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1 PROOFS

1.1 PROOF OF THEOREM 1

1. Note that according to the definition,

FIDall

(
PX1 , . . . , PXk

; PG

)
= FID

( k∑
i=1

λiPXi , PG

)
.

Since the FID score depends only on the the mean and covariance parameters in the Inception-
based semantic space, we can replace

∑k
i=1 λiPXi with any other distribution that shares the

same mean and covariance parameters, and the FID value will not change. Observe that given
mean parameters µ1, . . . ,µk, the Inception-based mean of

∑k
i=1 λiPXi will be µ̂ =

∑k
i=1 λiµi.

Therefore, the Inception-based covariance matrix of
∑k

i=1 λiPXi follows from
k∑

i=1

λiEPi

[(
Xi − µ̂

)(
Xi − µ̂

)⊤]
=

k∑
i=1

λi

[
Ci +

(
µi − µ̂

)(
µi − µ̂

)⊤]
=

k∑
i=1

λi

[
Ci + µiµ

⊤
i

]
− µ̂µ̂⊤

= Ĉ.

Therefore, since we assume X̂ has the Inception-based mean and covariance µ̂ and Ĉ, the proof
of this part is complete.

2. According to the definition, FID-avg can be written as

FIDavg

(
PX1 , . . . , PXk

; PG

)
:=

k∑
i=1

λiFID
(
PXi , PG

)
.

Therefore, we have

FIDavg

(
PX1 , . . . , PXk

; PG

)
(a)
=

k∑
i=1

λiW
2
2

(
N (µi, Ci),N (µG, CG)

)
(b)
=

k∑
i=1

λi

[
∥µi − µG∥22 +Tr

(
Ci + CG − (CiCG)

1/2
)]

=

k∑
i=1

[
λi∥µi − µG∥22

]
+

k∑
i=1

[
λiTr

(
Ci + CG − (CiCG)

1/2
)]

(c)
= ∥µ̂− µG∥22 +

k∑
i=1

[
λi∥µ̂− µi∥22

]
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+Tr
(
CG + Ĉ − (CGĈ)1/2

)
+

k∑
i=1

[
λiTr

(
Ci + Ĉ − (CiĈ)1/2

)]
= ∥µ̂− µG∥22 +Tr

(
CG + Ĉ − (CGĈ)1/2

)
+

k∑
i=1

[
λi∥µ̂− µi∥22 + λiTr

(
Ci + Ĉ − (CiĈ)1/2

)]
= ∥µ̂− µG∥22 +Tr

(
CG + Ĉ − (CGĈ)1/2

)
+

k∑
i=1

λi

[
∥µ̂− µi∥22 +Tr

(
Ci + Ĉ − (CiĈ)1/2

)]
(d)
= FID(PX̂ , PG) +

k∑
i=1

λiFID(PX̂ , PXi
).

In the above, (a) follows from the Wasserstein-based definition of FID distance. (b) comes
from the well-known closed-form expression of the 2-Wasserstein distance between Gaussian
distributions (Villani et al., 2009). (c) is the result of applying the weighted barycenter of
vector µ1, . . . ,µk that can be seen to be µ̂ and the weighted barycenter of positive semi-definite
covariance matrices C1, . . . , Ck that has been shown to be the unique matrix Ĉ that solves the
equation C̃ =

∑k
i=1 λi

(
C̃1/2CiC̃

1/2
)1/2

(Rüschendorf & Uckelmann, 2002; Puccetti et al.,
2020). (d) is the direct consequence of the Wasserstein-based definition of the FID distance and
the closed-form expression of the 2-Wasserstein distance between Gaussians. Therefore, the proof
is complete.

1.2 PROOF OF THEOREM 2

To show this theorem, we note that if ϕ(X) is the kernel feature map for kernel k used to define the
KID distance, i.e. k(x, y) = ⟨ϕ(x), ϕ(y)⟩ is the inner product of the feature maps applied to x, y,
then it can be seen that the kernel-k-based MMD distance can be written as
MMD

(
PX , PG

)
:=EX,X′∼PX

[
k(X,X ′)

]
+ EY,Y ′∼PG

[
k(Y, Y ′)

]
− 2EX∼PX , Y∼PG

[
k(X,Y )

]
=
∥∥∥E[ϕ(X)

]
− E

[
ϕ(Y )

]∥∥∥2.
Therefore, following the definition of KID-avg, we can write
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+
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(
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)
.
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In the above, (a) and (c) follow from the feature-map-based formulation of the MMD distance. (b) is
the consequence of the fact that ∥ · ∥ is the norm in a reproducing kernel Hilbert space and for X̂
distributed as P̂X =

∑k
i=1 λPXi

we know that E
[
ϕ(X̂)

]
is the weighted barycenter of the individual

mean vectors E
[
ϕ(X1)

]
, . . . ,E

[
ϕ(Xk)

]
. (d) is based on the definition of KID. Finally, (e) follows

from the definition of KID-all, which completes the proof.

