 �✏ = 0.1 �✏ = 0.2 �✏ = 0.45

COPP (OURS) 0.92±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00
WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

COPP (GT BEHAV POLICY) 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.01
CP (NO POLICY SHIFT) 0.92±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.90±0.00 0.89±0.00 0.88±0.00

Table 10: Letter dataset results
�✏ = �0.45 �✏ = �0.2 �✏ = �0.1 �✏ = 0.0 �✏ = 0.1 �✏ = 0.2 �✏ = 0.45

COPP (OURS) 0.95±0.00 0.93±0.00 0.93±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.91±0.00
WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 0.97±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

COPP (GT BEHAV POLICY) 0.92±0.00 0.91±0.00 0.91±0.00 0.90±0.00 0.89±0.00 0.89±0.00 0.88±0.00
CP (NO POLICY SHIFT) 0.99±0.00 0.94±0.00 0.92±0.00 0.90±0.00 0.88±0.00 0.86±0.00 0.81±0.00

Table 11: Optdigits dataset results
�✏ = �0.45 �✏ = �0.2 �✏ = �0.1 �✏ = 0.0 �✏ = 0.1 �✏ = 0.2 �✏ = 0.45

COPP (OURS) 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00 0.93±0.00
WIS 0.99±0.01 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 0.97±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

COPP (GT BEHAV POLICY) 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.89±0.00 0.89±0.00
CP (NO POLICY SHIFT) 0.97±0.00 0.93±0.00 0.91±0.00 0.90±0.00 0.88±0.00 0.87±0.00 0.83±0.00

Table 12: Pendigits dataset results
�✏ = �0.45 �✏ = �0.2 �✏ = �0.1 �✏ = 0.0 �✏ = 0.1 �✏ = 0.2 �✏ = 0.45

COPP (OURS) 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.92±0.00 0.91±0.00
WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 0.97±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

COPP (GT BEHAV POLICY) 0.91±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.89±0.00 0.89±0.00
CP (NO POLICY SHIFT) 0.99±0.00 0.94±0.00 0.92±0.00 0.90±0.00 0.88±0.00 0.86±0.00 0.81±0.00

Table 13: Satimage dataset results
�✏ = �0.45 �✏ = �0.2 �✏ = �0.1 �✏ = 0.0 �✏ = 0.1 �✏ = 0.2 �✏ = 0.45

COPP (OURS) 0.92±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00 0.91±0.00
WIS 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
SBA 0.98±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.99±0.00

COPP (GT BEHAV POLICY) 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.90±0.00 0.89±0.00
CP (NO POLICY SHIFT) 0.97±0.00 0.93±0.00 0.92±0.00 0.90±0.00 0.88±0.00 0.87±0.00 0.83±0.00

34

E How the miscoverage depends on P̂ (y | x, a)

Proposition E.1. Let

w̃(x, y) :=

R
P̂ (y | x, a)⇡⇤(a | x)da

R
P̂ (y | x, a)⇡b(a | x)da

.

Assume that P̂ (y | x, a)/P (y | x, a) 2 [1/�,�] for some � � 1. Then,

�w := 1
2E(X,Y)⇠P⇡b

X,Y
| w̃(X,Y)� w(X,Y) | �2 � 1.

Proof. In this proof, we investigate the error of the weights as a function of the error in P̂ (y | x, a).
Therefore, to isolate this effect we ignore the Monte Carlo error, and assume known behavioural
policy ⇡

b.

Under the assumption above, we have that

1/�
R
P (y | x, a)⇡⇤(a | x)da

�
R
P (y | x, a)⇡b(a | x)da

w̃(x, y) 
�
R
P (y | x, a)⇡⇤(a | x)da

1/�
R
P (y | x, a)⇡b(a | x)da

.

=) 1

�2
w(x, y) w̃(x, y)  �2

w(x, y)

This means that,

✓
1

�2
� 1

◆
w(x, y) w̃(x, y)� w(x, y)  (�2 � 1)w(x, y)

So,

| w̃(x, y)� w(x, y) | (�2 � 1)w(x, y)

And therefore,

E
(X,Y)⇠P⇡b

X,Y
| w̃(X,Y)� w(X,Y) | (�2 � 1)E

(X,Y)⇠P⇡b
X,Y

[w(X,Y)] = �2 � 1

35