2 TRAINING DETAILS

We have trained WGAN-GP Salimans et al. (2016) and DDPM Ho et al. (2020) in a federated
learning setting by utilizing FedAvg approach McMahan et al. (2017). The experiment protocols for
WGAN-GP and DDPM are copied from original works. The communication interval of FedAvg is set
as 160 iterations for both WGAN-GP and DDPM. We have tried different communication intervals
for both models. The communication frequency will affect model performance but have no influence
on the conclusions in the main part of our paper.

3 EXTRA EXPERIMENT RESULTS

In this section, we show the some extra experiment results.

3.1 EVALUATE CIFAR100 ON FEDERATED IMAGENET-32

We expand the evaluation of CIFAR100 to Federated ImageNet-32 dataset. Similarly, we extracted
samples from each class of CIFAR-100 and treated them as the output of one hundred distinct
generators, each corresponding to a single class. We also keep the first one hundred classes of
ImageNet-32 and simulate one hundred clients. Each client hold all images (∼1300) from a single
class. We evaluate all the generators on Federated ImageNet-32 and the result is shown in Figure 1.
The ranks provided by FID-avg and FID-all is inconsistent in a much more complex distributed
learning setting.
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Figure 1: Evaluate CIFAR100 on Federated ImageNet-32.

3.2 EVALUATION OF WELL-TRAINED GENERATORS IN DISTRIBUTED LEARNING CONTEXTS

Here, we extend our numerical analysis to a federated learning scenario with realistic generators.
We use the widely used StyleGAN2-ADA(Karras et al., 2020) generator, and download an FFHQ
pre-trained model from the StyleGAN2-ADA’s GitHub repository. The generated images have
the size 1024 × 1024. Similar to the simulated generator setting in the main body of this paper,
we synthesized a sequence of variance-controlled generators by applying the standard truncation
technique (Kynkäänniemi et al., 2019) on the random noise z. The truncation parameter τ varies
from 0.01 to 1.0. A greater truncation parameter τ leads to higher diversity in generated samples. We
illustrate how the truncation parameter affects the samples in Figure 2. For each truncation τ , we
generate 5000 samples from the model for the evaluation.

Furthermore, to simulate a distributed learning setting where each client only possesses a small
set of variance-limited samples, we synthesized 100 clients. Each of the clients hold 100 images
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synthesized by the model with truncation τ = 0.25. The images within each client look similar, while
images across clients look highly different, as shown in Figure 3,

Similarly, we evaluate the models based on the two aggregations of FID and KID scores in this setting.
The numerical results are shown in Figure 4. The FID-avg vs. FID-all plot leads to a U-shape curve,
while the gap between KID-avg and KID-all remains constant for different generators. We further
show the relation between the ranking based on FID and KID aggregate scores in Figure 5, which
looks similar to the results we presented on the Mini-ImageNet dataset (Figure 6) in the text.
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Figure 2: Illustration of randomly-generated samples from the variance-controlled generators.

3.3 KID-BASED EVALUATION USING GAUSSIAN KERNEL KID DISTANCE

In our numerical discussion in the text, we utilized the standard implementation of KID measurement
from data with a polynomial kernel, k(x,y) =

(
1
dx

Ty + 1
)3

, where d is the dimension of feature
vector. We note that our theoretical finding on the evaluation consistency under KID-all and KID-avg
applies to every kernel similarity function. We redid the experiment in Fig.2 with a Gaussian RBF
kernel krbf

σ (x,y) = exp
(
− 1

2σ2 ∥x− y∥2
)

as formulated in Bińkowski et al. (2018), where we chose
σ =

√
d in the experiments. For randomly sampled images from a CIFAR10 pre-trained diffusion

model in the experiment, KIDrbf-all gives 4.277e−3 while KIDrbf-avg gives 4.295e−3. And for the
airplane images in CIFAR10, KIDrbf-all gives 4.283e−3 while KIDrbf-avg gives 4.301e−3. The
results indicate that for Gaussian RBF kernel krbf

σ , KIDrbf-all and KIDrbf-avg still gives consistent
results. In this case, the KIDrbf-based evaluation suggests the images sampled from the diffusion
model have higher quality than the set of airplane images in the CIFAR10 dataset.
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(a) Client 1 (b) Client 2 (c) Client 3

(d) Client 4 (e) Client 5 (f) Client 6

(g) Client 7 (h) Client 8 (i) Client 9

(j) Client 10 (k) Client 11 (l) Client 12

Figure 3: Illustration of random samples from randomly selected variance-limited clients.

3.4 EVALUATION OF SYNTHETIC GAUSSIAN MIXTURE DATA WITH THE LOG-LIKELIHOOD
SCORE

We also evaluated the synthetic Gaussian mixture dataset mentioned in Section 5.1 with the standard
log-likelihood (LL) score. In this experiment, we note that we have access to the probability density
functions (PDF) of the simulated generator. We utilized the generator Gvarx described in the main
text and performed the evaluation over the parameter varx in the range [0, 40]. As can be shown in
the general case, LL-avg and LL-all led to the same value for every evaluated model. As shown
in Figure 7a, they reached their maximum value at varx = 2. On the other hand, we set a new
generator Gmeanx

generating samples according to N ([meanx, 0]
⊤,Σ), where Σ = diag([2, 1]T ).

We gradually increased meanx from -2 to 2 and plotted LL-avg, LL-all, and LL-ref in Figure 7b.

3.5 RESULTS ON VARIANCE-LIMITED FEDERATED CIFAR100

Similar to the experiments on CIFAR10 and IN-32, we have also applied the variance-limited
federated dataset setting to CIFAR100. We keeps K=20 images in each class. For variance-controlled
generators, we select a sample from original CIFAR100 and gather the M-nearset neighbors. The
range of M keeps the same with that in the main part of this paper. We show the results in Figure 8.
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Figure 4: Evaluation on FFHQ with StyleGAN.
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Figure 5: Comparing FID-based and KID-based rankings of truncated StyleGAN-based generative
models with different truncation parameters. The lower the rank is, the better.

The results still support our main claims: FID-avg and FID-all gives inconsistent results while
KID-avg and KID-all give the same.

3.6 GENERAL 1-WASSERSTEIN-DISTANCE EVALUATION METRICS

Let Pg and Pt represent the distribution of generated set and training set. The Wasserstain-1 distance
between Pg and Pt is,

W (Pg,Pt) = inf
λ∈Π(Pg,Pt)

E(x,y)∼λ[∥x− y∥], (1)

where Π(Pg,Pt) denotes the set of all joint distribution λ(x, y) whose marginal distribution are
respectively Pg and Pt. However, the direct estimation of W (Pg,Pt) is highly intractable. On the
other hand, the Kantorovich-Rubinstein duality Villani et al. (2009) gives,

W (Pg,Pt) = sup
∥f∥L≤1

Ex∼Pg
[f(x)]− Ex∼Pt

[f(x)], (2)
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Figure 6: Comparing FID-based and KID-based rankings of variance-limited federated Mini-
ImageNet-based simulated generative models. The lower the rank is, the better.
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Figure 7: Evaluation of synthetic Gaussian data with the aggregate log-likelihood scores.

where the supremum is over all the 1-Lipschitz functions f : Rn → R. Therefore, if we have
a parameterized family of functions {fθ}θ∈Θ that a 1-Lipschitz, we could considering solve this
problem,

max
θ∈Θ

Ex∼Pg [fθ(x)]− Ex∼Pt [fθ(x)]. (3)

To estimate the supremum of Equation (2), we employ a family of non-linear neural network fθ
which are repeatedly stacked by the fully connected layer, the spectral normalization and RELU
activation layer. There are three repeated blocks in the network fθ and the last block does have
RELU. The feature is extracted by pre-trained Inception-V3 network. By optimizing the parameters
in fθ to maximize Ex∼Pg

[fθ(x)]− Ex∼Pt
[fθ(x)] over Pg and Pt, we can finally get an estimation of

W (Pg,Pt). And similarly, we can also define average score W-avg and collective-data-based score
W-all under the distributed learning setting. Similar to the CIFAR100 experiment in the main body
of paper, we extracted samples from each single class of CIFAR100 and evaluate these samples on
federated CIFAR10 dataset. We illustrate a subset of W-avg / W-all pairs in Figure 9. According
to experiment results, we find that general 1-Wasserstein-Distance evaluation metric also shows
inconsistent behaviours in the distributed evaluation settings.

3.7 THE EFFECT OF INTRA-CLIENT VARIANCE

In the main body of this paper, we choose K = 20 when we conduct the variance-limited federated
CIFAR10 dataset. Hyper-parameter K controls the intra-client variance, the larger the K the larger the
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Figure 8: Evaluation on Variance-Limited Federated CIFAR100.
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Figure 9: Evaluation with 1-Wasserstein-Distance on Federated CIFAR10.

variance. The number of K will not affect the key conclusion. We prove this claim by conducting an
ablation study on hyper-parameter K. The K is selected from {5,10,20,50} in our experiment. The
results are illustrated in Figure 10. Each of these figure gives a U-shape curve, which indicates that
the rankings given by FID-all and FID-avg are highly inconsistent, especially when the intra-client
variance and inter-client variance are mismatched.

3.8 FULL EVALUATION RESULT OF CIFAR100 ON FEDERATED CIFAR10

We evaluate each class of CIFAR100 on the federated CIFAR10 dataset and report the full results on
Table 1.
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Figure 10: Ablation study on hyper-paramter K.
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Class FID-all FID-avg KID-all KID-avg Class FID-all FID-avg KID-all KID-avg

0 267.4 285.9 0.201 0.253 25 142.4 173.2 0.067 0.116
1 173.2 205.5 0.109 0.165 26 139.4 175.5 0.063 0.114
2 151.8 185.4 0.072 0.123 27 114.5 153.7 0.054 0.102
3 124.3 162.2 0.047 0.100 28 182.0 205.0 0.112 0.160
4 117.0 156.1 0.049 0.100 29 143.3 185.2 0.083 0.133
5 157.6 185.2 0.088 0.138 30 147.4 179.8 0.084 0.134
6 142.1 179.7 0.062 0.115 31 160.4 193.6 0.108 0.158
7 144.9 179.2 0.066 0.113 32 115.4 156.4 0.032 0.085
8 155.0 187.7 0.085 0.135 33 146.9 181.2 0.077 0.126
9 180.7 203.6 0.106 0.156 34 127.5 163.4 0.068 0.117

10 183.2 208.8 0.099 0.151 35 150.4 184.7 0.080 0.131
11 151.9 184.9 0.073 0.127 36 142.5 176.5 0.070 0.126
12 126.1 163.1 0.056 0.108 37 126.7 162.9 0.066 0.118
13 127.0 159.4 0.058 0.112 38 110.5 151.3 0.050 0.100
14 145.8 182.9 0.071 0.126 39 233.5 257.2 0.145 0.196
15 124.2 165.2 0.054 0.107 40 158.9 187.6 0.078 0.128
16 190.3 213.6 0.112 0.161 41 151.1 181.0 0.072 0.126
17 161.5 192.8 0.117 0.165 42 137.2 174.7 0.071 0.122
18 142.7 179.8 0.069 0.118 43 152.0 186.0 0.090 0.139
19 112.4 154.1 0.047 0.101 44 126.7 165.8 0.050 0.103
20 194.2 215.9 0.123 0.175 45 135.4 173.0 0.059 0.111
21 164.8 194.9 0.099 0.148 46 155.1 187.1 0.080 0.133
22 205.1 227.0 0.126 0.180 47 174.2 203.4 0.118 0.169
23 191.1 219.7 0.130 0.186 48 145.0 175.3 0.077 0.129
24 174.9 202.8 0.105 0.155 49 164.8 194.6 0.110 0.164
50 113.8 154.0 0.045 0.095 75 151.7 184.3 0.096 0.145
51 150.4 184.6 0.073 0.125 76 151.5 183.5 0.068 0.118
52 195.3 222.1 0.167 0.218 77 139.0 174.9 0.066 0.117
53 279.7 299.1 0.217 0.270 78 197.3 228.3 0.130 0.182
54 170.2 201.3 0.098 0.149 79 138.9 174.8 0.062 0.114
55 104.7 146.3 0.034 0.086 80 111.1 149.9 0.043 0.095
56 144.2 178.5 0.075 0.126 81 131.7 165.3 0.068 0.119
57 192.5 219.9 0.115 0.163 82 197.6 227.2 0.123 0.178
58 131.5 161.0 0.067 0.121 83 202.6 230.6 0.122 0.173
59 149.7 183.7 0.093 0.144 84 144.5 177.3 0.065 0.111
60 188.0 216.0 0.144 0.197 85 123.0 160.7 0.079 0.125
61 249.2 270.6 0.179 0.229 86 168.0 193.0 0.083 0.135
62 202.1 230.6 0.133 0.184 87 170.5 196.0 0.098 0.152
63 140.6 175.3 0.071 0.120 88 133.4 170.6 0.068 0.120
64 118.7 156.1 0.049 0.100 89 122.3 158.1 0.059 0.112
65 102.2 142.2 0.024 0.077 90 110.7 148.3 0.041 0.093
66 121.7 159.1 0.054 0.105 91 124.0 160.7 0.048 0.098
67 132.5 167.8 0.063 0.115 92 175.4 206.2 0.096 0.149
68 139.7 173.1 0.073 0.123 93 129.7 166.3 0.054 0.109
69 143.2 176.0 0.068 0.121 94 213.4 235.2 0.162 0.212
70 178.4 209.5 0.095 0.148 95 154.7 185.2 0.084 0.133
71 169.4 199.0 0.120 0.167 96 147.8 181.7 0.090 0.138
72 114.1 155.6 0.043 0.094 97 137.1 171.4 0.068 0.119
73 137.9 170.8 0.071 0.124 98 157.1 188.6 0.082 0.134
74 124.7 162.1 0.061 0.108 99 204.9 233.9 0.143 0.192

Table 1: Full evaluation of CIFAR100 on Federated CIFAR10.
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